文档库 最新最全的文档下载
当前位置:文档库 › 大纵横比物体电磁散射问题的推广T矩阵程式

大纵横比物体电磁散射问题的推广T矩阵程式

大纵横比物体电磁散射问题的推广T矩阵程式
大纵横比物体电磁散射问题的推广T矩阵程式

Hybird散射特性

180°混合网络(Hybird )散射特性分析 041110211 王之光 摘要:随着微波技术的发展,对定向耦合器也越来越有高标准的要求。本文着重介绍了耦 合器中的180°混合网络(Hybird ),主要对环形混合网络和渐变耦合线混合网络进行了散射特性的分析。 关键词:定向耦合器 180°混合网络 散射特性 环形混合网络 渐变耦合线混合网络 一、前言 定向耦合器是一种无源微波器件,用于功率分配或功率组合(如图1)。耦合器可以是有耗或无耗三端口器件或四端口器件。三端口网络采用T 型结和其他功分器形式,四端口网络采用定向耦合器和混合网络形式。定向耦合器可以设计为任意功率分配比,混合结一般是等功率分配,混合结在输出端口之间有90°(正交)或180°(魔T )相移。 我们着重要讨论的是180°混合网络。180°混合结是一种在两个输出端口间有180°相移的四端口网络图2(b )。它也可以工作在同相输出。180°混合网络所用的符号如图2(a)所示。施加到端口1的信号将在端口2和端口3被均匀分成两个同相分量,而端口4将被隔离。若输入施加到端口4,则输入将在端口2和端口3等分成两个有180°相位差的分量,而端口1将被隔离。当作为合成器使用时,输入信号施加在端口2和端口3,在端口1将形成输入信号的和,而在端口4将形成输入信号的差。因此端口1称为和端口,端口4称为差端口。 耦合器 耦合器 1 P 21P P α= ()31 1P P α=- 123P P P =+ 3 P 2P 图1 图2(a)

理想的3dB 的 180°混合网络的散射矩阵有如下形式: []?? ??? ?? ??? ??= 011-010011-00101102j -S 180°混合网络有几种形式。图3和图4(a )所示的环形混合网络或称为环形波导可制成平面(微带线或带状线)形式,也可以制成波导形式。另一种平面型180°混合网络使用渐变匹配线和耦合线,如图4(b )。此外,还有一种类型的混合网络是混合波导结或魔T ,如图4(c )。 二、散射特性分析 1.散射矩阵S 在与高频网络打交道时,等效的电压和电流,以及相关的阻抗和导纳在概念上变得有些抽象。由散射矩阵给出的入射波、反射波和透射波的概念是与直接测量更为符合的表示方法。 对于N 端口网络,其中n V +是入射到n 端口的电压波振幅,n V -是自n 端口反射的电压波振幅。散射矩阵由这些入射和反射电压波之间的联系确定: []V S V -+ ????=???? []S 矩阵元可确定为 图3 图4(c ) 图4(a ) 图4(b ) 图2(b ) 定向耦合器的常用表示符号和常规功率流向

国防与隐身技术

隐身技术的发展及应用 摘要:介绍隐身技术带来了军事装备的变革,并探讨有源和无源隐身原理,并重点介绍了无源隐身中利用理想对消特性、频率差将破坏相干性、相位差的影响、幅度差的影响,以规避雷达对目标的检测。 接着分析了隐身技术的现状及其原理,分别从可见光隐身技术、声波隐身技术、雷达隐身技术、激光隐身技术及红外辐射隐身技术方面介绍了当前所采用隐身技术的原理、方法及其应用。通过采用可见光、红外及激光隐身兼容技术,更好的达到隐身的效果,即可得隐身兼容技术才是隐身技术的发展方向。 隐身技术迅猛发展,新的隐身方法和技术应运而生。仿生技术、等离子体隐身技术、“微波传播指示”技术及智能隐身技术丰富和扩展了隐身技术的领域。在新的隐身方法中,重点介绍了等离子体隐身技术这一典型事例,通过介绍其原理、方法,以及在军事装备上的应用,以便我们把握这一隐身技术的发展方向。 隐身材料的开发和利用一直是隐身技术发展的重要内容,是飞机等隐身兵器实现隐身的基石,接下来介绍了正在研制开发的新型隐身材料:宽频带吸波剂、高分子隐身材料、纳米隐身材料、手征材料、结构吸波材料及智能隐身材料。新的隐形材料的研制,必将推动隐身技术迈向新的台阶。 隐身技术与反隐身技术的发展,是相互制约、相互促进的,无论哪一方有新的突破,都将引起另一方的重大变革。最后,我们探讨了当今反隐身技术的发展,以及探讨反隐身技术的方法:采用长波低频雷达探测技术、采用激光雷达探测技术、采用光电探测技术、采用数据融合技术、采用自动化和智能化技术。希望隐身技术和反隐身技术,这对矛和盾,能够加快我国的武器装备现代化的进程。 关键词:有效散射截面积(RCS)无源及无源隐身技术等离子体技术 1 前言 在1991年海湾战争中,美空军F-117A隐身攻击机,共出动1296架次,但未损失一架。它出动的架次只占联军出动总架次的2%,但它所击中的战略目标却占全部被联军击中的战略目标的40%。造成这一非凡战绩的原因,除伊拉克防空系统的部署及运作上的不利以外,主要应归功于F-117A的隐身能力。 隐身技术的出现促使战场军事装备向隐身化方向发展。由于各种新型探测系统和精确制导武器的相继问世,隐身兵器的重要性与日俱增。以美国为首的各军事强国都在积极研究隐身技术,取得了突破性进展,相继研制出隐

