文档库 最新最全的文档下载
当前位置:文档库 › 小学奥数-几何五大模型(相似模型)讲解学习

小学奥数-几何五大模型(相似模型)讲解学习

小学奥数-几何五大模型(相似模型)讲解学习
小学奥数-几何五大模型(相似模型)讲解学习

模型四 相似三角形模型

(一)金字塔模型

所谓的相似三角形,就是形状相同,大小不同的三角形

(只要其形状不改变,不论大小怎样

改变它们都相似),与相似三角形相关的常用的性质及定理如下:

⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线。

三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。

【例1】 如图,已知在平行四边形 ABCD 中,AB 16,AD 10, BE 4,那么FC 的长 度是多

少?

【解析】图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题, 因为AB 平行于CD ,

任意四边形、梯形与相似模型

(二)沙漏模型

① AD AE AB AC DE AF BC AG

② S ^ ADE :

ABC

AF 2: AG 2。

n

【例2】如图,测量小玻璃管口径的量具ABC , AB的长为15厘米,AC被分为60等份。如果小玻璃管口DE正好对着量具上20等份处(DE平行AB ),那么小玻璃管口径

DE是多大?

【解析】有一个金字塔模型,所以DE: AB DC : AC,DE :15 40:60,所以DE 10厘米。

【例

3

如图,DE平行BC,若AD:DB 2:3,那么S^ADE

A

D' 「

E

:S A ECB。

B亠 -------

C

【解析】根据金字塔

2 2

S A ADE : S A ABC 2 : 5

模型AD : AB

4:25 ,

AE:AC DE : BC2: (23) 2:5 ,

S\ ADE :

设S A ADE 4 份,

S A

ECB

4:15。

则S A ABC 25 份S

A BEC

25 5 3 15份,所以

【例4】如图,△ ABC中,DE,FG,BC互相平行,AD DF FB,贝y ADE : §四边形DEGF : §四边形FGCB _____________________________________________________ 。

【解析】设ADE 1份,根据面积比等于相似比的平方,

所以S^ ADE : S A AFG AD2: AF2 1:4 , S^ ADE: §△ ABC AD2: AB2 1:9 ,因此

S

^ AFG 4份,S A ABC 9 份,

进而有S四边形DEGF 3份,s四边形FGCB 5份,所以S A ADE : S四边形DEGF : S四边形FGCB 1:

3: 5

所以BF:FC BE:CD 4:16 1:4,所以FC

【巩固】

【解析】

【巩固】如图,DE平行BC,且AD 2,AB 5,AE 4,求AC的长。

由金字塔模型得AD:AB AE:AC DE: BC 2:5,所以AC 4 2 5 10

如图,△ ABC中,DE , FG , MN , PQ,BC互相平行,AD DF FM MP PB,则S △ ADE : £边形DEGF : £边形FGNM : Q边形MNQP : S四边形PQCB

【解析】

【总结】数列。

【例5】

【解析】

2 2 . -

设ADE 1 份,S A ADE : S A AFG AD : AF 1:4,因此S^ AFG 4 份,进而有S四边形DEGF 3份,同理有S四边形FGNM 5份,Sg边形MNQP 7份,S四边形PQCB 9份. 所以有S A ADE : 四边形DEGF : S四边形FGNM : S四边形MNQP : S边形PQCB 1:3: 5:7:9

继续拓展,我们得到一个规律:平行线等分线段后,所分出来的图形的面积成等差

已知△ ABC中,DE平行BC,若AD:

DB 求S A ABC。

2:3 ,且S梯形DBCE 比S A ADE丿2 8.5

cm

根据金字塔模型AD:AB DE:BC 2: (2 3)

2:5

S A ADE : S A.ABC22 : 52 4 : 25 ,设S A ADE4份, 则S A ABC 25份,

S

梯形DBCE25

4 21份,S弟形DBCE比S A ADE大17份, ,恰好是8.

5 cm2, 所以

S

A ABC

12.5 cm2

【例6】如图:MN 平行BC , S A MPN :S A BCP 4:9 , AM 4 cm ,求BM 的长度

AD: AB DE:BC 2:3 .

1 1

【例7】如图, ABC 中,AE - AB , AD -AC , ED 与BC 平行, EOD 的面积是1 4 4

平方厘米。那么 AED 的面积是 ___________ 平方厘米。

1 1

【解析】 因为AE - AB , AD -AC , ED 与BC 平行,

4 4

根据相似模型可知 ED: BC 1:4 , EO:OC 1:4 , S COD 4S EOD 4平方厘米, 则S CDE 4 1 5平方厘米,

1 5

又因为S AED : S CDE AD : DC 1:3,所以 S AED 5 —-(平方厘米).

