文档库 最新最全的文档下载
当前位置:文档库 › 某商用车白车身结构疲劳寿命分析与优化设计

某商用车白车身结构疲劳寿命分析与优化设计

某商用车白车身结构疲劳寿命分析与优化设计
某商用车白车身结构疲劳寿命分析与优化设计

某商用车白车身结构疲劳寿命分析与优化设计

作者:湖南工业李明李源陈斌

摘要:本文基于应力分析结果,采用有效的疲劳寿命预估方法,利用专业耐久性疲劳寿命分析系统MSC.Fatigue 对该型商用车白车身进行S-N 全寿命分析,得其疲劳寿命分布与危险点的寿命值。采用结构优化、合理选材等方法,提高白车身结构的疲劳寿命。

关键词:白车身;有限元;静态分析;疲劳寿命分析;优化

前言

在车身结构疲劳领域的国内研究中,1994 年,江苏理工大学陈龙在建立了车辆驾驶室疲劳强度计算的力学和数学模型基础上,提出了车辆驾驶室疲劳强度研究方法[1]。2001 年,清华大学孙凌玉[2]等首次计算机模拟了汽车随机振动过程。2002 年,上海汇众汽车制造有限公司王成龙[3]等应用FATIGUE 软件的分析,结合疲劳台架试验,探讨了疲劳强度理论在汽车产品零部件疲劳寿命计算中的应用,提出了提高零部件疲劳强度的方法。2004 年,同济大学汽车学院靳晓雄[4]等人提到进行零部件疲劳寿命预估,精确的有限元模型和可靠的材料疲劳数据是必需的,另外获得准确的实际运行工况下的道路输入载荷也非常关键。但由于客观条件的限制,国内这方面的研究非常有限,理论分析的多,对局部零部件研究的多,把车身整体作为研究对象的很少。

本文以某型商用车疲劳寿命仿真分析及优化提高为内容,研究中,首先对白车身结构几何进行网格划分;之后使用MSC.Patran/Nastran 对白车身结构进行静态仿真;然后导入MSC.Fatigue 对白车身结构进行疲劳寿命仿真。在分析的基础上采用结构优化设计的方法优化结构、合理选择材料等,提高白车身结构的静态力学性能与动态疲劳寿命。

1 疲劳寿命计算方法

疲劳寿命计算需要载荷的变化历程、结构的几何参数,以及有关的材料性能参数或曲线[4]。

图1为基于有限元分析结果的疲劳寿命分析流程。

图1 基于有限元分析结果的疲劳寿命分析

用有限元方法计算疲劳寿命通常分为两步:第一步是计算应力应变响应。第二步是结合材料性能参数,应用不同的疲劳损伤模型进行寿命计算。疲劳寿命的预测精度既依赖于应力应变响应的正确模拟,也依赖于预测模型的合理使用。

本文以材料或零部件的疲劳寿命曲线为基础,S-N方法用名义应力或局部应力预测实际构件的疲劳寿命,可以选择的应力参数有最大主应力、von-Mises 应力、Tresca 应力等。损伤累积计算可以使用常规的Palmgren-Miner线性法则,能进行Good-man 和Gerber 平均应力修正,也能进行考虑表面加工和表面处理影响的寿命计算。这一方法对于低应力高周疲劳寿命预测比较有效。特别是对于一些复杂的零部件或焊接件,直接使用实测的“零部件S-N”曲线通常能获得合理的寿命估计。

2 白车身有限元模型的建立

驾驶室白车身含有零件数目众多,并且常含有复杂的曲面,用网格准确描述其几何特征的难度较高,复杂的曲面会产生许多网格上的问题,如单元畸变、网格细小、网格失真等诸多问题。对数目繁多、曲面复杂的零部件划分高质量的网格工作量大、难度高。经网格质量检查后,不合格网格数为162 个,网格失效百分比为0.0%,整体上网格的形状较为理想,网格质量较高,为计算结果的准确性提供了一个必要条件。图2 为白车身整车的有限元模型。

图2 白车身整车的有限元模型

除此之外,白车身各个部件之间是通过焊接连接起来的,两部件在焊接处具有完全相同的自由度,为刚性连接,可用一维rigid 单元模拟表示。在整个白车身模型中焊点多达上万个,需利用rigid 面板在焊点位置逐个施加。并且焊点与焊点、焊点与约束之间很容易出现过约束的情况。图3 为焊点图。

图3 为白车身焊点全图

商用车静态典型工况为全扭曲工况模拟白车身两前轮同时着地时,主副驾驶员重力、卧铺人员重力以及车身自重对白车身产生静态弯曲作用的情况。

全扭曲工况模拟白车身两前轮均悬空时,主副驾驶座上相对反向的作用力对白车身产生静态全扭曲作用的情况。此工况下主驾驶座从下至上均布于两个连接座椅的部件上施加了1000N 的力,副驾驶座从上至下均布于两个连接座椅的部件上施加了1000N 的力。全扭曲工况两前轮均悬空,车身前端两个与前轮连接位置均无约束;后端两处约束表示车身与车架的连接,同样限制了X、Y、Z 三个方向的自由度,约束节点位置固定。图4 为车顶向下视图全扭曲工况载荷与约束在空间上的位置关系。经Nastran 分析后,主后杠仍为主要应力部件,最大应力达403MPa,不仅超过材料屈服极限,而且超过了材料抗拉极限。图5 为

全扭曲静态分析的应变云图,最大变形为19.13mm。

图4 全扭曲工况载荷与约束空间上位置关系

图5 全扭曲静态分析应变云图

3 白车身有限元模型的疲劳分析

利用上述的加载静态仿真分析的有限元应力结果,设置载荷信息并关联有限元工况,导入MSC.Fatigue 中计算。图6 为全曲工况动态疲劳分析寿命云图,与车架的连接处的疲劳寿命达不到107 次的应力要求,图7 为寿命最差节点列表,可见最差节点在经受7.885E4 次应力循环时便产生疲劳破坏,不符合疲劳寿命的要求。需经过结构优化提高这些节点的疲劳寿命。