2电磁散射问题的数值计算

第二章电磁散射问题的数值计算 如前所述,电磁数值计算方法的运用,待求场函数的解答将最终归结为离散方程组的求解,此离散方程组在电磁场工程问题中,经常遇到的是线性代数方程组。为使电磁工程计算问题应用数值计算方法解决,必须将实际工程问题进行相关处理,如图1所示: 图2-1 电磁场数值计算流程 图2-1中的“前处理”包括采用一定的方式将所研究的场域离散化。这种离散化的场域划分要适应实际问题“电磁建模”的需要,便于实际问题的电磁数学模型的建立。在“后处理”中人们可依待求问题的性质,给出各种形式的解答(原始数据显示,曲线图表显示,可视化数据图形,数据处理和特征提取等)。 本章概述“前处理”、“电磁场数值计算”和“后处理”在雷达目标电磁散射问题中的内容。 §2.1 电磁散射问题的前处理 对电磁散射问题而言,通常人们关心的问题是雷达目标表面上的感应电流分布,目标近区和远区散射场分布,目标雷达散射截面RCS,目标雷达成像以及雷达目标特征量的提取等。 1. 雷达目标(散射体)分类 在“前处理”中,首先要视目标的几何、物理特征,对目标施以适当的离散化模型。为适合电磁散射问题的求解,我们将散射体按其材料构成,几何形状的复杂程度和目标可探测性三方面进行分类(必须指出,根据求解问题的性质,可以有不同的分类形式)。 ●按材料构成分类 ?完纯导体材料组成的目标(如常规飞行器,坦克,舰艇等) ?介质材料与导电材料组合目标 ?均匀及非均匀吸波材料涂覆的导体目标 ●按目标几何形状的复杂程度分类 ?二维散射体 ?三维散射体 ?简单形状的典型体(如球、柱、椭球、橄榄体、角反射器等) ?复杂形状散射体 ●按目标可探测性分类 ?常规目标(如常规飞行器,常规舰艇等) ?低可探测目标(如隐形飞机F117,YF22,隐形舰艇等) 2. 目标几何建模 目标几何外形的建模就是由数学模型和各种电磁参数来描述目标的外表面、棱边、腔体、非几何连续面等等,是电磁场散射数值计算的前提和基础。目标几何建模的精度与目标的电

电磁波隐身技术的研究

电磁散射与隐身技术导论 课程大作业报告 学院:电子工程学院 专业:电磁场与无线技术 班级: 021061 学号: 02106020 姓名:赖贤军 电子邮件: 92065436@https://www.wendangku.net/doc/fc11441498.html, 日期: 2013 年 06 月 成绩: 指导教师:姜文

电磁波隐身技术的研究 隐形技术(stealth technology)俗称隐身技术,精确的术语应该是“低可探测技术”(low-observable technology)。即通过研究利用各种不同的技术手法来改变己方目标的可探测性信息特征,最大程度地降低被对方探测系统发现的概率,使己方目标以及己方的武器装备不被敌方的探测系统发现和探测到。1.隐身技术及其历史背景 现代无线电技术和雷达探测系统的迅速发展极大地提高了战争中的搜索、跟踪目标的能力,传统的作战武器所受到的威胁愈来愈严重。隐身技术作为提高武器系统生存、突防以及纵深打击能力的有效手段已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最为重要、最为有效的突防战术技术手段并受到世界各国的高度重视。隐身技术(又称目标特征信号控制技术)是通过控制武器系统的信号特征使其难以被发现、识别和跟踪打击的技术。它是针对探测技术而言的,在兵器研制过程中设法降低其可探测性,使之不易被敌方发现、跟踪和攻击的专门技术。简言之隐身就是使敌方的各种探测系统(如雷达等)发现不了我方的飞机,无法实施拦截和攻击。早在第二次世界大战期间,美国便开始使用隐身技术以减少飞机被敌方雷达发现的概率。当前电磁波隐身的研究重点是雷达隐身技术和红外隐身技术。由于在未来战争中雷达仍将是探测目标的最可靠手段,因此隐身技术研究以目标的雷达特征信号控制为重点,同时展开红外、声、视频等其它特征信号控制的研究工作,最后向多功能、高性能的隐身方向发展。 2.隐身技术的工作原理 隐身技术的主要就是反雷达探测。雷达是一种利用无线电波发现目标并测定其他位置的装置。雷达的问世使人类的探测技术和能力跨上了新的台阶,同时也向反探测技术提出了新的挑战。人们为了提高目标反雷达探测能力不懈地奋斗了几十年,终于探索到一条新的隐身途径。与早期的隐身术——伪装术相比,今天的隐身技术已起了根本变化,有了质的飞跃。下面从反雷达探测和反红外、热 探测两个方面简单介绍隐身技术的一些工作原理与隐身性能。 1)反雷达探测开始隐身技术的一项主要工作是提高反雷达探测的能力:也

电磁散射第二次作业

电磁散射边界元作业 10级电磁场专业 1.已知正方形柱的Ⅰ,Ⅲ边界的,ⅡⅣ边界的,求Ⅰ,Ⅲ边界的和 ⅡⅣ边界的。 参考文献:《边界元法基础》上海交大出版社王元淳 Page20-24 参考资料分析了H,K矩阵元素的求法,其中对角元素 为边界元素的长度。非对角元素,其中为P(i)点到P(j)点的距离, 为P(i)点到含P(j)点边界单元的垂直距离。求解出H,K矩阵后利用 求出未知边界条件 MATLAB程序: % BEM.m % 本程序用边界元方法求解正方形柱体内电位分布 clear;clc; t1=cputime; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% 1.常数定义 a=6; % 正方形长 N=3; % 每边分段数

step=a/N; % 每段长度 TOTAL=N*4; % 共剖分成TOTAL段 C=1/2; % 常数定义 NN=100; % 积分离散精度 V_L=300; % 已知电压矩阵 test_x=a/2; % 方形内部任意一点X坐标 test_y=a/2; % 方形内部任意一点Y坐标%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% 2.坐标定位,计算各段中点对应的坐标 % 以方柱左下角为坐标原点建立坐标系 % 方柱左右两边X为常数,方柱上下两边Y为常数 for i=1:TOTAL; if iN & i<2*N+1) % 右侧 x(i)=a; y(i)=(i-N-1/2)*step; elseif (i>2*N & i<3*N+1) % 上侧 x(i)=a-(i-2*N-1/2)*step; y(i)=a; else % 左侧 x(i)=0; y(i)=a-(i-3*N-1/2)*step; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% 3.H矩阵h_st确定 for s=1:TOTAL % 场点循环 for t=1:TOTAL % 源点循环