3 3

【例8】在图中的正方形中, A , B , C 分别是所在边的中点,

积的几倍?

M

'

N

C

B -

P 【解析】 在沙漏模型中, 因为 S A MPN :2 BCP

BM 6 AM : AB 4 2 cm MN :BC 2:3 ,因为

【巩固】

如图,已知

DE 平行 B C , BO: EO 4:9,所以MN : BC 2:3 ,在金字塔模型中有: AM 4 cm , AB 4 2 3

6 cm ,所以

3: 2,那么 AD : AB

________ 。 【解析】由沙漏模型得BO:EO BC:DE

3: 2,再由金字塔模型得

VCDO 的面积是VABO 面

A

【解析】 连接BC ,易知OA // EF ,根据相似三角形性质,可知 OB:OD AE: AD ,且

OA:BE DA:DE 1:2 , 所以VCDO 的面积等于 VCBO 的面积;由

1 1

OA BE AC 可得 CO 3OA ,所以 S VCDO S/CBO 3S VABO ,即 VCDO 的面积是 2 4 VABO 面积的3倍。

【例9】 如图,线段 AB 与BC 垂直,已知AD EC 4 , BD

面积是多少?

看看.

设VADO 的面积为2份,则VDBO 的面积为3份,直角三角形 ABE 的面积为8份. 因为S VABE 6 10 2 30 ,而阴影部分的面积为

4份,所以阴影部分的面积为

30 8 4 15.

解法二:连接 DE 、AC ?由于 AD EC 4 , BD BE 6,所以DE // AC ,根 据相似三角形性质,可知 DE: AC BD:BA 6:10 3:5 ,

根据梯形蝴蝶定理,S V DOE : S V DOA : S/COE : S/COA 32 : 3 5 : 3 5 :52 9:15:15:25,

1

1 15

2 10 10 1 6 6=32,所以S 阴影护梯形ADEC 15 .

【例10】

(2008

年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛

BE 6,那么图中阴影部分

这个图是个对称图形, 且各边长度已经给出,

不妨连接这个图形的对称轴 作辅助线BO ,则图形关于BO 对称,有S VADO

S V CEO , S V DBO S V EBO ,

S VADO S VD BO 4:6

2:3 .

所以S 阴影:S 梯形ADEC 15 15 : 9 15 15 25 15: 32,即S 阴影 15 护梯形 ADEC ,

又S 梯形ADEC

)如图,四边形

【解析】解法

ABCD 和EFGH 都是平行四边形,四边形 ABCD 的面积是16, BG: GC 3:1,则 四边形EFGH 的面积 __________

【解析】因为FGHE 为平行四边形,所以 EC//AG ,所以AGCE 为平行四边形.

1 1

BG:GC 3:1,那么 GC: BC 1:4,所以 S YAGCE S YABCD 16 4 .

4 4

又AE GC ,所以AE:BG GC : BG 1:3,根据沙漏模型,

3 3

FG:AF BG: AE 3:1,所以 S Y FGHE — S YAGCE — 4 3 .

4 4 【例11】 已知三角形 ABC 的面积为a , AF : FC

交CD 于G ,求阴影部分的面积.

【例12】 已知正方形 ABCD ,过C

的直线分别交 AB 、

AD 的延长线于点 E 、F ,且 AE 10 cm , AF 15 cm ,求正方形 ABCD 的边长.

【解析】方法一:本题有两个金字塔模型,根据这两个模型有

BC: AF CE: EF ,

BC DC CE CF

DC:AE CF:EF

,设正方形的边长为xcm ,所以有齐DE CE CF 1,

【解析】已知AF: FC 2:1 , 且 EF // BC , 利用相似三角形性质可

EF :BC AF : AC 2:3 ,所以

EF -BC , 3

且 S VAEF : S V ABC 4:9 .

又因为E 是BD 的中点, 所以 EG 是三角形 DBC 的中位线, 那么

EG

1 2

BC 1 2

EG : EF : 3: 4 , 所以 GF : EF 1:4 ,可得S VCFG :S VAFE 1:8

所 知

2 3

1:18

,那么 S VCF G S V CFG :

S V ABC

2:1 , E 是BD 的中点,且EF // BC ,

a 18

即仝 A 1,解得x 6,所以正方形的边长为 6 cm .