图6 全扭曲工况动态疲劳分析寿命云图

图7 全扭曲工况动态疲劳分析最差寿命节点列表

在车身结构优化改进中,通常采用的方法有改变零件的局部形状尺寸、调整局部零部件的位置、增加加强筋或辅助零件、整体采用较厚的钢板或采用拼焊板材料的方法。采用改变零件的局部形状尺寸、调整局部零部件的位置要对原有的零部件进行改动,并有可能影响到全车整体的布局,在制造工艺上,有可能要调整模具,成本高,一般不宜采用;增加加强筋或辅助零件、整体采用较厚的钢板的方法,适用于形状并不十分复杂的零部件。使用拼焊板技术不用改变零部件的位置,根据车身不同部位强度的要求,合理使用一些不同强度的材料,不需要焊接加强筋,减轻车身的质量,减少车身零件的数量,是最优的结构优化方法。由于拼焊板可以一次成形,减少了大量冲压加工的设备和工序,缩减了模具的安装过程,简化车身制造过程。

经全扭曲工况动态疲劳分析后,白车身的最低疲劳寿命次数为10E+5.88,低于10E+7 次,需要进行疲劳寿命的优化。图8 列出了疲劳寿命最差的一些点,显示了疲劳寿命存在问题的区域。该疲劳寿命问题为局部问题,可对疲劳出现局部疲劳寿命问题的部件更换材料。

图8 静态结构优化后疲劳分析寿命云图

更换的材料为MANTEN_MSN,其弹性模型为E=2.034E+5,抗拉极限为σ b=600MPa,更换材料后,最差寿命点的疲劳寿命从原来的10E+5.8751 优化为3310E+7。全扭曲工况的动态疲劳寿命得到了改善。

图9 全扭曲工况疲劳寿命材料优化

4 小结

本论文基于应力分析结果,采用有效的疲劳寿命预估方法,利用专业耐久性疲劳寿命分析系统MSC.Fatigue 对该型商用车白车身进行S-N 全寿命分析,得其疲劳寿命分布与危险点的寿命值。采用结构优化、合理选材等方法,提高白车身结构的疲劳寿命。完成了白车身动态疲劳寿命的优化。最终优化后,白车身各工况整车的疲劳寿命均修正至107 次循环以上。

5 参考文献

[1] 陈龙,周孔亢. 车辆驾驶室疲劳强度试验与计算,机械工程学报,1994,30(5):23-29.

[2] 孙凌玉,吕振华. 利用计算机仿真技术预测车身零件疲劳寿命,汽车工程,2001,23(6):389-391.

[3] 王成龙,张治. 疲劳分析在汽车零部件设计中应用,上海汽车,2002,8:10-13.

[4] 彭为,靳晓雄. 基于有限元分析的轿车零件疲劳寿命预测,汽车工程,2004,26(4):507-509.

[5] 高云凯. 汽车车身结构分析. 北京:北京理工大学出版社,2005.

[6] 谭继锦. 汽车结构有限元分析. 北京:清华大学出版社,2009.(end)

疲劳分析方法

疲劳寿命分析方法 摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。 疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。 金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。Goodman讨论了类似的问题。1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。1929年B.P.Haigh研究缺口敏感性。1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。 中国在疲劳寿命的分析方面起步比较晚,但也取得了一些成果。浙江大学的彭禹,郝志勇针对运动机构部件多轴疲劳载荷历程提取以及在真实工作环境下的疲劳寿命等问题,以发动机曲轴部件为例,提出了一种以有限元方法,动力学仿真分析以及疲劳分

《汽车车身结构与设计》基本知识点

《汽车车身结构与设计》 1、车身主要包括哪些部分?答:一般说,车身包括白车身及其附件。白车身通常是指已 经装焊好但未喷涂油漆的白皮车身,主要是车身结构件和覆盖件的焊接总成,并包括前后板制件与车门。但不包括车身附属设备及装饰等 2、车身有哪些承载形式?答:非承载式、半承载式、承载式 3、非承载式(有车架式)车身:货车、采用货车底盘改装的大客车、专用汽车以及大部 分高级轿车都采用非承载式车身,装有单独的车架,车身通过多个橡胶垫安装在车架上,橡胶垫则起到减振作用。非承载车身的优点:①除了轮胎与悬架系统对整车的缓冲吸振作用外,挠性橡胶垫还可以起到辅助缓冲、适当吸收车架的扭转变形和降低噪声的作用,既延长了车身的使用寿命,又提高了舒适性。②底盘和车身可以分开装配,然后总装在一起,这样既可简化装配工艺,又便于组织专业化协作。③由于车架作为整车的基础,这样便于汽车上各总成和部件安装,同时也易于更改车型和改装成其他用途车辆,货车和专用车以及非专业厂生产的大客车之所以保留有车架,其主要原因也基于此。④发生碰撞事故时,车架对车身起到一定的保护作用。非承载车身的缺点: ①由于计算设计时不考虑车身承载,故必须保证车架有足够的强度和刚度,从而导致 自重增加。②由于车身和底盘之间装有车架,使整车高度增加。③车架是汽车上最大而且质量最大的零件,所以必须具备有大型的压床以及焊接、工夹具和检验等一系列较复杂昂贵的制造设备。 4、什么是承载式车身(无车架式)?答:没有车架,车身直接安装在底盘上,主要是 为了减轻汽车的自重以及使车身结构合理化。承载式车身结构的缺点在于由于没有车架,传动的噪音和振动直接传给车身,降低了乘坐的舒适性,因此必须大量采用防振、隔音材料,成本和重量都会有所增加;改型比较困难。 5、汽车生产的“三化”是指什么?答:汽车生产的“三化”是指汽车产品系列化、零部件通用 化、以及零件设计标准化。 6、什么是工程设计?答:汽车工程设计一般需要 3 年以上,而从生产准备到大量投产时 间更长。其中车身的设计所需的周期最长。车身设计首先是按 1:1 的比例进行内部模型和外部模型的设计及实物制作。其次则是车身试验,包括强度试验、风洞试验、振动噪音试验和撞车试验等。 7、轿车底盘有哪三种布置形式?答:轿车底盘有三种布置形式:a:发动机前置,后轮驱 动;b:发动机前置,前轮驱动;c:发动机后置,后轮驱动。 8、什么是汽车驾驶员眼椭圆?答:汽车驾驶员眼椭圆是驾驶员以正常驾驶姿势坐在座椅 上时其眼睛位置在车身中的统计分布图形。 9、什么是 H 点答: H点是人体身躯与大腿的交接点。