散射原理

散射原理 透射光强为l l h K e I e I I α-+-==0)(0 h :散射系数 K :吸收系数 α:衰减系数(实际测量中得到的) 散射是指电磁波通过某些介质时,入射波中一部分能量偏离原来传播方向而以一定规律向其他方向发射的过程。散射可以用电磁波理论和物质电子理论解释:入射的电场使粒子中的电荷产生振荡,振荡的电荷形成一个或多个电偶极子,它们辐射出次级的球面波,因为电荷的振荡与入射波同步,所以次级波与入射波有相同频率,且有固定的相位关系。在大气散射过程中,散射粒子的尺度范围很大,从气体分子(约10-4μm )到气溶胶(约 1μm )、小水滴(约 10μm )、冰晶(约 100μm ),以及大雨滴和雹粒(约 1cm )。通常以尺度数α = 2π/λ作为判别标准,其中r 为粒子半径,λ为波长。按α的大小可以将散射过程分为三类: (1) α << 1,即 r < λ 时的散射,称为 Rayleigh 散射或分子散射; (2) 1< α < 50,即 r ≈ λ 时的散射,称为 Mie 散射或大颗粒散射; (3) α > 50,即 r>> λ 时的散射,属于几何光学散射范畴。 对于大气中的粒子(假设是各向同性的),散射光分布型式相应于入射光方向 是三维空间对称的,依赖于尺度数 α,其典型情况如图 3.1 所示

图3.1 三种尺度粒子的散射强度的角分布型式 Rayleigh 散射和 Mie 散射的实质,都是大气分子或气溶胶粒子在入射电磁波作用下激发,而产生振动的电偶极子或多极子,并以粒子为中心向四周辐射出与入射波频率相同的散射波,都属于弹性散射。 瑞利散射 瑞利散射解释了大气中气态分子的光学特性,根据瑞利的观点,天空的蓝色是由于大气中圆形、各项同性的、密度大于周围介质、且大小远远小于波长的粒子的散射造成的。 瑞利散射理论的提出是基于以下几个假设条件 (1)粒子尺寸远远小于光的波长,一般 r ≤ 0.03λ时,就认为满足条件。注意这里不包括尘埃、阴霾、以及一些其他粒子,这类粒子的散射特性有其他的理论支撑,如米式散射; (2)粒子处于非电离状态,在大气层中除了电离层之外,大气层的大部分区域均满足这一条件; (3)粒子的折射系数和周围介质的折射系数之间的差异较小; (4)粒子满足各项同性是最简单的一种瑞利散射情况,但是大气中的 N2和 O2 基本不满足各项同性,这也是简单的瑞利散射理论和观测结果之间出现差异的原因之一; (5)光的频率不能引起粒子的共振,如果光的频率能够引起粒子的共振的话,那么散射光的强度会非常大。对于大气中的可见光和长波是不存在这一问题的,因为大部分粒子尺寸都不满足这一条件,但是对于某些稀有气体则会出现这一现象。 米氏散射特点: (1)散射光强与偏振特性随散射粒子尺寸变化 (2)散射光强随波长的变化规律是与波长 λ的较低幂次成反比,即n I λθ1)(∝,其中n 的具体取值取决于微粒尺寸。 (3)散射光的偏振度随λr 的增加而减小,r 为散射粒子的线度,λ是入射光波长。 (4)当散射粒子的线度与光波长靠近时,散射光强度对于光矢量振动平面的对称性被破坏,随悬浮微粒线度增大,沿入射光方向的散射光强将大于逆入射光方向的散射光强。当微粒线