15 10

方法二:或根据一个金字塔列方程即 —x ,解得x 6

10 15 【例13】 如图,三角形 ABC 是一块锐角三角形余料,边

BC 120毫米,高AD 80毫

米,要把它加工成正方形零件, 使正方形的一边在 BC 上,其余两个顶点分别在 AB 、

AC 上,这个正方形零件的边长是多少?

【解析】观察图中有金字塔模型

5个,用与已知边有关系的两个金字塔模型,所以有

PN AP , PH BP ,设正方形的边长为 x 毫米,PN PH AP BP 1,即

BC AB AD AB BC AD

AB

AB

x

—1,解得x 48,即正方形的边长为 48毫米.

120 80

【巩固】如

图,

在厶ABC 中,有长方形DEFG , G 、 F 在 BC 上, D 、 E 分别在AB 、AC 上,AH 是厶ABC 边BC 的高,交DE 于M , DG: DE 1:2,BC 12厘米, AH 8厘米,求

长方形的长和宽.

关系的两个金字塔模型,所以

24 24

厘米. 7

【例14】 图中ABCD 是边长为12cm 的正方形,从G 到正方形顶点C 、D 连成一个三角

形,已知这个三角形在 AB 上截得的EF 长度为4cm ,那么三角形GDC 的面积是多 少?

AD DG

BD 所以有 DE DG AB

AH AB

BC AH 2x

x

24

48

1解得 x ,2x

12

8

7

7 1

'设 DG %,则 DE 2x ,

48 因此长方形的长和宽分别是 号厘米, 【解析】观察图中有金字塔模型

5个,用与已知边有

所以有

DE BC AD AB

小学奥数之几何五大模型精编版

一、等积变换模型 ⑴等底等高的两个三角形面积相等; 其它常见的面积相等的情况 ⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。 如上图12::S S a b = ⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。 ⑷正方形的面积等于对角线长度平方的一半; ⑸三角形面积等于与它等底等高的平行四边形面积的一半; 五大模型 1S 2 S

二、鸟头定理(共角定理)模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。 如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =??△△ 图1 图2 三、蝴蝶定理模型 任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ?=?②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 梯形中比例关系(“梯形蝴蝶定理”) ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2 a b +。

小学奥数-几何五大模型(蝴蝶模型)整理版

任意四边形、梯形与相似模型 卜亠\ 模型三蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): D S1: S2 = S4: S3或者S S3 =S2 S4 ② AO : OC =[S S2 : S4 S3 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例1】(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD被对角线AC BD分成四个部分,△ AOB面积为1平方千米,△ BOC面积为2平方千米,△ COD勺面积为3平方千米,公园由陆地面积是 6. 92平方千米和人工湖组成,求人工湖的面积是多少平方千米? 【分析】根据蝴蝶定理求得S^AOD=3 1-'2=1.5平方千米,公园四边形ABCD的面积是12 3 45 = 7.5平方千米,所以人工湖的面积是7.5-6.92=0.58平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC的面积:⑵AG:GC= ? 【解析】⑴根据蝴蝶定理,S BGC 1=2 3,那么S BGC=6 ; ⑵根据蝴蝶定理,AG:G^ 1 2 : 3 6 =1:3 . (? ??) 【例2】四边形ABCD的对角线AC与BD交于点0(如图所示)。如果三角形ABD的面积等于三角形BCD的

面积的 1 ,且AO =2 , DO =3,那么CO的长度是DO的长度的_____________ 倍。 3 【解析】在本题中,四边形ABCD为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件S A BD : S BCD =1:3,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH垂直BD于H , CG垂直BD于G,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:T AO :OC = S ABD: S BDC =1 : 3 , 二OC =2 3 =6 , ??? OC:OD =6:3 2:1 . 解法二:作AH _BD 于H , CG_BD 于G . ?- AH」CG , 3 1 ?- AO CO , 3 ?OC =2 3=6 , ?OC:OD =6:3 =2:1 ? 【例3】如图,平行四边形ABCD的对角线交于O点,A CEF、△OEF、△ODF、△BOE的面积依次是2、 4、4和6。求:⑴求A OCF的面积;⑵求A GCE的面积。 【解析】⑴根据题意可知,△BCD的面积为2 4 4 ^16,那么△BCO和:CDO的面积都是16亠2=8 , 所以A OCF 的面积为8—4=4; ⑵由于△ BCO的面积为8, △BOE的面积为6,所以A OCE的面积为8-6=2 , 根据蝴蝶定理,EG:FG 二 Sg E:S.COF =2:4 =1:2,所以S.GCE:S.GCF = EG : FG =1:2 , 1 1 2 那么S GCE S CEF 2 ~~? 1+2 3 3 【例4】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷。那么最大的一个三角形的面积是多少公顷? S 'ABD S BCD 3审 S AOD =—S DOC 3

小学奥数-几何五大模型(鸟头模型)-精选.