《汽车车身结构与设计》习题与解答要点

《汽车车身结构与设计》习题与解答 第一章车身概论 1、汽车的三大总成是什么? 答:底盘、发动机、车身。 2、简述车身在汽车中的重要性。 答:整车生产能力的发展取决与车身的生产能力,汽车的更新换代在很大程度上也决定与车身,我们所看到的汽车概念大多指车身概念,汽车的改型或改装主要依赖于车身。 3、车身有什么特点? 答:a:汽车车身是运载乘客或货物的活动建筑物,由于其在运动中载人、载物的特殊性,所以汽车车身的设计与制造需要综合运用空气动力、空气调节、结构设计、造型艺术、机械制造、仪器仪表、复合材料、电子电器、防音隔振、装饰装潢、人体工程等不同领域的知识。 b:自1885年德国人卡尔·弗里德里希·本茨研制出世界上第一辆马车式三轮汽车,并成立了世界上第一家汽车制造公司——奔驰汽车公司以来,汽车车身的造型随着时代的推移和科技的进步经历了19世纪末20世纪初的马车车厢形车身;20世纪20、30年代的薄板冲压焊接箱形车身;第二次世界大战后50、60年代冷冲压技术生产的体现流线型、挺拔大方的车身。而到了20世纪70、80年代现代汽车的各种车身造型已初具雏形,新材料、新工艺的使用更使得汽车车身的设计制造得到了飞速发展。 4、简介车身材料。 答:现代汽车车身使用的材料品种很多,除金属(主要是高强度钢板)和轻合金(主要是铝合金)以外,还大量使用各种非金属材料如:塑料、橡胶、玻璃、木材、油漆、纺织品、皮革、复合材料等。随着汽车车身制造技术的发展,为了轻量化以及提高安全性、舒适性,非金属材料、复合材料在汽车车身的加工制造中得到日益广泛的应用。 5、车身主要包括哪些部分? 答:一般说,车身包括白车身及其附件。白车身通常是指已经装焊好但未喷涂油漆的白皮车身,主要是车身结构件和覆盖件的焊接总成,并包括前后板制件与车门。车身结构件和覆盖件焊(铆)接在一起即成为车身总成,该总成必须保证车身的强度与刚度,它可划分为地板、顶盖、前围板、后围板、侧围板、门立柱和仪表板总成。车身前板制件一般是指车头部分的零部件,包括水箱框架和前脸、前翼子板、挡泥板、发动机罩以及各种加强板、固定件。6、车身有哪些承载形式? 答:车身按照承载形式的不同,可以分为非承载式、半承载式、承载式三大类。

汽车车身结构与设计考试题目

第一章 1. 什么是车身结构件、车身覆盖件 答:车身结构件:支撑覆盖件的全部车身结构零件的总称。 车身覆盖件:覆盖车身内部结构的表面板件。 2. 车身类型一般按什么分类,可分为哪几类?非承载式车身的车架一般可分为哪 几类?答:车身类型一般按承载形式不同,可分为非承载式、半承载式和承载式。 非承载式车身的车架一般可分为:1)框式车架:边梁式车架和周边式车架2)脊梁式车架3)综合式车架 3.边梁式、周边式、脊梁式、X 式车架的用途及特点?轿车车身特点分类有 哪些?轿车车身造型分类有哪些? 答:边梁式车架: 特点:此式车架结构便于安装车身(包括驾驶室、车箱或其它专用车身乃至特 种装备等)和布置其它总成,有利于满足改装变型和发展多品种的需要。 用途:被广泛采用在货车、大多数专用汽车和直接利用货车底盘改装的大客车 以及早期生产的轿车上。 周边式车架: 特点:最大的特点是前、后狭窄端系通过所谓的“缓冲臂”或“抗扭盒”与中 部纵梁焊接相连,前缓冲臂位于前围板下部倾斜踏板前方,后缓冲臂位于后座下 方。由于它是一种曲柄式结构,容许缓冲臂具有一定程度的弹性变形,它可以吸 收来自不平路面的冲击和降低车内的噪声。此外,由于车架中部的宽度接近于车 身地板的宽度,从而既提高了整车的横向稳定性,又减小了车架纵梁外侧装置件 的悬伸长度。 用途:适应轿车车身地板从边梁式派生出来的。 脊梁式车架: 特点:具有很大的抗扭刚度,结构上容许车轮有较大的跳动空间,便于装用独立悬架。 用途:被采用在某些高越野性汽车上。 X 式车架: 特点:车架的前、后端均近似于边梁式车架,中部为一短脊管,前、后两端便于 分别安装发动机和后驱动桥。中部脊梁的宽度和高度较大,可以提高抗扭刚度。 用途:多采用于轿车上。