超电磁材料在隐身技术中的应用

超电磁材料在隐身技术中的应用 电气工程学院通信1101班邹光宗 20114400126 摘要:阐述传统隐身技术的理念和超电磁材料的基本概念与基本特性,超电磁材料是一种具有天然材料所不具备的超常物理性质的人工复合结构或复合材料,其性质往往不主要决定于构成材料的成分与本征性质,而决定于其中的人工结构。分析、说明了超电磁材料隐身技术的基本原理、设计思路与理解方法。指出了目前超电磁材料隐身技术的研究进展,最后得出未来超电磁材料应用于隐身技术具有良好潜在应用前景的结论。 关键词:超电磁;隐身技术;负折射;电磁吸收;介质 引言:电磁波隐身的效果取决于3个方面,即高明的空气动力学设计、优秀的吸波材料和周到而先进的电子学装备,多年来人们遵守“隐身不是无形,而是难于探测和跟踪”的隐身理念。传统的吸波材料是电阻性或磁阻性的无源电磁波吸收原理,电磁波在介质中转换为热能,而达到波的吸收目的,如Salisbury吸收屏,Juamann多层吸收器以及基于磁性材料的微波吸收体。在平面吸收技术方面,多层金属薄膜、多层结构、铁氧体技术及其综合、阻抗加载技术等相继得到研究与不同程度的应用;应用金属薄膜的电阻特性与多层复合结构,采用频率选择表面等技术设计出多工作频率或特定工作频段的微波吸收体。 1、研究目的 自1980年起,美国人产生了使用“飞翼”的思想,即既无机身也无机尾,由于去掉了反射雷达波的边、角、突出表面,并配合使用碳化纤维与塑料合成的复合材料,雷达散射截面RCS可大大降低。1997年Tennant提出了一种新的方法来减小电磁波从平面表面的反射,称为相位开关屏(phase.switched screen)技术旧o;将微波器件引入微波吸收器的设计中,开创了可控吸收设计的思路,得到了很有吸引力的研究结果,微波吸收器件的小型化技术、集成化技术和自适应技术是其发展特点。近年来,俄罗斯、美国也不同程度地研究和应用等离子体隐身技术。目前研究人员争相研究超电磁材料,开发、利用其负折射等一些特性来进行隐身理论研究与设计。在西方电影《哈利波特》里,主角有一个可以用来隐身的斗篷,穿上后躲在里面,肉眼将无法看到。预计在不久的将来,人们将可能应用超电磁材料制作出这种隐身斗篷,并应用到飞机、军舰等军事等领域。 2、研究现状 近年来,发表的众多文献说明了超电磁材料隐身技术的研究进展。”,2006 06—21 出版的《科学》杂志,米自托格兰圣安得鲁大学的理论物理学家里奥哈次,与伦敦帝国学院的J B Pendry教授.分别在这一期顶尖学术刊物上发表论文.阐述他们对“隐身斗篷”理论基础的计算原理。英国的这2位科学家.各自假设电磁波如流水般在隐身材料表面流过.完全不受到隐丁其中的物体的干扰,据此推导出“隐身斗篷”材料所需具备的光学参数,隐身斗篷的雏形悄然出现。4个月后的《科学》杂志,美国杜克大学的史密斯教授小组再次发表论文向世人宣告微波隐身材料的诞生。他们运用J B Pcndry教授的理论巧妙设计了符合计算结果的隐身材料。作他们的实验中.采用铜金属与玻璃纤维.创造了一卷甜甜圈似的圆环材料。探测器所得到的信号表示,微波经过圆环.恍若无物地会聚到圆环的另一侧,如若清泉石上流,汇聚于百岩另一侧一般.不留痕迹。2007—01—05,德国科学家在《科学》杂志±发表一种银基网状材料研究成果.该项研究成果代表着当时超电磁材料的研究水平,迈出了制造”

三维复杂目标电磁散射的FDFD分析

第34卷增刊JOURNAL OF XIDIAN UNIVERSITY V ol.34 Sup. 三维复杂目标电磁散射的FDFD分析 胡晓娟,葛德彪 (西安电子科技大学 物理系, 陕西 西安 710071) 摘要:根据Yee元胞中电场分量的分布特点,对矢量Helmholtz方程进行差分离散,得到关于各电场节点的FDFD 方程式。基于等效原理,在总场-散射场(TF/SF)边界处设置等效电磁流,通过将TF/SF边界附近各电场节点 FDFD方程式中的相关节点加上或减去相应的入射场,将平面波引入总场区。导体立方体表面电流幅值与相位分 布的计算结果与文献结果的比较验证了该方法的正确性。 关键词:频域有限差分(FDFD)方法;电磁散射;复杂目标;TF/SF方法 中图分类号:TN011 文献标识码:A 文章编号:1001-2400(2007)S1-0132-04 3D FDFD analysis of electromagnetic scattering from a complex target HU Xiao-juan,GE De-biao (Department of Physics, Xidian University, Xi’an 710071, China) Abstract: The finite-difference frequency-domain (FDFD) equations of electronic field nodes are derived by differentiating the Helmholtz equation, based on the distribution of electric field nodes in Y ee cells. Based on the equivalence principle, the incident wave is introduced in the total-field region by setting equivalent electromagnetic currents on the total-field/scattered-field (TF/SF) boundary. The FDFD equations of the nodes located near the TF/SF boundary are modified to fulfill the conditions that all nodes involved belong either to the total-field or to the scattered-field. The method is validated by comparing the amplitude and phase of the surface current on a perfectly electronic conductor cube, which are calculated by the FDFD method, with the result presented in the literature. Key Words: FDFD method;electromagnetic scattering; complex targets;TF/SF technique 近年来,一种基于Y ee算法原理的频域数值方法——频域有限差分(FDFD)方法[1]得到了迅速发展。该方法采用Y ee元胞对目标进行网格化剖分,并将各元胞赋予相应的电磁参数进行建模,可以方便地分析复合目标的电磁散射问题。根据Y ee元胞中各电场分量的分布特点,通过将矢量Helmholtz方程进行差分离散得到了关于各电场节点的FDFD方程式。基于FDTD方法中通过总场-散射场(TF/SF)[2,3]边界引入入射波的思想,分析了FDFD方法中如何通过TF/SF边界将入射波引入总场区。导体立方体表面电流幅值及相位分布的计算结果与文献结果的比较验证了这种方法。最后用该方法计算了某导弹模型的双站散射特性,显示了这种方法在处理复合目标电磁散射时的优越性。 1三维FDFD中入射波的引入及矩阵方程求解 1.1FDFD基本方程式 矢量Helmholtz方程为 —————————————— 收稿日期:2007-06-08 基金项目:国防预研基金资助 作者简介:胡晓娟(1979-),女,西安电子科技大学博士研究生。