模型二 鸟头模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上如图 2), 则:():()ABC ADE S S AB AC AD AE =??△△ E D C B A E D C B A 图⑴ 图⑵ 【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =, 16ADE S =△平方厘米,求ABC △的面积. 三角形等高模型与鸟头模型

E D C B A E D C B A 【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===??△△, ::4:7(45):(75) ABE ABC S S AE AC ===??△△,所以:(24):(75)ADE ABC S S =??△△,设 8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 . 【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角 形ADE 的面积等于1,那么三角形ABC 的面积是多少? E D C B A A B C D E 【解析】 连接BE . ∵3EC AE = ∴3ABC ABE S S =V V 又∵5AB AD = ∴515ADE ABE ABC S S S =÷=÷V V V ,∴1515ABC ADE S S ==V V . 【巩固】如图,三角形被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =, 6AE =,乙部分面积是甲部分面积的几倍? 乙 甲 E D C B A A B C D E 甲 乙 【解析】 连接AD . ∵3BE =,6AE = ∴3AB BE =,3ABD BDE S S =V V 又∵4BD DC ==, ∴2ABC ABD S S =V V ,∴6ABC BDE S S =V V ,5S S =乙甲.

小学奥数-几何五大模型(鸟头模型).

模型二鸟头模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在 △ABC中,D,E分别是AB,AC上的点如图(1)(或D在BA的延长线上,E在AC上如图2),则ABC : ADE -(AB AC): (AD AE) 厘米,求△ ABC的面积. 【解析】连接BE , S A ADE : S A ABE= AD : AB =2 :5 =(2 4): (5 4), S A ABE : S A ABC = AE : AC = 4 : 7 = (4 5) : (7 5),所以S^ADE: S^ ABC= (2 4) : (7 5),设S A ADE= 8 份, 则S A ABC =35份,S A ADE =16平方厘米,所以1份是2平方厘米,35份就是70平方厘米,△ ABC的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 三角形等高模型与鸟头模型 【例1】如图在△ ABC中, D,E分别是AB,AC上的点,且AD: AB =2:5 ,AE:AC =4:7 , S^ADE =16 平方 图⑵

【巩固】如图,三角形ABC中,AB是AD的5倍,AC是AE的 3 倍,如果三角形么三 角形ABC的面积是多少? ?/ EC =3AE --S A BC = 3S ABE 又??? AB =5AD --S|_ADE = S_ABE 5 = S_ ABC 15 ,??? S ABC 如图,三角形ABC被分成了甲(阴影部分)、乙两部分,BD=DC=4 , BE=3 , AE=6,乙部分面积是甲部分面积的几倍? ?/ BE =3 , AE =6 --AB = 3BE , S ABD=3S BDE 又T BD =DC =4 , --S ABC =2S ABD,…S ABC - 6S BDE , 【例2】如图在△ ABC中,D在BA的延长线上,E在AC上,且AB: AD =5: 2 , AE:EC=3:2 , S A ADE =12平方厘米,求△ ABC的面积. 【解析】连接BE , S A ADE : S A ABE= AD: AB =2:5 =(2 3): (5 3) S A ABE : S A ABC=AE: AC =3:(3 2)=(3 5): 1(3 2) 5】, 所以S A ADE : S A ABC - (3 2) : 5 (3 2^ - 6 : 25,设S A ADE = 6 份,贝V S A ABC = 25 份,S A ADE =12 平方厘 米,所以1份是2平方厘米,25份就是50平方厘米,△ ABC的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 【例3】如图所示,在平行四边形ABCD中,E为AB的中点,AF =2CF,三角形AFE(图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米? ADE的面积等于1,那 = 15S ADE =15 . 【巩固】 【解析】连接AD . 【解 析】

六年级奥数专题几何五大模型鸟头模型

六年级奥数专题几何五大 模型鸟头模型 The latest revision on November 22, 2020

几何五大模型——鸟头模型 本讲要点 一两点都在边上:鸟头定理: (现出“鸟头模型”。然后按一下出现一个鸟头,勾勒出鸟头的轮廓,出现如图的鸟头几何模型。最后真实的鸟头隐去,只留下几何模型。最后按一下,出公式。) 二一点在边上,一点在边的延长线上:

例1 如图,AD=DB ,AE=EF=FC ,已知阴影部分面积为5平方厘米,△ABC的面积是平方厘米. 例2 例2 (1)如图在△ABC中,D、E分别是AB,AC上的点,且AD:AB=2:5, AE:AC=4:7,△ABC的面积是16平方厘米,求△ABC的面积。 (2)如图在△ABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE 的面积是12平方厘米,求△ABC的面积。 例3 已知△DEF的面积为12平方厘米,BE=CE,AD=2BD,CF=3AF,求△ABC的面积。 例4 三角形ABC面积为1,AB边延长一倍到D,BC延长2倍到E,CA延长3倍到F,问三角形DEF的面积为多少 例5 长方形ABCD面积为120,EF为AD上的三等分点,G、H、I为DC上的四等分点,阴影面积是多大

如图,过平行四边形ABCD 内的一点P 作边AD 、BC 的平行线EF 、GH ,若PBD ?的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米 1. 如下左图,在ABC △中,D 、E 分别是BC 、AB 的三等分点,且ABC △的面积是54,求 CDE △的面积。 2. 如图,长方形ABCD 的面积是1,M 是AD 边的中点,N 在AB 边上,且12AN BN =.那么,阴影部分的面积等 于 . 3. 如图以ABC △的三边分别向外做三个正方形ABIH 、ACFG 、BCED ,连接HG 、EF 、 ID ,又得到三个三角形,已知六边形DEFGHI 的面积是77平方厘米,三个正方形的面积分别是9、16、36平方厘米,则三角形ABC 的面积是多少 4. 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使 2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积。 5. 把四边形ABCD 的各边都延长2倍,得到一个新的四边形EFGH 。如果ABCD 的面积是5 平方厘米,则EFGH 的面积是多少 家庭作业 例6 A C E

几何五大模型汇总

小学平面几何五大模型 一、 共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E分别是, AB AC上的点如图⑴(或D在BA的延长线上,E在AC上),则:():() S S AB AC AD AE =?? △△ 证明:由三角形面积公式S=1/2*a*b*sinC可推导出 若△ABC和△ADE中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则 ADE ABC S S ? ? = AE AD AC AB ? ? 二、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图 12 :: S S a b = ③夹在一组平行线之间的等积变形,如右图 ACD BCD S S= △△ ; 反之,如果 ACD BCD S S = △△ ,则可知直线AB平行于CD. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. b a S2 S1 D C B A

三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面 可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. 四、相似模型 (一)金字塔模型 (二) 沙漏模型 G F E A B C D A B C D E F G ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:. 相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; A B C D O b a S 3 S 2 S 1S 4 S 4 S 3 S 2 S 1O D C B A

小学奥数 几何五大模型(等高模型)

模型一 三角形等高模型 已经知道三角形面积的计算公式: 三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13 ,则三角形面积与原来的一样.这 就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如图 12::S S a b = b a S 2S 1 D C B A ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 三角形等高模型与鸟头模型

反之,如果ACD BCD S S △△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比; 两个平行四边形底相等,面积比等于它们的高之比.

【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3 个面积相等的三角形; ⑵ 4个面积相等的三角形;⑶6个面积相等的三角形。 【解析】 ⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点, 答案不唯一: C E D B A F C D B A G D B A ⑵ 如下图,答案不唯一,以下仅供参考: ⑸ ⑷⑶⑵⑴ ⑶如下图,答案不唯一,以下仅供参考: 【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。 ⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍? 【解析】 因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等。 于是:三角形ABD 的面积12=?高26÷=?高 三角形ABC 的面积124=+?()高28÷=?高 三角形ADC 的面积4=?高22÷=?高 所以,三角形ABC 的面积是三角形ABD 面积的43 倍; 三角形ABD 的面积是三角形ADC 面积的3倍。 【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米, 那么图中阴影部分的面积是 平方厘米。 C D B A

小学奥数几何五大模型

几何五大模型 一、五大模型简介 (1)等积变换模型 1、等底等高的两个三角形面积相等; 2、两个三角形高相等,面积之比等于底之比,如图①所示, S[sub]1[/sub]:S[sub]2[/sub]=a:b; 3、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b; 4、在一组平行线之间的等积变形,如图③所示, S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果 S[sub]△ACD[/sub]=S[sub]△BCD[/sub], 则可知直线AB平行于CD。 例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型 1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。 如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点 则有:S[sub]△ABC[/sub]:S[sub]△ADE[/sub]=(AB×AC):(AD×AE) 我们现在以互补为例来简单证明一下共角定理!