柔性结构疲劳寿命的预测方法

文章编号:167325196(2008)0420170203 柔性结构疲劳寿命的预测方法 董黎生,程 迪 (郑州铁路职业技术学院机车车辆系,河南郑州 450052) 摘要:讨论柔性构架结构疲劳寿命的预测方法,建立刚柔耦合多体动力学模型,计算结构危险点的动载荷时间历程;利用有限元准静态分析法,获得应力影响因子;利用模态分析技术获得结构固有频率和模态振型,确定结构的危险点位置。基于危险应力分布的动载荷历程,结合材料特性曲线以及线性损伤理论,进行标准时域的柔性结构应力应变的循环计数,损伤预测和寿命估计.应用该方法对构架结构进行疲劳寿命预测,结果表明,该预测方法预测精度有效,可以有效提高结构耐久性设计质量. 关键词:多体系统;柔性结构;有限元;疲劳寿命预测 中图分类号:O346 文献标识码:A Prediction method of fatigue life of flexible structure DON G Li2sheng,C H EN G Di (Locomotive and Rolling Stock Depart ment,Zhengzhou Railway Vocational&Technical College,Zhengzhou 450052,China) Abstract:Prediction met hod of fatigue life of flexible f ramed st ruct ure was discussed,dynamic model of rigidity2flexibility co upled multi2body was established,and time history of dynamic load at t he critical point of t he st ruct ure was comp uted.Influential factors of st resses were obtained by using t he finite element analysis met hod for quasi2static conditions.The nat ural frequency and vibration modes of t he struct ure as well as t he location of it s critical point were determined by using t he model analysis technique.Based on t he dynamic load history of critical st ress distribution and employing t he material characteristic curves and it s linear damage t heory,t he cyclic counting of stresses and st rains,damage p rediction,and life estimation of t he flexible st ruct ure were performed in standard time domain.The fatigue life prediction of t he f ramed st ruct ure was conducted wit h t his met hod and it was shown by t he result t hat t he prediction accuracy was valid and t he design quality of struct ure durability would be effectively imp roved. K ey w ords:multi2body system;flexible st ruct ure;finite element;fatigue life prediction 预测结构寿命最有效方法是通过室内工作台或线路耐久性试验获得危险点的动应力历程数据.对一些复杂结构,要在室内进行耐久性试验几乎是不可能的.而在实际线路上进行耐久性试验,耐久性试验费用昂贵,试验周期也长,受到运行路线和时间等诸多条件限制,只能在有限的线路和时段内进行构架结构危险部位的动应力测试,进而通过应力应变数据的有效采集和雨流法统计处理,最后根据相关损伤累计理论进行结构寿命估计. 文献[1]中首次在国内外提出通过动力学仿真及有限元分析混合技术手段进行车体结构疲劳寿命 收稿日期:2008202229 作者简介:董黎生(19622),男,山西万荣人,副教授.的评估.就机车车辆而言,在运行过程中反复承受随机轨道不平顺传递的持续小幅振动载荷、过曲线、过道岔以及启动制动时的冲击等复合载荷的作用,导致结构关键部位,如关键位置处的焊接接头以及焊接区域局部应力集中发生,从而导致裂纹萌生和扩展等结构疲劳现象的发生.针对这些疲劳问题,现场一般采用设置局部加强筋、开设止裂板等措施来提高其局部静强度和分化应力集中导致的影响.但是这些措施并没有从整车系统动态特性的角度考虑问题,因此可能再次导致结构刚度的分布不均,从而使得结构其他部位再次出现新的疲劳问题.在文献[1~8]的基础上,本文提出一种柔性结构疲劳寿命的预测方法,对机车车体结构进行寿命预测. 第34卷第4期2008年8月 兰 州 理 工 大 学 学 报 Journal of Lanzhou University of Technology Vol.34No.4 Aug.2008

车身结构与设计论文

车身结构与设计

基于理论分析汽车气动力及力矩 【摘要】汽车空气动力性是汽车的重要特性之一,气动力和气动力矩是它的主 要内容。通过运用数学和物理方法,理论分析气动力及气动力矩的相关参数,进而与汽车的动力性及燃油经济性综合在一起进行分析,找到相关的影响因素,通过改变这些因素来改善汽车性能,合理的选择相关参数,为接下来的设计及模拟仿真做好铺垫。 【关键词】空气动力性气动力气动力矩气动阻力动力性燃油经济性 前言 汽车空气动力性是汽车的重要特性之一,它直接影响汽车的动力性、燃油经济性、操纵性、舒适性及安全性,它是指汽车在流场中所受的以阻力为主的包括升力、侧向力的三个气动力及其相应的力矩的作用而产生的车身外部和内部的气流特性、侧风稳定性、气动噪声特性、泥土及灰尘的附着与上卷、刮水器上浮以及发动机冷却、驾驶室内通风、空气调节等特性。当一辆汽车以80km/h的速度前进时,有60%的动力用于克服空气阻力。从世界上首款流线型汽车“气流”诞生开始,迄今为止,国内外对于汽车空气动力学的研究方法大致分为一般采取试验法、试验与理论相结合法及数值模拟仿真研究法。理论研究方法主要是通过数学工具来建立空气运动规律及相应初始、边界条件的理论模型,以揭示气动力产生机理及作用关系。而试验及模拟仿真都是在理论研究和计算的基础之上进行的,可见理论研究对于汽车空气动力学来说是不容忽视的。 气动力及气动力矩分析 1、气动力及力矩 汽车与空气相对运动并相互作用,会在汽车车身上产生一个气动力F,这个力的大小与相对运动速度的平方、汽车的迎风面积及取决于车身形状的无量纲气动系数成正比,可表示为 F = qSC F = 0.5ρvSC F (1) 式中,F为气动力,S为汽车迎风面积,C F为气动系数。

汽车车身结构与设计

第一章:车身概论 1.车身包括:白车身和附件。 白车身通常系指已经焊装好但尚未喷漆的白皮车身,此处主要用来表示车身结构和覆盖件的焊接总成,此外尚包括前、后板制件与车门,但不包括车身附属设备及装饰等。 2.按承载形式之不同,可将车身分为非承载、半承载式和承载式三大类。 非承载车身的优点:①除了轮胎与悬架系统对整车的缓冲吸振作用外,挠性橡胶垫还可以起到辅助缓冲、适当吸收车架的扭转变形和降低噪声的作用,既延长了车身的使用寿命,又提高了舒适性。②底盘和车身可以分开装配,然后总装在一起,这样既可简化装配工艺,又便于组织专业化协作。③由于车架作为整车的基础,这样便于汽车上各总成和部件安装,同时也易于更改车型和改装成其他用途车辆,货车和专用车以及非专业厂生产的大客车之所以保留有车架,其主要原

