文档库 最新最全的文档下载
当前位置:文档库 › 抚顺油页岩及其残渣的热解性能

抚顺油页岩及其残渣的热解性能

生物质热解技术研究现状及其进展

能源研究与信息 第17卷第4期 Energy Research and Information Vol. 17 No. 4 2001 文章编号 1008-8857(2001)04-0210-07 生物质热解技术研究现状及其进展 李伍刚,李瑞阳,郁鸿凌,徐开义 (上海理工大学上海 200093)  摘要生物质热解技术是把低能量密度生物质转化为高能量密度气、液、固产物的 一种新型生物质能利用技术。其中液体产物具有便于运输、储存等优点,可替代燃料 油用于发电、供暖系统以及可代替矿物油提炼某些重要的化学物质。介绍了国内外对 这一技术的各种研究及其进展,并简要介绍了上海理工大学独立研制开发的生物质闪 速液化实验装置。 关键词生物质热解; 生物油 中图法分类号 TK6文献标识码A 1 引言 能源是人类生存与发展的前提和基础,从远古时代原始人钻木取火到近代以蒸汽机为代表的工业革命,人类文明的每一跨越和进步都与所用能源种类及其利用方式紧密相连。目前人类赖以生存和进行经济建设的一次能源主要是矿物能源(煤、石油、天然气、核能等)。矿物能源的使用隐藏着两个严重问题,其一:根据目前的全球能耗量和矿物能源已探明的储量,煤、石油、天然气、核燃料可使用年限分别为220、40、60和260年[1],从长远来看人类必将面临能源危机。其二:矿物能源对环境有巨大破坏作用,矿物能源燃烧产生大量CO2、SO x、NO x等气体。CO2属温室效应气体,会造成全球变暖及臭氧层破坏。NO x、SO x等有害气体会直接对环境、设备和人体健康构成危害。故此,作为有重要长远意义和战略意义的技术储备,寻求清洁的可再生能源及其利用技术,已成为全球有识之士的共识,受到各国政府和研究机构的广泛关注。 生物质是一种清洁的可再生能源,生物质快速热解技术是生物质利用的重要途径,所谓热解就是利用热能打断大分子量有机物、碳氢化合物的分子键,使之转变为含碳原子数目较少的低分子量物质的过程。生物质热解是生物质在完全缺氧条件下,产生液体(生物油)、气体(可燃气)、固体(焦碳)三种产物的生物质热降解过程。 收稿日期:2001-6-10 基金项目:上海市重点学科建设资助项目 作者简介:李伍刚(1974-),男,上海理工大学热能工程专业硕士研究生。