如图连接BE,根据等积变化模型知,S[sub]△ADE[/sub]: S[sub]△ABE[/sub]=AD:AB、S[sub]△ABE[/sub]: S[sub]△CBE[/sub]=AE:CE,所以S[sub]△ABE[/sub]: S[sub]△ABC[/sub]=S[sub]△ABE[/sub]: (S[sub]△ABE[/sub]+S[sub]△CBE[/sub])=AE:AC ,因此S[sub]△ADE[/sub]:S[sub]△ABC[/su b]=(S[sub]△ADE[/sub]:S[sub]△ABE[/sub])×(S[sub]△ABE[/sub]:S[sub]△ABC[/sub])=(AD:AB)×(AE:AC)。 例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2, △ADE的面积为12平方厘米,求ΔABC的面积。

几何图形 五大模型

直线形面积计算的五大模型 一、等积变换模型 (1) 等底等高的两个三角形面积相等; (2) 两个三角形的底相等,面积比等于他们高的比;(或者两个三角形的高相等,面积比 等于他们底的比) AB 为公共边,所以 21::ABC ABD s s h h ??= 1h 为公共的高,所以 1 2 ::BD DC s s = (3) 两个三角形面积的比等于这两个三角形底与各自对应高的乘积的比。 底和高均不同,所以 ()21 ::)(ABD CDE BD DC h s s h ??=?? 比如:两个三角形的底的比是5:3,与各自底对应的高的比是7:6, 那么他们的面积的比是(5×7):(3×6) 二、鸟头定理(共角定理) 两个三角形中有一个角相等或者互补,这两个三角形叫做共角三角形。 共角三角形的面积比等于对应角(相等角或互补角)两条夹边的乘积之比。 BAC DAC ∠∠和互补,::DAC BAC DA AC BA AC s s ??=??所以 E :E :D A B A C D A A B A A C s s ?? ∠=??A 为公共角,所以 推理过程:连接BE ,运用等积变换模型证明。

三、蝴蝶定理模型 1.任意四边形中的比例关系(蝴蝶定理) 1 2 4 3 ::s s s s =或者1 3 4 2 s s s s ?=? 1 4 2 3 1 2 4 3 +AO:OC s s s s s s s s == =::():(+) 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以是不规则四边形的面积关系与四边形内三角形相联系;另一方面也可以得到与面积对应的对角线被分割的两段之间的比例关系。 2.梯形中比例关系(梯形蝴蝶定理) 22 13 :a b s s =: 22 1324 ::a b s s s s =:::ab :ab 整个梯形对应的面积份数为: 2 (a+b) 四、相似模型 相似三角形性质: (金字塔模型) (沙漏模型) 下面的比例关系适用如上两种模型: 1、 AD AE DE AF AB AC BC AG === 2、 22 ::ADE ABC s s AF AG ??= 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变,他们都是相似的),与相似三角形相关的常用的性质以及定理如下: (1) 相似三角形的一切对应线段的长度成比例,并且这个比例等于他们的相似比; (2) 相似三角形的面积比等于他们的相似比的平方。

小学奥数-几何五大模型

模型四 相似三角形模型 (一)金字塔模型 (二) 沙漏模型 ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:。 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线。 三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。 【例 1】 如图,已知在平行四边形ABCD 中,16AB =,10AD =,4BE =,那么FC 的长 度是多少? 【解析】 图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB 平行于CD , 所以::4:161:4BF FC BE CD ===,所以4 10814 FC =?=+. 【例 2】 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份。 如果小玻璃管口DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径DE 是多大? 【解析】 有一个金字塔模型,所以::DE AB DC AC =,:1540:60DE =,所以10DE =厘米。 【例 3】 如图,DE 平行BC ,若:2:3AD DB =,那么:ADE ECB S S =△△________。 【解析】 根据金字塔模型:::2:(23)2:5AD AB AE AC DE BC ===+=, 22:2:54:25ADE ABC S S ==△△, 任意四边形、梯形与相似模型

小学奥数平面几何五大模型

小学奥数平面几何五大定律 一、等积模型 图(1) 图(2) 图(3) 图(4) ① 等底等高的两个三角形面积相等 如图(1):D 为BC 中点,则S△ABD=S△ACD 如图(4):l1平行于l2,则S△ACD=S△BCD ② 两个三角形高相等,面积比等于它们的底之比 如图(2): S △ABDS △ACD=BDCD ③ 两个三角形底相等,面积比等于它们的高之比 如图(3):BC=EF ,则 S △ABCS △DEF=h1h2 ④ 夹在一组平行线之间的等积变形 如图(4):l1平行于l2 ,则 S△ABD=S△ACD 反之如果S△ABD=S△ACD,则可知直线l1平行于l2 ⑤ 等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平 行四边形) ⑥ 三角形面积等于与它等底等高的平行四边形面积的一半 ⑦ 两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底 相等,面积比等于它们的高之比 二、共角定理(鸟头定理) 两个三角形中有一个角相等或互补(两个角之和=180O ),这两个三角形叫做共角三角形. D B h A B D C h1 h2 l2 l2 B C h1 F E D h2 B C D h