因也基于此。④发生碰撞事故时,车架对车身起到一定的保护作用。非承载车身的缺点:①由于计算设计时不考虑车身承载,故必须保证车架有足够的强度和刚度,从而导致自重增加。②由于车身和底盘之间装有车架,使整车高度增加。③车架是汽车上最大而且质量最大的零件,所以必须具备有大型的压床以及焊接、工夹具和检验等一系列较复杂昂贵的制造设备。 3.承载式车身分为基础承载式和整体承载式。 基础承载式特点:①该结构由截面尺寸相近的冷钢杆件所组成,易于建立较符合的有限元计算模型,从而可以提高计算精度。②容许设法改变杆件的数量和位置,有利于调整杆件中的应力,从而达到等强度的目的。③作为基础承载的格栅底架具有较大的抗扭刚性,可以保证安装在其上的各总成的相对位置关系及其正常工作。④提高材料利用率,简化构件的成型过程,节省部分冲压设备,同时也便于大客车的改型和系列化,为多品种创造了条件。 4.“三化”指的是产品系列化、零部件通用化以及零件设计标准化。第二章:车身设计方法

汽车车身结构与设计复习题答案(20200521124756)

汽车车身结构与设计复习题 1.车身设计的特点是什么?车身设计是新车型开发的主要内容。车身造型设计是车身设计的关键环节。人机工程学在车身设计中占有极重要的位置。车身外形应重点体现空气动力学特征。轻量化、安全性和高刚性是车身结构设计的主题。新材料、新工艺的应用不断促进车身设计的发展。市场要素车身设计中选型的前提。车身设计必须遵守有关标准和法规的要求 2.现代汽车车身发展趋势主要是什么? 车身设计及制造的数字化 (1)虚拟造型技术(CAS)。 (2)计算机辅助设计(CAD)。 (3)计算机辅助分析(CAE)。 (4)计算机辅助制造(CAM)。 流体分析CFD: 车身静态刚度、强度和疲劳寿命分析: 整车及零部件的模态分析: 汽车安全性及碰撞分析: NHV(Noise Vibration Harshness)分析: 塑性成型模拟技术: (5)虚拟现实技术。 (6)人机工程模拟技术。 新型工程材料的应用及车身的轻量化 更趋向于人性化和空间的有效利用 利用空气动力学理论,使整体形状最佳化 采用连续流畅、圆滑多变的曲面 采用平滑化设计 车身结构的变革: 取消中柱,前后车门改为对开; 车内地板低平化; 四轮尽量地布置在四个角 大客车向轻量化和曲面圆滑方向发展 将货车驾驶室和货箱的造型统一 3.简述常用车身材料的特点和用途。 钢板冷冲压钢板等。 汽车车身制造的主要材料,占总质量的50%。 主要用于外覆盖件和结构件,厚度为0.6-2.0mm。 车门、顶盖、底板等复盖件用薄钢板均是冷轧板,大梁、横粱、保险杆等均是热轧钢。 轻量化迭层钢板 迭层钢板是在两层超薄钢板之间压入塑料的复合材料,表层钢板厚度为0.2~ 0.3mm,塑料层的厚度占总厚度的25%~65%。与具有同样刚度的单层钢板相 比,质量只有57%。隔热防振性能良好,主要用于发动机罩、行李箱盖、车身底板等部件。 铝合金 铝合金具有密度小( 2.7g/cm3)、比强度高、耐锈蚀、热稳定性好、易成形、可回收再生 等优点。 镁合金

疲劳分析流程fatigue

摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。 关键词:疲劳UIC标准疲劳载荷IIW标准S-N曲线机车车辆 一、国内外轨道车辆的疲劳研究现状 6月30日15时,备受关注的京沪高铁正式开通运营。作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。 在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。随着国内铁路运行速度的不断提高,一些关键结构部件,如转向架的构架、牵引拉杆等都出现了一些断裂事故。因此,机车车辆的结构疲劳设计已经逐渐成为机车车辆新产品开发前期的必要过程之一,而通过有效的计算方法预测结构的疲劳寿命是结构设计的重要目标。 国外 早在十九世纪后期德国工程师Wohler系统论述了疲劳寿命和循环应力的关系并提出了S-N

汽车车身结构与设计(免费下载).doc

第一章:车身概论 1车身包括:白车身和附件 白车身通常系指已经焊装好但尚未喷漆的白皮车身, 此处主要用来表 示车身结构和覆盖件的焊接总成,此外尚包括前、后板制件与车门, 但不包括车身附属设备及装饰等。 2. 按承载形式之不同,可将车身分为非承载、半承载式和承载式三 大类 非承载车身的优点:①除了轮胎与悬架系统对整车的缓冲吸振作用 外,挠性橡胶垫还可以起到辅助缓冲、 适当吸收车架的扭转变形和降 低噪声的作用,既延长了车身的使用寿命,又提高了舒适性。②底盘 和车身可以分开装配,然后总装在一起,这样既可简化装配工艺,又 便于组织专业化协作。③由于车架作为整车的基础,这样便于汽车上 各总成和部件安装,同时也易于更改车型和改装成其他用途车辆, 货 车和专用车以及非专业厂生产的大客车之所以保留有车架, 其主要原 因也基于此。④发生碰撞事故时,车架对车身起到一定的保护作用。 非承载车身的缺点: ①由于计算设计时不考虑车身承载, 故必须保证 车架有足够的强度和刚度, 从而导致自重增加。 ②由于车身和底盘之 间装有车架, 使整车高度增加。 ③车架是汽车上最大而且质量最大的 零件,所以必须具备有大6—7-nra “一居立柱(弋"tt ) 2—償敢住{ -A " in 21—寄一葩田抵23—Rira t-.Jp?. 24"歯档脱嫌爵一理动乩取26■—门窗眶 1 一就动航爼简主推橇2—水箱阳崔褪架 」一苗'烘桓 呂一匍门9—時门10—年盐捋储祓11—桔1#于柢1工一童卿駆13—疔疔赠盞 “一晞巫止适椅 怖 一后由台柢口一上加峯皿一顶魏活一即玄柱I W 如