电磁散射与隐身技术导论

电磁散射与隐身技术导论课程大作业报告 学院:电子工程学院 专业:电子信息工程 班级: 0210** 学号: 0210**** 姓名: ****** 电子邮件: 日期: 2018 年 07 月 成绩: 指导教师:姜文 雷达目标RCS近远场变换 在现代军事领域中,隐身技术和反隐身技术是重中之重,研究隐身和反隐身技术就要研究目标的电磁散射特性。雷达散射截面(RCS)是评价目标散射特征的最基本参数之一,其计算和测量的研究具有重要意义。计算方法有解析方法,精确预估技术和高频近似方法等。根据测量方式的不同,可以分为远场测量、近场测量和紧缩场测量。远场测量在室外进行,虽然能直接得到目标RCS,但是条件难以满足(满足远场条件时,被测目标与天线间的距离非常大),相比之下,在微波暗室中进行的近场测量由于采用缩比测量的方法更容易满足测试条件。相对于紧缩场测量,近场测量的精度更高,成本也有所降低,于是近场测量越来越成

为研究的一个重点。近场测试到的雷达回波信号并不是工程中所关心的RCS,而如何由近场测量数据得到目标RCS,则是必须要解决的问题。 为了得到目标RCS,将目标等效为一维分布的散射中心,并忽略了散射中心与雷达之间的相互影响,忽略散射中心与测试环境之间的相互影响。根据雷达回波信号,研究了一种利用雷达近场数据来估计目标总的RCS的方法。推导了算法的具体过程,将研究重点放在了算法的核心——权重函数上。分别仿真了单站正视,单站侧视,对称双站,不对称双站几种情况下权重函数的特性,具体表现为不同参数对权重函数幅度和相位的影响。基于仿真结果,提出了用定标来求得权重函数的方法。并用不同尺寸的金属球作为实验目标,采用某一个金属球理论RCS 值来定标,求得权重函数之后,用此算法变换出目标的RCS,并与其理论值做比对,验证了算法的可行性。 一、雷达截面的研究背景、发展现状 隐身和反隐身技术作为现代战争中电子高科技对抗的重要领域,一直都是各国军事研究的重点,随着各种精确制导武器和探测系统研制成功,隐身技术和反隐身技术越发重要。在军事应用中,希望己方的武器隐身性能尽可能好,并且能尽可能的探测到敌方的隐身目标。这就是必须研究隐身技术和反隐身技术最主要的原因,隐身技术与反隐身技术都必须研究目标的雷达散射特性,隐身技术是让目标的散射尽可能的小,反隐身技术则是尽量能够接收到目标的回波信号,因此要研究隐身和反隐身技术就要研究目标的电磁散射特性。隐身技术和反隐身技术最关心的指标——雷达散射截面RCS。雷达散射截面RCS是评价目标散射特征的最基本参数之一,是反映目标电磁特性的重要特征参数。 雷达散射截面RCS很长时间以来,一直都是电磁场理论研究的一个重要课题,当前对电大复杂目标RCS的分析尤为关注。我国从1980年开始研究包括吸波材料在内的隐身技术,目标整体或者部分的雷达散射截面分析,飞行目标(弹体,迹,飞行器等)的电磁散射特性。到现在,虽然取得了很大进展,但是和国外的技术相比,还是有很大的差距,需要更加深入的研究。其中,目标RCS的计算和测量一直都是研究的重点。RCS的测量,按照测试目标尺寸可以分为缩比模型测量、全尺寸目标测量。根据测量方式的不同,可以分为远场测量、紧缩场测量和近场测量。

矩量法在电磁散射中的应用

矩量法在电磁散射中的应用 一矩量法在电磁散射问题中的应用 电磁散射问题是电磁学中的一个重要研究领域,研究电磁波的散射机理以及计算其散射场强的大小与分布,具有十分重要的实际意义。矩量法作为一种有效的数值计算方法在其中有着广泛的应用。但作为一种计算方法它也有着自己的缺陷,为了解决这些问题,人们提出了各种方案,矩量法在这个过程中也获得了很大的发展。 MoM(Method of Moments)原本是一种近似求解线性算子方程的方法,通过它可以将算子方程转化为一矩阵方程,进而通过求解此矩阵方程得到最终的近似解。MoM最早是由两位数学家L. V. Kantorovich和V. I.Krylov提出的,后来由K.K.Mei引入计算电磁学,最终被R.F. Harryington在其著作《计算电磁场中的矩量法》中加以系统描述。利用矩量法求解电磁问题的主要优点是:它严格地计算了各个子系统间的互耦,而算法本身又从根本上保证了误差系统总体最小而不产生数值色散。如今MoM被广泛应用于计算电磁学中,虽然它不能处理电大尺寸目标的电磁问题,但基于MoM的各种加速方法仍受到极大重视,如多层快速多极子方法MLMFA等。 电磁散射问题是电磁学中的一个重要研究领域,研究电磁波的散射机理以及计算其散射场强的大小与分布,具有十分重要的实际意义。在实际生活中,遇到的散射目标往往不仅具有复杂的几何形状,而且构成

的材料也各不相同。因此对复杂目标的电磁散射特性进行快速、高效的分析,具有重要的理论意义和实用价值。 电磁散射问题只有在相对简单的情况下才可以用严格的解析法来求解,比如对极少数形状规则的物体。对于电大物体,可以用高频近似方法,例如几何光学法(GO)、物理光学法(PO)、几何绕射理论(GTD)、物理绕射理论(PTD)、一致性几何绕射理论(UTD)、复射线法(CT)等来求解散射场。反之,对于电小物体,可以用准静态场来进行分析。介乎这两者之间的物体,一般采用数值方法。目前分析电磁散射问题的数值方法主要有微分方程法和积分方程法。微分方程法有有限差分法(FDM)、时域有限差分法(FDTD)、频域有限差分法(FDFD)、时域平面波法(PWTD)、时域多分辨分析法(MRTD)、有限元法(FEM)、传输线矩阵法(TLM)等,积分方程法有表面积分方程法(SIEM)、矩量法(MOM)、边界元法(BEM)、体积分方程法(VIEM)、快速多极子法(FMM)、时域积分方程法(IETD)等。这些方法各有优缺点,有的是为了避免矩阵求逆,有的是为了加快收敛,有的是为了提高精度,还有的是为了减少贮存等。它们被广泛应用于求解复杂的工程电磁场问题中。应用微分方程法求解电磁散射问题时,由于散射体的外空间为无限大,需要人为设置截断边界使求解区域有限,这种截断边界的引入会导致非物理的反射现象。矩量法是一种将连续方程离散化成代数方程组的方法,经常被看作数值“精确解”。它既适用于电磁场积分方程又适用于微分方程,由于已经有有效的数值计算方法求解微分方程,所以目前矩量法大都用来求解积分方程。由于此方法能解决边界比较复杂的一些问题,因而得到了广泛的应用。需要注意的是,