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 共角 互补角 图(1) 图(2) 如图(1):在△ABC 中,D 、E 分别是AB 、AC 上的点,△ABC 与△ADE 共∠A 如图(2):D 在BA 的延长线上,E 在AC 上;∠BAC+∠BAC =180O (互补), 则: S △ABC :S △ADE =(AB ×AC):(AD ×AE);或 S △ABCS △ADE=AB × ACAD × AE 三、相似模型 数学上,相似指两个图形的形状完全相同,其中一个图形能通过放大、缩小、平移、旋转、镜像等方式变成另一个。 相似比:是指两个相似图形的对应边的比值。 相似符号:“∽” 相似三角形:三角分别相等,三边成比例的两个三角形叫做相似三角形 相似三角形传递性:如果图A 相似于图B ,图B 相似于C ,则 A 相似C 即:图A ∽图B ,图B ∽图C ;则,图A ∽图B ∽图C a 顺时针旋转90度 a 翻转 a 缩小 图(1) 图(2) 图(3) 图(4) c a d b A B C D E A D E F C B D E O B A

小学奥数_几何五大模型(鸟头模型)讲解学习

模型二 鸟头模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上如图 2), 则:():()ABC ADE S S AB AC AD AE =??△△ E D C B A E D C B A 图⑴ 图⑵ 【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方 厘米,求ABC △的面积. E D C B A E D C B A 【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===??△△, ::4:7(45):(75)ABE ABC S S AE AC ===??△△,所以:(24):(75)ADE ABC S S =??△△,设8ADE S =△份, 则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的 面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 . 【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那 三角形等高模型与鸟头模型

么三角形ABC 的面积是多少? E D C B A A B C D E 【解析】 连接BE . ∵3EC AE = ∴3ABC ABE S S =V V 又∵5AB AD = ∴515ADE ABE ABC S S S =÷=÷V V V ,∴1515ABC ADE S S ==V V . 【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面 积是甲部分面积的几倍? 乙 甲 E D C B A A B C D E 甲 乙 【解析】 连接AD . ∵3BE =,6AE = ∴3AB BE =,3ABD BDE S S =V V 又∵4BD DC ==, ∴2ABC ABD S S =V V ,∴6ABC BDE S S =V V ,5S S =乙甲. 【例 2】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =, :3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积. E D C B A E D C B A 【解析】 连接BE ,::2:5(23):(53)ADE ABE S S AD AB ===??△△ []::3:(32)(35):(32)5ABE ABC S S AE AC ==+=?+?△△, 所以[]:(32):5(32)6:25ADE ABC S S =??+=△△,设6ADE S =△份,则25ABC S =△份,12ADE S =△平方厘米,所以1份是2平方厘米,25份就是50平方厘米,ABC △的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 【例 3】 如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的面积 为8平方厘米.平行四边形的面积是多少平方厘米? 【解析】 连接FB .三角形AFB 面积是三角形CFB 面积的2倍,而三角形AFB 面积是三角形AEF 面积的2倍, 所以三角形ABC 面积是三角形AEF 面积的3倍;又因为平行四边形的面积是三角形ABC 面积的2倍,

小学奥数-几何五大模型

模型三 蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△ AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米 【分析】 根据蝴蝶定理求得312 1.5AOD S =?÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平 方千米,所以人工湖的面积是7.5 6.920.58-=平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC = 【解析】 ⑴根据蝴蝶定理,123BGC S ?=?V ,那么6BGC S =V ; ⑵根据蝴蝶定理,()():12:361:3AG GC =++=. () 【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角形BCD 的 面积的1 3 ,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。 【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已 知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ??==, ∴236OC =?=, ∴:6:32:1OC OD ==. 解法二:作AH BD ⊥于H ,CG BD ⊥于G . ∵1 3 ABD BCD S S ??=, 任意四边形、梯形与相似模型

小学奥数几何五大模型(蝴蝶模型)

模型三蝴蝶模型(任意四边形模型) 任意四边形中的比例关系 (“蝴蝶定理”):S 4S 3 S 2S 1O D C B A ①12 43::S S S S 或者1324S S S S ②124 3::AO OC S S S S 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例1】(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△ AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是 6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? O D C B A 根据蝴蝶定理求得312 1.5AOD S △平方千米,公园四边形ABCD 的面积是123 1.57.5平方千米,所以人工湖的面积是7.5 6.920.58平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵ :AG GC ?A B C D G 321 ⑴根据蝴蝶定理,123BGC S ,那么6BGC S ;⑵根据蝴蝶定理,:12:361:3AG GC .(???)任意四边形、梯形与相似模型