煤粉热解特性实验研究

第28卷第26期中国电机工程学报V ol.28 No.26 Sep.15, 2008 2008年9月15日 Proceedings of the CSEE ?2008 Chin.Soc.for Elec.Eng. 53 文章编号:0258-8013 (2008) 26-0053-06 中图分类号:TQ 530文献标识码:A 学科分类号:470?10 煤粉热解特性实验研究 魏砾宏1,李润东1,李爱民1,李延吉1,姜秀民2 (1.沈阳航空工业学院清洁能源与环境工程研究所,辽宁省沈阳市 110034; 2.上海交通大学机械与动力工程学院,上海市闵行区 200240) Thermogravimetric Analysis on the Pyrolysis Characteristics of Pulverized Coal WEI Li-hong1, LI Run-dong1, LI Ai-min1, LI Yan-ji1, JIANG Xiu-min2 (1. Institute of Clean energy and Environmental Engineering, Shenyang Institute of Aeronautical Engineering, Shenyang 110034, Liaoning Province China; 2. School of Mechanical Engineering, Shanghai Jiaotong University, Minhang District, Shanghai 200240, China) ABSTRACT: The pyrolysis characteristics of different particle size Hegang(HG) and Zhungaer(ZGE) coal were investigated by non-isothermal thermogravimetry in high purity argon. The results show that there are four stages (dehydration, holding, rapid weight-loss and slow weight-loss) during the non-isothermal weight loss process of different granularity coal powders, the differential thermo- gravimetry(DTG) curve has two weight loss peaks when temperatures lower than 1400℃. There was no differences in the weight-loss characteristics of various samples at the temperature below 400℃. For the pyrolysis characteristics of HG coal with rising heating-up rate , the initial release temperature decreases, the maximum weight loss rate and pyrolysis index D increase. Therefore the heating-up rate increase is favorable to improving pyrolysis characteristics of pulverized coal. In addition, comparison between similar particle size HG and ZGF coal at 10℃/min heating rate shows that the pyrolytic characteristics of HG coal with high ash and similar volatile is better than ZGE coal. KEY WORDS: pulverized coal; pyrolysis characteristics; particle size; thermogravimetric analysis 摘要:利用热天平,以高纯氩气为气氛气体,研究了细化鹤岗煤和准噶尔煤的热解特性。实验结果表明,不同粒度的细化和超细煤粉的热失重过程可以分为4个阶段,在1400℃之前热失重微分曲线有2个失重峰。室温~400℃,各样品的失重特性无明显区别。400~980℃,粒度对煤粉失重速率间存在较好规律性。升温速率对鹤岗细煤粉热解特性的影响表现在,随着升温速率的提高,挥发分的初析温度降低;热 基金项目:国家高技术研究发展计划基金项目(2002AA527051);辽宁省教育厅A类计划项目(2004D079)。 The National High Technology Research and Development of China (863 Programme)(2002AA527051).解最大失重速率增大,达到最大失重速率的温度升高,煤粉的热解特性指数D值增大,即升温速率的增加有利于细煤粉的热解。此外,在10℃/min加热条件下,对比了平均粒径基本相同的鹤岗煤和准噶尔煤的热解特性,发现挥发分含量接近,而灰分含量较高的鹤岗煤的热解特性明显优于准噶尔煤。 关键词:煤粉;热解特性;颗粒粒度;热分析 0 引言 煤的热解作为煤燃烧过程中的一个重要的初始过程,对煤粉着火有极大的影响,也影响到燃烧的稳定性及后期的燃尽问题。由于煤本身具有复杂性、多样性和不均一性,因此影响煤热解的因素繁多,如煤阶[1]、矿物成分和含量[2]、粒径[3-4]、升温速率[5]、温度[6-7]、停留时间[5]、压力[8-9]、煤的显微组分[10]、气氛[11]等。超细煤粉燃烧技术是目前一种重要的有效控制NO x排放的燃烧技术(在电站煤粉锅炉燃烧方面,将超细化煤粉定义为20μm以下的煤粉[12]),美国2000年清洁煤技术项目中将超细煤粉再燃作为降低燃煤NO x排放的主要技术之一。本文采用非等温热重分析方法,研究了粒度、升温速率和煤种对细化和超细化煤粉的热解特性的影响,由微分热重曲线计算热解反应动力学参数。 1 实验部分 1.1 样品的选取和制备 实验采用鹤岗(HG),准噶尔(ZGE)煤,经过碾磨,不进行筛分制成细化和超细化煤粉,原煤的煤质分析数据见表1。

温度对油页岩快速热解特性的影响

第33卷第1期2010年1月 煤炭转化 C()AI。CoNVERSl0N V01.33No.1 Jan.2010 温度对油页岩快速热解特性的影响。 王军”梁杰2’王泽3’林伟刚4’宋文立4’ 摘要采用喷动载流床快速热解装置,研究桦甸大城子4层油页岩的低温快速热解特性.采用改变气速的方法使不同热解温度下气体的停留时间一致,探讨不同热解温度对油页岩热解的气、液、固三相产物的产率、组成以及三者之间相互关系的影响,确定了在以获得液体燃料为主要目的时,530℃为桦甸大城子4层油页岩低温快速热解的最适宜温度. 关键词油页岩,低温,快速热解,喷动栽流床 中图分类号TE662 0引言 近年来,随着全球石油需求不断上升,国际油价持续走高,世界各国都在积极寻找石油替代资源.采用干馏技术进行油页岩热解提取页岩油替代石油资源已成为重要备选方案.由细粒矿物和低等微生物及植物的残体腐解有机质同时沉积形成的油页岩是可燃性矿产之一.[1喝1世界范围内油页岩的储量十分巨大,在我国的储量也非常丰富,开发价值巨大.油页岩中一般含天然石油3.5%~15%,个别高达20%以上;其发热量(4200kJ/kg~16800kJ/kg)一般只为煤发热量的1/5~1/2.同时,由于油页岩具有比较高的挥发分产率,一般可以从中提取较高的气体和液体产品.若采用低温快速热解和快速冷凝的拔头工艺,油品收率还可提高,质量也会有所改善.[4-7]本文以桦甸大城子4层油页岩为研究对象,采用喷动载流床小型实验装置对油页岩进行了低温快速热解实验,并着重研究干馏温度对于油页岩快速热解特性的影响. 1实验部分发分的迅速逸出,有效地减少了挥发分产物的二次裂解,固体半焦的收集也比较方便.而与一般的载流床相比,其传热效率较高,适应性广,热解产物容易收集,实验重现性较好.该反应装置由给料系统、热解反应器、控温系统、气一固分离系统、热解蒸汽冷凝器和气体测试系统等组成.首先,将反应器加热至预设温度,然后向炉体中加入预先900℃下灼烧过的热载体石英砂,并通人流化气使砂子处于流化状态,待炉体稳定后,开始由载气携带油页岩颗粒进入反应器热解.挥发分以及固体半焦产物由载气携带至反应管热解后进入气一固分离器,将固体半焦分离出来,气体则依次经过多级冷却装置将液体分离出来,不凝气经湿式流量计测定后放空.实验装置见图1. .Sand 图1实验装置 Fig.1Experimentalapparatus 1.1实验装置 1?2实验原料 实验采用喷动载流床反应器.该反应器相对于一般的流化床而言,气体返混小,颗粒在反应器中的停留时间短,这就保证了油页岩的快速热解以及挥 本文研究对象为桦甸大城子4层油页岩,粒度范围为60目"80目;热载体为石英砂,粒度范围为40目~55目.油页岩原样及各温度下热解半焦的元 *国家高技术研究发展计划(863)项目(2007AA0523331). 1)硕士生;2)教授、博士生导师。中国矿业大学化学与环境工程学院,100083北宗13)助理研究员14)研究员、博士生导师,中国科学院过程研究所多相复杂系统国家重点实验室,100190北京 收搞日期:2009-09—14,修回日期:2009—11-10 万方数据