矩量法在电磁散射问题中应用的发展

矩量法在电磁散射问题中应用的发展 摘要: 电磁散射问题是电磁学中的一个重要研究领域,研究电磁波的散射机理以及计算其散射场强的大小与分布,具有十分重要的实际意义。矩量法作为一种有效的数值计算方法在其中有着广泛的应用。但作为一种计算方法它也有着自己的缺陷,为了解决这些问题,人们提出了各种方案,矩量法在这个过程中也获得了很大的发展。 关键词:电磁散射,矩量法(MoM) MoM(Method of Moments)原本是一种近似求解线性算子方程的方法,通过它可以将算子方程转化为一矩阵方程,进而通过求解此矩阵方程得到最终的近似解。MoM最早是由两位数学家L. V. Kantorovich和V. I.Krylov提出的,后来由K.K.Mei引入计算电磁学,最终被R.F. Harryington在其著作《计算电磁场中的矩量法》中加以系统描述。利用矩量法求解电磁问题的主要优点是:它严格地计算了各个子系统间的互耦,而算法本身又从根本上保证了误差系统总体最小而不产生数值色散。如今MoM被广泛应用于计算电磁学中,虽然它不能处理电大尺寸目标的电磁问题,但基于MoM的各种加速方法仍受到极大重视,如多层快速多极子方法MLMFA等。[1] 电磁散射问题是电磁学中的一个重要研究领域,研究电磁波的散射机理以及计算其散射场强的大小与分布,具有十分重要的实际意义。 在实际生活中,遇到的散射目标往往不仅具有复杂的几何形状,而且构成的材料也各不相同。因此对复杂目标的电磁散射特性进行快速、高效的分析,具有重要的理论意义和实用价值。 电磁散射问题只有在相对简单的情况下才可以用严格的解析法来求解,比如对极少数形状规则的物体。对于电大物体,可以用高频近似方法,例如几何光学法(GO)、物理光学法(PO)、几何绕射理论(GTD)、物理绕射理论(PTD)、一致性几何绕射理论(UTD)、复射线法(CT)等来求解散射场。反之,对于电小物体,可以用准静态场来进行分析。介乎这两者之间的物体,一般采用数值方法。 目前分析电磁散射问题的数值方法主要有微分方程法和积分方程法。微分方程法有有限差分法(FDM)、时域有限差分法(FDTD)、频域有限差分法(FDFD)、时域平面波法(PWTD)、时域多分辨分析法(MRTD)、有限元法(FEM)、传输线矩阵法(TLM)等,积分方程法有表面积分方程法(SIEM)、矩量法(MOM)、边界元法(BEM)、体积分方程法(VIEM)、快速多极子法(FMM)、时域积分方程法(IETD)等。这些方法各有优缺点,有的是为了避免矩阵求逆,有的是为了加快收敛,有的是为了提高精度,还有的是为了减少贮存等。它们被广泛应用于求解复杂的工程电磁场问题中。 应用微分方程法求解电磁散射问题时,由于散射体的外空间为无限大,需要人为设置截断边界使求解区域有限,这种截断边界的引入会导致非物理的反射现象。矩量法是一种将连续方程离散化成代数方程组的方法,经常被看作数值“精确解”。它既适用于电磁场积分方程又适用于微分方程,由于已经有有效的数值