【例2】四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角形 BCD 的面积的1 3,且2AO ,3DO ,那么CO 的长度是DO 的长度的_________倍。A B C D O H G A B C D O 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形” ,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件 :1:3ABD BCD S S ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知 条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造 这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学 生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ,∴236OC , ∴:6:32:1OC OD . 解法二:作AH BD 于H ,CG BD 于G .∵1 3 ABD BCD S S ,∴1 3AH CG ,∴13AOD DOC S S ,∴13AO CO ,∴236OC , ∴:6:32:1OC OD . 【例3】如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是 2、4、4和6。求:⑴求OCF △的面积;⑵求GCE △的面积。 O G F E D C B A ⑴根据题意可知,BCD △的面积为244616,那么BCO △和CDO 的面积都是162 8,所以OCF △的面积为844;⑵由于BCO △的面积为8,BOE △的面积为6,所以OCE △的面积为862, 根据蝴蝶定理, ::2:41:2COE COF EG FG S S ,所以::1:2GCE GCF S S EG FG ,那么1 1 2 21233 GCE CEF S S .【例4】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的

小学奥数-几何五大模型(蝴蝶模型)

小学奥数-几何五大模型(蝴蝶模型) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

模型三 蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): S 4 S 3 S 2 S 1O D C B A ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四 个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? 【例 2】 O D C B A 【分析】 根据蝴蝶定理求得312 1.5AOD S =?÷=△平方千米,公园四边形ABCD 的面积是 123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC = 任意四边形、梯形与相似模 型

B 【解析】 ⑴根据蝴蝶定理,123BGC S ?=?,那么6BGC S =; ⑵根据蝴蝶定理,()():12:361:3AG GC =++=. () 【例 3】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角 形BCD 的面积的1 3 ,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。 A B C D O H G A B C D O 【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方 法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件:1:3ABD BCD S S =,这可以向模型一蝴蝶定理靠拢,于是得 出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ??==, ∴236OC =?=, ∴:6:32:1OC OD ==. 解法二:作AH BD ⊥于H ,CG BD ⊥于G . ∵1 3 ABD BCD S S ??=, ∴13 AH CG =, ∴13 AOD DOC S S ??=, ∴13 AO CO =, ∴236OC =?=, ∴:6:32:1OC OD ==. 【例 4】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积 依次是2、4、4和6。求:⑴求OCF △的面积;⑵求GCE △的面积。

小学数学几何五大模型教师版

小学数学几何五大模型教 师版 The following text is amended on 12 November 2020.

几何五大模型一、五大模型简介 (1)等积变换模型 1、等底等高的两个三角形面积相等; 2、两个三角形高相等,面积之比等于底之比,如图①所示,S 1:S 2 =a:b; 3、两个三角形底相等,面积在之比等于高之比,如图②所示,S 1:S 2 =a:b; 4、在一组平行线之间的等积变形,如图③所示,S △ACD =S △BCD ;反之,如果 S △ACD =S △BCD ,则可知直线AB平行于CD。 例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型 1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。 如图下图三角形ABC 中,D 、E 分别是AB 、AC 上或AB 、AC 延长线上的点 则有:S △ABC :S △ADE =(AB×AC):(AD×AE) 我们现在以互补为例来简单证明一下共角定理! 如图连接BE ,根据等积变化模型知,S △ADE :S △ABE =AD :AB 、S △ABE :S △CBE =AE :CE ,所以S △ABE :S △ABC =S △ABE :(S △ABE +S △CBE )=AE :AC ,因此S △ADE :S △ABC =(S △ADE :S △ABE )×(S △ABE :S △ABC )=(AD :AB )×(AE :AC )。 例、如图在ΔABC 中,D 在BA 的延长线上,E 在AC 上,且AB :AD=5:2,AE :EC=3:2,△ADE 的面积为12平方厘米,求ΔABC 的面积。 (3)蝴蝶模型 1、梯形中比例关系(“梯形蝴蝶定理”) 例、如图,梯形ABCD ,AB 与CD 平行,对角线AC 、BD 交于点O ,已知△AOB、△BOC 的面积分别为25平方厘米、35平方厘米,求梯形ABCD 的面积。 2、任意四边形中的比例关系(“蝴蝶定理”):

相关文档
相关文档 最新文档