型的压床以及焊接、工夹具和检验等一系列较复杂昂贵的制造设备。 3.承载式车身分为基础承载式和整体承载式。 基础承载式特点:①该结构由截面尺寸相近的冷钢杆件所组成,易于建立较符合的有限元计算模型,从而可以提高计算精度。②容许设法改变杆件的数量和位置,有利于调整杆件中的应力,从而达到等强度的目的。③作为基础承载的格栅底架具有较大的抗扭刚性,可以保证安装在其上的各总成的相对位置关系及其正常工作。④提高材料利用率,简化构件的成型过程,节省部分冲压设备,同时也便于大客车的改型和系列化,为多品种创造了条件。 4.“三化”指的是产品系列化、零部件通用化以及零件设计标准化。第二 章:车身设计方法 初步设计技术设计卩 1概念设计:包括技术任务书的全部内容和一个批准的三维模型。

基于实测载荷谱的白车身疲劳寿命计算

基于实测载荷谱的白车身疲劳寿命计算 朱涛1 林晓斌2 1上海山外山机电工程科技有限公司 2英国恩科(nCode)国际有限公司上海代表处

基于实测载荷谱的白车身疲劳寿命计算 朱涛1 林晓斌2 1上海山外山机电工程科技有限公司 2英国恩科(nCode)国际有限公司上海代表处 摘要:汽车白车身疲劳分析由于缺乏真实载荷谱的输入而显得没有说服力,计算分析的结果往往与试车场或用户使用时发生的失效没有关联,这样导致了虚拟疲劳分析的强大作用无法发挥。本文通过六分力轮测试系统实测了某型乘用车在试车场的载荷谱数据,以此作为输入,并综合了多种CAE手段,包括有限元网格划分、有限元分析、多体动力学分析和疲劳分析,对该乘用车的白车身在实测载荷谱作用下的疲劳寿命分布进行了计算分析,获得了有价值的结果。同时给出了更符合真实工况的试验与虚拟相结合的白车身一体化疲劳分析流程。 关键词:白车身,虚拟疲劳分析,道路载荷谱,有限元网格划分,有限元分析,多 体动力学分析 1 前言 汽车结构疲劳的话题在当前各大整车制造企业越来越受到重视,几乎每种新开发的车型都需要考察其疲劳耐久性能。以前传统的方法,汽车企业对于新车型疲劳寿命的评估都是利用实车在各道路试车场进行路试[1],该方式虽然是最直接且最准确的,但测试时间却十分冗长且耗费人力与经费甚巨,即使发现了问题往往也很难去修改。近年来计算机软硬件的迅速发展,计算机辅助工程(CAE)分析技术在静态、碰撞、振动噪音等领域均有了相当不错的应用成果,但疲劳耐久性分析需要综合有限元应力分析和动力学载荷分析等专业技术,仍需花费非常大的计算量,且计算的准确性由于没有真实的道路载荷谱(RLD)作为计算输入而缺乏说服力。 本文针对上述问题,基于在国内汽车企业已经开始成熟运用的六分力轮测试技术实测获得的某乘用车在试车场的道路载荷谱数据[2],以此作为输入,驱动建立好的整车多刚体动力学仿真模型,获取作用在白车身各连接点上的载荷谱,同时对白车身进行有限元应力场分析。综合上述结果,调用相应的疲劳损伤模型对白车身的疲劳寿命进行了计算,从而建立起一套较为可行的更符合真实工况的车辆疲劳寿命分析技术流程。

整车-20_车身疲劳分析规范V1.0版

车身疲劳分析规范编号:LP-RD-RF-0020 文件密级:机密 车身疲劳分析规范 V1.0 编制: 日期: 编制日期审核/会签日期批准日期

车身疲劳分析规范 修订页 编制/修订原因说明:首次编制 原章节号现章节号修订内容说明备注 编制/修订部门/人 参加评审部门/人 修订记录: 版本号提出部门/人修订人审核人批准人实施日期备注

目录 1 简介 (2) 1.1 分析背景和目的 (2) 1.2 软硬件需求 (2) 1.3 分析数据参数需求 (2) 2 模型前处理 (2) 2.1 模型处理 (2) 2.2 约束及加载方式 (3) 3 有限元分析步骤 (3) 3.1 Nastran 静力分析模块 (3) 3.2 NCODE DesignLife 疲劳分析模块 (4) 4 分析结果后处理 (10) 5 结果评价 (11)

车身疲劳分析规范 1 简介 1.1 分析背景和目的 车身在路试过程中及售后反馈中80%以上的开裂问题为疲劳破坏,车身的疲劳性能是车身质量的重要体现,有必要对车身进行疲劳分析。目前比较通用的疲劳分析方法是准静态法。 1.2 软硬件需求 软件 前处理HyperMesh – Nastran模块 求解器Nastran Solution 101,nCode DesignLife 后处理HyperView 硬件 前、后处理:HP或DELL工作站; 求解:HP服务器、HP或DELL工作站。 1.3 分析数据参数需求 所需模型为简化的TB模型,(白车身及各质量点配重) 2 模型前处理 2.1 模型处理 1)导入简化的TB模型,详细建模细则参考《CAE分析共用模型建模指南》,所有搭载在白车身上的零件均需配重; 2)将各接附点重新编号,编号细则参考《整车疲劳分析连接点编号规范》; 图2.1 简化的TB模型