隐身技术的物理原理及其应用

隐身技术的物理原理及其应用 段改丽 李爱玲 李 军 (西安陆军学院 陕西 710108) 隐身技术又称隐形技术,是物理学中流体动力学、材料科学、电子学、光学、声学等学科技术的交叉应用技术,是传统伪装技术走向高技术化的发展和延伸。利用隐身技术可以大大降低武器等目标的信号特征,使其难以被发现、识别、跟踪和攻击。在现代军事侦察中,往往是多种技术侦察手段并用,因此在反侦察的隐身技术中也要针锋相对地同时采用多种隐身方法。 一、隐身技术的分类 隐身技术按其物理学基础可分为无源隐身技术和有源隐身技术两类。 所谓无源隐身技术,从物理学的观点来看,就是根据波的反射和吸收规律,在目标上采用吸波材料和透波材料,以吸收或减弱对方侦察系统的回波能量;根据波的反射规律,改变武器装备的外形与结构,使目标的反射波偏离对方探测系统的作用范围,从而使对方的各种探测系统不能发现或发现概率降低。 有源隐身技术就是设置新的波源,发射各种波束(如电磁波、声波等)来迷惑、干扰或抵消对方探测系统的工作波束,以达到隐蔽己方的目标。例如施放光弹或电子干扰波使对方的光电探测系统迷盲,施放电子诱饵使对方的探测系统跟踪假目标等。这类技术靠加强而不是减弱目标的可探测信息特征来达到目标隐身的目标。 二、隐身技术的物理原理 由于波的共同特点,有时采用一种技术措施,可对几种侦察波同时起到隐身效果。然而,由于各种波有其自身的物理特性,因此也要根据具体情况相应采取一些不同的隐身技术措施。常用的隐身技术主要有以下几种: (一)雷达波隐身技术的物理原理 “雷达”这个术语大家都很熟悉,它是由“无线电探测和测距”这一短语派生出来的。雷达波实际上是天线发射的波长在微波波段的电磁波。发动机将雷达波束朝某个方向定向发射,目标就会把雷达波反射到雷达接收器上。由于目标的性质不同,所以会产生强弱不同的反射信号,雷达就是靠接收被目标反射的电磁波信号发现目标的。波的反射定律指出,反射角等于入射角,若入射角等于零,则反射角也等于零。因此,只有当雷达电磁波的方向垂直于目标表面时,被反射的电磁波才能按原方向返回,这时雷达才能接收到较强的回波;而以其他角度射向目标表面的雷达电磁波都会被反射到别处,即发生散射效应。如果目标的表面能使雷达发射来的电磁波被散射或被吸收,就可大大减小被对方雷达发现的概率,从而达到“隐身”的目的。雷达隐身技术就是依照这而发展起来的。一般飞机的整体布局为圆形机身、平面机翼和垂直机翼,三者之间有明显的分界。根据电磁波所遵循的传播规律,当电磁波入射到物体的直角表面处,容易形成多次反射,而产生角反射器效应,反射雷达波很强。而隐身飞机在总体外形上采用多面、多锥体和飞翼式布置及燕尾形尾翼的设计,把机身与机翼融为一体,从而达到了隐身的目的。例如,美国的F2117A隐身战斗机外表光滑且无外挂装置,武器都装在弹舱内。 (二)可见光隐身技术的物理原理 根据物理学原理可知,在可见光范围内,探测系统的探测效果决定于目标与背景之间的亮度、色度、运动这三个视觉信息参数的对比特征,其中目标与背景之间的亮度比是最重要的。如果目标的结构体和表面的反射光,发动机喷口的喷焰和烟迹,灯光及照明光等,与背景亮度的对比度较大,容易被发现。因此,可见光隐身技术就是通过改变目标与背景之间的亮度、色度等的对比特征,来降低对方可见光探测系统的探测概率,从而达到隐身的目的。比如将飞机曲面外形的座舱罩改变为平板或近似平板外形的座舱罩,以减小太阳光反射的角度范围和光学探测器瞄准、跟踪的时间;在目标表面涂敷与周围色彩类同的颜色或加伪装网,以使目标与背景的亮度和色度相当。比如战士的“迷彩装”,炮车外面的“伪装网”等,都是可见光隐身技术中的一种。 (三)红外隐身技术的物理原理 随着红外侦察、探测、制导和热成像处理技术的 · 7 3 · 16卷1期(总91期)

平衡流场的再入飞行器电磁散射特性分析

平衡流场的再入飞行器电磁散射特性分析当具有极高速度(如10个马赫数以上)的飞行器再入大气层时,由于目标与空气摩擦将产生高达几千摄氏度的气动热,使周围的气体发生电离,导致飞行器附近空气呈离子状态存在,形成等离子体鞘套和冗长的等离子尾流。尽管作为一种色散介质的等离子体具有“通高频、阻低频”的特性,即大于等离子体频率的电磁波可以在等离子体中传播,而小于等离子体频率的电磁波被等离子体反射,但对再入飞行器来说,不同的再入速度对等离子体尾流会产生何种影响,等离子体尾流内的电子密度会达到何种量级,高电子密度的等离子体尾流对低频电磁波能否表现出强散射特性,从而有利于雷达的探测与识别,这些都是研究再入飞行器电磁散射特性时值得深入探讨的问题。 早在20世纪60年代初国外就已开展了与等离子体尾流相关的研究,鉴于等离子体尾流情况复杂。在理论研究方面,有用Born近似方法计算等离子体尾流的电磁散射特性,建立了再入尾流散射的畸变波Born近似模型。21世纪初期,国内学者也基于Born近似方法开展了大量有关再入段等离子体尾流散射特性的研究,但由于Born近似方法更适合于计算亚密(等离子体频率小于雷达波工作频率)状态下等离子体与雷达波的相互作用。因此,研究的频段主要集中在L和S波段。近年来,也有一些国内外学者利用电磁场数值计算方法研究了等离子体与电磁波的相互作用机理及其电磁特性,但利用该方法研究 再入飞行器等离子体尾流低频电磁散射特性的论文却鲜见发表。因此,本文根据再入飞行器的物理现象,将平衡流场的计算方法与电磁散射

数值计算方法相结合,用于再入飞行器低频电磁散射问题的分析。首先借助真实气体效应情况下等离子体流场计算方法,获得锥球形目标再入时接近于真实尾流的非均匀等离子体分布,然后利用移位算子时域有限差分法(finite difference time domain FDTD)计算和分析锥球形目标以零攻角再入时的低频电磁散射特性,最后给出了一些有价值的结论。 一、再入飞行器周围等离子体流场计算方法。 等离子体作为一种特殊的色散介质,若不考虑外加磁场,与其介电常数有关的参数有入射电磁波频率ω、等离子体振荡频率p ω和等离子体碰撞频率v ,即 21()p r jv ωεωω=- - (1) 式中 ,p ω=;N 为等离子体中自由电子密度,e 为电子电量;m 为电子质量;0ε为真空中介电常数。由此可见,在对再入飞行器进行电磁散射建模时,必须首先计算得到飞行器周围等离子体的流场特性,如内部自由电子密度等。 当飞行器以超音速再入时,稳定的空气被排挤开,但由于空气是按音速传播压力,因此被排挤的空气以高于音速的速度被强行挤压而形成激波。空气受到激波的强烈压缩和粘性的剧烈摩擦,激波层内的温度迅速升高,可达数千度,驻点区域甚至达到10 000 K 以上。在如此高的温度条件下,空气内部中不仅分子的平动能、转动能被激发,甚至振动能也将被激发,而且还会发生气体分子的离解和电离,气体