生物质快速热解技术

生物质快速热解技术 摘要:生物质能源是可再生能源的重要组成部分,有丰富的资源和低污染的特点,它的开发与利用已成为2l世纪研究的重要课题。本文概述了生物质转化利用的方法,并重点阐述了生物质热化学转化法中的快速热解技术,同时综述了国内外快速热解反应器的现状,以度其产物——生物油的收集与特征分析,并提出了我国在快速热解研究方面应采取的有关措施。 生物质是地球上绿色植物通过光合作用获得的各种有机物质,它是以化学方式储存太阳能,也是以可再生形式储存在生物圈的碳。主要包括林业生物质、农业废弃物、水生植物、能源作物、城市垃圾、有机废水和人、畜粪便等。 据统计,世界每年生物质产量约l460亿吨,其中农村每年的生物质产量就有300亿吨,而生物质的利用却仅占世界能源消耗总量的l4%,发达国家占3%,发展中国家占35%,是继石油、煤炭、天然气等化石能源之后,当今全球第四大能源。但随着化石能源利用中产生诸如“酸雨”、“温室效应”等环境问题的日益突出,以及化石燃料本身可开采量的逐渐减少,生物质能源凭借其是一种环境友好型能源,及其利用中较低的SO、NO产出和CO净排放量为零等优点,引起了越来越多人的关注。 不言而喻,生物质能源将是未来可持续发展能源体系的重要组成部分,无论是从环境,还是从资源方面考虑,研究生物质能源的转化与利用都是一项迫在眉睫的重大课题。 1生物质转化利用方法 1.1生物法或称为微生物法 生物质(主要是农作物秸秆、粪便、有机废水等)在厌氧条件下发酵制得沼气,主要成分是甲烷;糖类、淀粉类原料水解发酵制取酒精。 1.2化学处理法 生物质中的半纤维素在酸l生条件下加热水解获得重要的化工原料糠醛;利用稻壳生产白炭黑等。 1.3热化学转化法 1.3.1热解生物质在隔绝或少量氧气的条件下,热解反应获得气体、固体、液体3类产品。近几十年来国外研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,其得率高达70%以上,是一种很有开发前景的生物质应用技术。 1.3.2液化分直接液化和间接液化两类,直接液化是生物质在高压设备中,添加适宜的催化剂,反应制得液化油,作为汽车用燃料,或者分离加工成化工用品,这是近年来生物质能利用研究的热点。间接液化是把生物质先气化成气体后,再进一步合成液体产品;或者把生物质中的纤维素、半纤维素水解,然后再发酵制取酒精。 1.3.3气化生物质在较高的温度(700—900℃)下,与气化剂(如空气、氧气或水蒸气)反应得到小分子可燃气体的过程。目前使用最广泛的是空气作气化剂,产生的气体主要作为燃料使用,可用于锅炉、民用炉灶、发电等场合,也可作为合成甲醇、氨的化工原料。气化技术在国外已实现大规模工业化,主要有气化发电技术,目前我国在此方面已基本完成中试与小规模生产,现正走向大型产业化生产阶段。 1.3.4直接燃烧生物质在充足氧气的环境下直接燃烧,把化学能转变为热能。近年来还出现了生物质固化成型技术,通过机械加压的方法将分散、无定形生物质转化为一定形状和密度的固体燃料,然后再燃烧。 热化学转化法可用图1表示:

金属氧化物对油页岩热解产物收率及组成分布的影响

CIESC Journal, 2017, 68(10): 3884-3891 ·3884· 化工学报 2017年 第68卷 第10期 | https://www.wendangku.net/doc/fc11454665.html, DOI :10.11949/j.issn.0438-1157.20170128 金属氧化物对油页岩热解产物收率及组成分布的影响 王泽1,2,史婉君1,宋文立1,2,李松庚1,2 (1中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190;2中国科学院大学中丹学院,北京 100190) 摘要:通过固定床反应器,对4种金属氧化物(Al 2O 3、MgO 、CaO 、Fe 2O 3)对油页岩热解所得油、气产率及成 分的影响进行了研究。结果显示,碱性CaO 对油、水、气、焦产率分布影响较为突出,可提高页岩油与半焦产率,并降低热解气产率;而酸性较强的Al 2O 3可同时提高页岩油、热解气和热解水的产率,有利于促进挥发分的析出;比较而言,MgO 和Fe 2O 3的作用相对较弱。4种金属氧化物均可提高热解气中H 2、CH 4和C 2的产率;CaO 作用 下CO 2含量降低,而其他金属氧化物对CO 2的产生有不同程度的促进作用;Fe 2O 3可促进H 2产生;Al 2O 3作用下 CH 4含量有所增加。4种金属氧化物均可促进页岩油中芳香烃的产生,并且CaO 和MgO 两种碱土金属氧化物作 用下,短链(C 6~C 12)烷烃和烯烃含量均增加,而掺混Al 2O 3时页岩油中仅短链(C 6~C 12)烷烃含量增加。对此 机理进行推测认为,碱性CaO 和MgO 首先与以脂肪酸形式存在的有机质进行酸碱反应,得到脱羧活性更高的羧 酸盐,后者脱羧所得中间产物具有生成烷烃或烯烃两条可能路径,同时得到碳酸盐;而在具有Lewis 酸特征的Al 2O 3 作用下,脱羧产物为CO 2,并同时得到饱和烃产物。 关键词:油页岩;页岩灰;热解;金属氧化物;催化 中图分类号:TE 662 文献标志码:A 文章编号:0438—1157(2017)10—3884—08 Effects of metal oxides on yields and compositions of products from pyrolysis of oil shale WANG Ze 1,2, SHI Wanjun 1, SONG Wenli 1,2, LI Songgeng 1,2 (1State Key Laboratory of Multi -Phase Complex Systems , Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190, China ; 2Sino -Danish College , University of Chinese Academy of Sciences , Beijing 100190, China ) Abstract : In the solid-solid mixing pyrolytic process, the ash or bed material may influence the pyrolytic behaviors of the oil shale. Thus, pyrolysis of oil shale mixed with four metal oxides Al 2O 3, MgO, CaO and Fe 2O 3 were investigated. The results showed that CaO had a strong influence to the yields of products, and particularly promotes the formations of shale oil and char, while decreases the yield of gas product. On the contrary, Al 2O 3 in acidic property can most distinctly promote the devolatilization of oil shale with an augmented yields of shale oil, water and gas products. Comparatively, the effects of MgO and Fe 2O 3 to product yields were much weaker. All of the four metal oxides can promote the formation of H 2, CH 4 and C 2 hydrocarbons. The content of CO 2 decreased extremely for CaO, while all other metal oxides played promoting role to the formation of CO 2. H 2 and CH 4 can be most distinctly increased for Fe 2O 3 and Al 2O 3 , respectively. The content of aromatics in shale oil can be augmented by all of the four metal oxides and the effect of Fe 2O 3 was most significant. For the components of chain hydrocarbons, the short-chain (C 6—C 12) alkanes and alkenes were promoted for both of CaO and MgO, 2017-02-07收到初稿,2017-03-04收到修改稿。 联系人:李松庚。第一作者:王泽(1974—),男,博士,副研究员。 基金项目:国家重点基础研究发展计划项目(2014CB744304);国 家自然科学基金面上项目(51476180)。 Received date: 2017-02-07. Corresponding author: LI Songgeng, sgli@https://www.wendangku.net/doc/fc11454665.html, Foundation item: supported by the National Basic Research Program of China (2014CB744304) and the National Natural Science Foundation of China (51476180). 万方数据