第6章结构件及连接的疲劳强度计算原理分解

148 第6章 结构件及连接的疲劳强度 随着社会生产力的发展,起重机械的应用越来越频繁,对起重机械的工作级别要求越来越高。《起重机设计规范》GB/T 3811-2008规定,应计算构件及连接的抗疲劳强度。对于结构疲劳强度计算,常采用应力比法和应力幅法,本章仅介绍起重机械常用的应力比法。 6.1 循环作用的载荷和应力 起重机的作业是循环往复的,其钢结构或连接必然承受循环交变作用的载荷,在结构或连接中产生的应力是变幅循环应力,如图6-1所示。 起重机的一个工作循环中,结构或连接中某点的循环应力也是变幅循环应力。起重机工作过程中每个工作循环中应力的变化都是随机的,难以用实验的方法确定其构件或连接的抗疲劳强度。然而,其结构或连接在等应力比的变幅循环或等幅应力循环作用下的疲劳强度是可以用实验的方法确定的,对于起重机构件或连接的疲劳强度可以用循环记数法计算出整个 循环应力中的各应力循环参数,将其转化为等应力比的变幅循环应力或转化为等平均应力的等幅循环应力。最后,采用累积损伤理论来计算构件或连接的抗疲劳强度。 6.1.1 循环应力的特征参数 (1) 最大应力 一个循环中峰值和谷值两极值应力中绝对值最大的应力,用max σ表示。 (2) 最小应力 一个循环中峰值和谷值两极值应力中绝对值最小的应力,用min σ表示。 (3) 整个工作循环中最大应力值 构件或连接整个工作循环中最大应力的数值,用max ?σ 表示。 (4) 应力循环特性值 一个循环中最小应力与最大应力的比值,用min max r σσ=表示。 (5) 循环应力的应力幅 一个循环中最大的应力与最小的应力的差的绝对值,用σ?表示。

车辆疲劳耐久性分析及其优化技术研究_赵成刚

Science and Technology & Innovation ┃科技与创新 ?17? 文章编号:2095-6835(2015)06-0017-02 车辆疲劳耐久性分析及其优化技术研究 赵成刚1,屈 凡2 (1.中国汽车技术研究中心汽车工程研究院,天津 300300; 2.天津一汽夏利汽车股份有限公司产品开发中心,天津 300300) 摘 要:车辆在人们的生活、生产中占据的地位日益重要,其在运行过程中会受到各种因素的影响,进而降低了其使用效率和服务年限,因此,必须做好车辆零部件的维护管理工作。就车辆运行的实际情况看,大部分关键零部件的失效都是因疲劳使用而导致的,疲劳耐久性是衡量车辆产品性能的主要指标之一,在很大程度上代表了车辆的安全性、经济性和可靠性现状。对车辆的耐久性进行了分析,并提出了相应的优化措施。 关键词:疲劳耐久性;优化措施;循环荷载;EIFS 分布 中图分类号:U467 文献标识码:A DOI :10.15913/https://www.wendangku.net/doc/fc11442066.html,ki.kjycx.2015.06.017 现代车辆的结构逐渐向高速化和载重化的方向发展,为了保证车辆运行的安全性和稳定性,就要对车辆结构和各零部件有更为严格的要求。疲劳耐久性是衡量车辆零部件和结构性能的主要指标之一,可直接反映车辆的运行状态。但就车辆疲劳耐久性研究的现状来看,还存在一定的不足。因此,为了提高对车辆疲劳耐久性研究的效果,需要对现存的不足进行分析,并选择有效的优化措施,争取不断提高车辆的运行效率。 1 车辆耐久性疲劳分析 耐久性即产品在规定使用和维修的条件下,达到极限状态前完成规定功能的能力,从本质上看,即产品在达到服务年限前,可维持正常状态的时间。对于车辆而言,经常会将汽车或零部件可以行驶一定里程而不发生故障作为衡量车辆耐久性的重要指标。但在车辆长时间运行的过程中,各零部件和构件会受到循环荷载的影响,造成结构部分发生永久性结构变化,并在多次循环后形成裂纹或断裂,这种情况称为耐久性疲劳。一旦车辆结构或零部件出现耐久性疲劳,则直接影响车辆运行的稳定性和安全性。对于车辆的耐久性疲劳而言,其产生的主要原因是循环荷载作用,与疲劳损坏还有一定的距离,且一旦发生疲劳断裂,则会导致车辆结构产生宏观塑性变形。 2 车辆耐久性分析方法 2.1 分析对象 车辆耐久性分析的对象为疲劳寿命与强度有重要联系的重要零部件,并基于结构损伤度和可靠度进行详细分析,最终判断其使用寿命。在对车辆进行耐久性分析时,可将整个车辆机械结构或一部分作为研究对象,比如圆角、紧固孔和焊接件等,尤其是应力水平高且应力水平集中的部位。 2.2 材料参数 材料参数的分析对象包括断裂韧性、EIFS 分布和表面粗糙系数等。在研究时,基本上以概率断裂力学为基础,并通过试验的手段得到相应数据。其中,对于普通材料而言,可直接在相应的数据库中搜寻相应的参数信息,比如尺寸系数、断裂韧性和表面粗糙度系数等。 2.3 使用期断裂纹扩展控制曲线 对于给定应力区,随着时间t 的变化,对细节描述的当量缺陷尺寸也会发生变化,且车辆的应力区不同,裂纹的扩展率也不同。在对车辆耐久性进行分析时,为了提高预测裂纹超越数概率的可靠性,可以结合使用期裂纹扩展控制曲线与EIFS 分布,导出EIFS 控制曲线所用的裂纹扩展方式形式一致,则使用期裂纹扩展率为: d a /dN =Q i a . (1) 式(1)中:a 为裂纹长度;N 为应力循环次数;Q i a 为使用期裂纹扩展率。 控制曲线为: y Ti (t )=a r exp (-Q i t ). (2) 式(2)中:y Ti 为当量初始缺陷尺寸;a r 为试验常数;Q i 为裂纹扩展参数。 2.4 裂纹超越数 给定应力区i 裂纹超越数即在指定时间t 内该应力区i 结构细节群中裂纹尺寸超过a r 的细节数量,用N (i ,t )表示,并作为一个离散型随机变量,且会随着时间t 的变化而变化。假设应力区每个细节相对小裂纹尺寸扩展相互独立,则每个细节在 时间t 时,裂纹尺寸可达到a r 的概率为p (i ,t ) 。如果确定应力区i 中所含细节数为N i ,则在时间t 时的裂纹尺寸超过a r 的细节数为N ’(i ,t ),服从参数为N i 与p (i ,t )二项式分布,则平均裂纹超越数为: N ’(i ,t )=N i p (i ,t ). (3) 式(3)中:N ’(i ,t )为时间t 内裂纹尺寸超过a r 的细节数;N i p (i ,t )为平均裂纹超越数。 标准差为: σN (i ,t )={N i p (i ,t ) [1-p (i ,t )]}1/2. (4) 在对车辆耐久性进行分析时,则其结构指定细节群会包含多个应力区,可用L (t )表示结构细节群中裂纹尺寸超过a r 的细节数量,且会随着时间t 的变化而变化。如果每个应力区的细节数N 都比较大时,N (i ,t )所对应的二项式分布依据中心极限定理趋近于数学期望N ’(i ,t )和方差σN 2(i ,t )正态分布,则近似有N (i ,t )~N [N ’(i ,t ),σN 2(i ,t )],则细节群裂纹超越数为: ∑==m i t i N t L 1) ,()(. (5) 式(5)中:L (t )为正态变量。 则细节群平均裂纹超越L t ()和标准差σL (i )表示为: 1m i t N t ==∑,). (6) 12 2 1 []m i i i t σσ==∑L N ()(,). (7) 3 基于CAE 技术的车辆疲劳耐久性分析 3.1 建立多体动力学模型 建立多体动力学模型时,应利用整车和零部件参数建立总成系统,以完成运动学个动力学虚拟实验,主要包括汽车操纵的稳定性、安全性和平顺性等性能的精确模拟和计算。整个ADAMS/CAR 建模过程为自下而上,逐次完成各个模板的建立,再由相应的模板生成子系统,最终由每个子系统组装成整个车的模型。其中,子系统是以模板为基础建立的,由多个零件组合而成,主要包括设计参数、模板文件和引用属性文件等多方面的说明。整车建模需要对部分零部件进行简化处理,比如将车身看作为刚体,利用车身质心位置处的质量点建模。 (下转第20页)