复杂三维目标的宽带电磁散射计算

复杂三维目标的宽带电磁散射计算 田蜜 电子科技大学电子工程学院,成都(610054) E-mail: leontian125@https://www.wendangku.net/doc/fc11441498.html, 摘要:本文首先介绍宽带电磁散射的主要方法及其国内外发展现状,分析各种方法的优缺点,指出采用频域法在计算复杂三维目标宽带电磁散射方面的优势。然后推导采用频域法计算宽带电磁散射的基本原理,最后通过算例分析证明频域法的有效性和精确性,并且证明能够采用频域法计算复杂三维目标的宽带电磁散射。 关键词:宽带电磁散射;复杂三维目标;频域法 1.引言 近年来,与电磁脉冲有关的时域电磁场(又称为瞬变电磁场或脉冲电磁场)的研究越来越受到人们重视[1]。由于对模拟超宽带信号和非线性系统需求日益增加,急需找到一种算法能够快速、精确、稳定和高效地模拟和分析瞬态响应。现代的超宽带天线(如合成孔径雷达、探地雷达、电磁兼容、隐身以及反隐身)的研究,生物电磁学的研究、非线性电路的分析以及瞬态测井仪器的设计等都提出了迫切的要求。所以,在计算电磁学的很多领域,传统的点频法或者窄频带方法已经不能满足需要,人们开始把注意力转向具有宽带电磁散射的研究。 目标的宽带电磁散射特性可以借助实验进行研究,但通过测量方法来获取目标散射特性受测试目标大小、属性、类别限制和测试设备、测试场地、测试环境等诸多因素的影响,而且测试费用极大。所以采用计算电磁学的方法来模拟分析和预估目标的宽带电磁散射特性成为研究的一种重要的手段。 2.分析宽带电磁散射的基本方法 与宽带电磁散射的主要特性相对应,分析宽带电磁散射的主要方法分为直接时域法(简称时域法法)、变换频域法(简称频域法)和时频互推的方法。 2.1 时域法 时域法是指直接在时域-空间域求解的方法。首先计算目标的时域响应,由时域信号包含的信息经过傅立叶变换,可以得到频域上宽带的特征信息。时域法主要包括两大类:基于积分方程的方法和基于微分方程方法。其中最具代表性应用也最广泛的有三种:时域有限元方法[2]、时域有限差分方法[3]和时域表面积分方程方法[4]。 直接采用时域法的计算结果可以直接给出各采样时刻的空间场分布情况,在一定程度上节省计算时间,但是缺点是对于新的外加激励,必须重复全部计算,另外,以上方法各自在精度和适用范围等方面也存在很大的缺点,极大地受到计算量和存储量的限制,它们都不能用于计算复杂三维目标的宽带电磁散射问题。 2.2 频域法 频域法[5]是指在频域计算逐个频率求得目标在一定带宽范围的解析解或数值解,由时频对应关系,其结果可以通过逆傅立叶变换得到目标的瞬态响应。具体步骤是首先通过在频域求解麦克斯韦方程组,得到电磁散射的频域解,然后采用逆傅立叶变换将目标的频域响应变换到时域。这种方法与直接计算宽带时域解相比具有以下优点:一旦得到了目标物体在宽带

电磁散射与隐身技术大作业1

电磁散射与隐身技术导论 令狐采学 课程大作业报告 学院:电子工程学院 专业:电子信息工程 班级: 130 学号: 1300011 姓名:张瑞 电子邮件: 2315406416@https://www.wendangku.net/doc/fc11441498.html, 日期:年 06 月 成绩:

指导教师:姜文 飞机隐身的措施手段 前言:隐形对于一般人来说都不陌生,虽然这些说法大多数来自小说和神话,但是在现实生活中也不乏隐形的例子。比如说变色龙就能够通过改变自己的颜色来进行隐形。人们通过研究仿生学,并且应用了最新的技术和材料,终于在庞大的飞机上也实现了隐形。从原理上来说,隐形飞机的隐形并不是让我们的肉眼都看不到,它的目的是让雷达无法侦察到飞机的存在。隐形飞机在现阶段能够尽量减少或者消除雷达接收到的有用信号,虽然是最为秘密的军事机密之一,隐形技术已经受到了全世界的极大关注。隐身技术作为一门尖端的综合军事技术,起源于第二次世界大战初期,是随着无线电技术的发展和雷达探测设备的出现而发展起来的,是现代军事上隐蔽自己,避免被敌人发现,借以增强突击能力或保护自身的重要手段。雷达和通信设备工作时会发出电磁波,表面会反射电磁波,运转中的

发动机和其他发热部件会辐射红外线,以及飞机会反射照射向它的电磁波,这样,就使武器装备与它所处的背景形成鲜明对比,容易被敌人发现。通过多种途径,设法尽可能减弱自身的特征信号,降低对外来电磁波、光波和红外线反射,达到与它所外的背景难以区分,从而把自己隐蔽起来,这就是电磁隐身技术。从1936年荷兰飞利浦实验室研究并取得法国专利的第一批电磁波吸收材料算起,至今已有七十多年的历史了。飞机的隐身主要是为了提高武器的生存和防御能力而制作的,它在军事战斗中扮演着越来越重要的角色,特别是现在的信息化时代,该项技术更是得到很多军事机构的青睐。它作为提高武器系统生存、突防以及纵深打击能力的有效手段,已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最为重要、最为有效的突防战术技术手段,并受到世界各国的高度重视。 一、隐身技术的定义及分类 隐身技术定义是:在飞机研制过程中设法降低其可探测

相关文档