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

某商用车白车身结构疲劳寿命分析与优化设计

某商用车白车身结构疲劳寿命分析与优化设计 李明1李源2陈斌3 (1湖南工业大学机械工程学院,湖南株洲,412008;2国防科学技术大学指挥军官基础教育学院,湖南长沙,410072;3 湖南大学汽车车身先进设计制造国家重点实验室,湖南长沙,410082) 摘要:本文基于应力分析结果,采用有效的疲劳寿命预估方法,利用专业耐久性疲劳寿命分析系统MSC.Fatigue对该型商用车白车身进行S-N全寿命分析,得其疲劳寿命分布与危险点的寿命值。采用 结构优化、合理选材等方法,提高白车身结构的疲劳寿命。 关键词:白车身;有限元;静态分析;疲劳寿命分析;优化 Body-in-white Fatigue Analysis and Optimization Design of the Commercial Vehicle LI Ming1, LI Yuan2, CHEN Bin3 (1 School of Mechanical Engineering , Hunan University of Technology, Zhuzhou, Hunan 412008, China; 2 College of Basic Education for Officers, National University of Defense Technology, Changsha, Hunan 410072, China;3 State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha, Hunan 410082,China) Abstract:Based on the results of stress analysis, this paper took the effective way of the fatigue life estimating, used the professional durability fatigue life analysis system MSC. Fatigue, and the S-N life-cycle analysis of the certain type of commercial vehicle body-in-white finite element model, got the distribution of fatigue life and the fatigue life value of the danger points. Finally, by the structural optimization and material selection, writer improved the fatigue life of white body structure. Keywords: B ody-in-white structure, FEM, Static analysis, Fatigue lifetime analysis; Optimization 0 前言 在车身结构疲劳领域的国内研究中,1994年,江苏理工大学陈龙在建立了车辆驾驶室疲劳强度计算的力学和数学模型基础上,提出了车辆驾驶室疲劳强度研究方法[1]。2001 年,清华大学孙凌玉[2]等首次计算机模拟了汽车随机振动过程。2002年,上海汇众汽车制造有限公司王成龙[3]等应用FATIGUE 软件的分析,结合疲劳台架试验,探讨了疲劳强度理论在汽车产品零部件疲劳寿命计算中的应用,提出了提高零部件疲劳强度的方法。2004年,同济大学汽车学院靳晓雄[4]等人提到进行零部件疲劳寿命预估,

客车车身结构及其设计概述

客车车身结构及其设计 5-1 车身结构及其分类 客车与公共交通车辆是现代社会中运输旅客的主要交通工具。随着经济不断发展,环境污染越来越严重。客车的运行量,能够大大减少私家车的运行数量,能够大限度的减少大气污染。特别是最近几年,国家大力扶持新能源车辆,能够进一步减少大气污染。不管是传统车还是新能源车辆,合理的车身结构,能够在保证车身强度的前提下,减轻车身重量,降低能耗。车身的设计越来越受到重视,客车车身主要由骨架结构和蒙皮结构两部分组成。 5.1.1、客车车身定义GB37301-88 在GB37301-88中,客车车身的定义为:具有长方形的车箱,主要用来装载乘员和随身行李。 5.1.2、客车车身分类方法 由于客车品种繁多,所以车身的分类形式也是多种多样的。常见的分类方法有按客车的用途、承载形式和车身结构进行分类。 1、按用途分类 按客车的用途可分为城市客车、长途客车、旅游客车和专用客车四类。 (1)城市客车 城市客车是为城市内公共交通运输而设计和装备的客车,如图5-1所示。这种车辆设有座椅及乘客站立的区域,由于乘客上下频繁,所以车厢内地板低、过道高、通道宽、座椅少、车门多,车窗大,并有足够的空间供频繁停站时乘客上下车走动使用。按运行特点,城市客车分为市区城市客车和城郊城市客车。为了满足大、中城市公共交通的需要及环保要求,城市客车正逐步向大型化、低地板化、环保化、高档化和造型现代化等方面发展。 (2)长途客车 长途客车又称公路客车,是为城间旅客运输而设计和装备的客车,如图5-2所示。由于旅客乘坐时间较长,这类客车必须保证每位乘客都有座位,不设供乘客站立的位置。为了有效利用车厢的面积,座椅布置比较密集,而且尽可能的提高座椅的舒适性,座椅

相关文档
相关文档 最新文档