生物质快速热裂解工艺及其影响因素

Ξ 生物质快速热裂解工艺及其影响因素 黑龙江省人民政府农村能源办公室 潘丽娜 摘 要 介绍了目前生物质快速热裂解的工艺及其影响因素,表明了生物质快速热裂解工艺及技术是目前生物质能利用各种方式中很有前途的利用方式。以小型流化床为例着重介绍了生物质快速裂解装置组成及设备工作原理,并分析了影响生物质快速热裂解过程及产物的主要因素,分析表明,温度是影响热裂解过程中最主要因素。 关键词 生物质快速热裂解 应用 工艺类型 装置组成 影响因素 中图分类号:Q941 文献标识码:A 文章编号:1009—3230(2004)02—0007—02 0 前言 生物质是一种潜在的能源资源,是人类未来能源和化学原料的重要来源,生物质资源包括:农作物秸秆,柴薪、水生植物、油料作物和各种有机废弃物。在我国农村能源消费中生物质占70%。而在我国生物质能利用技术的研究和开发较晚,农村能源中的生物质的很大部分都以直接燃烧的形式利用,这种利用方式不仅能源利用率低,平均热效率不到25%,而且燃烧带来的大量烟雾给空气造成严重的污染。 1 生物质热裂解概念及其基本原理 111 生物质热裂解的概念 生物质热裂解(热分解)是指在隔绝空气或只通入少量空气的条件下,使生物质受热而发生分解的过程。生物质发生热裂解时将生物质分解成3种产物:气体(不可冷凝的挥分份)、液体(可冷凝的挥发份)和固体(炭)。 2 生物质热裂解的工艺 流化床快速热裂解的工艺流程较为简单,结合图1所示流程图对其工艺流程加以分析:上线为生物质颗粒一定的速率进入流化床反应器,在反应器内与高温的砂子流化充分接触,高温发生热裂解反应,反应生成的固体小颗粒随气流向上流入旋转分离器,在旋风分离器中因离心力,器壁摩擦力,以及小颗粒自身的重力作用下落入旋风分离器底部的集炭箱中,并收集。下线为气相流,空气经压缩机打入贫氧发生器,再经反应得贫氧气体充当载气,在压力的作用下,载气先通入螺旋进料器以保持进料器系统有一个足够的送风压力以保证预料顺利进入反应器,两路气体在床内一起流化砂子和原料混合物,经热裂解之后生成的气体与载气一起通过旋风分离器分离,从旋风分离器流出的气体在金属冷凝器,球型玻璃管冷凝可液化的气体,之后,剩余的气体由转子流量计再经过滤器进入收集装置。 3 生物质快速热裂解工艺主要影响因素分析 不同的工艺类型对产物及产物的比例有着重要的影响,不同的反应条件对热裂解的过程和产物亦有不同的影响。就目前的研究而言,总的讲来,影响热裂解的主要因素包括化学和物理两大方面。化学因素包括一系列复杂的一次反应和二次化学反应;物理因素主要是反应过程中的传热、传质以及原料的物理特性等。在具体的操作方面表现为:温度、升温速率、物料特征以及反应的滞留时间和压力等等。 311 滞留时间的影响 滞留时间在生物质快速热裂解反应中有生物质颗粒的固相滞留时间和气相滞留时间之分,而 7 2004年第2期(总第86期) 应用能源技术 Ξ收稿日期:2004—01— 21

生物质热解技术

生物质压缩成型技术 1 压缩成型原理 生物质主要有纤维素、半纤维素和木质素组成。木质素为光合作用形成的天然聚合体,具有复杂的三维结构,属于高分子化合物,它在植物中的含量一般为15%~30%。木质素不是晶体,没有熔点但有软化点,当温度为70-110℃时开始软化,木质素有一定的黏度;在200-300℃呈熔融状、黏度高,此时施加一定的压力,增强分子间的内聚力,可将它与纤维素紧密粘接并与相邻颗粒互相黏结,使植物体变得致密均匀,体积大幅度减少,密度显著增加,当取消外部压力后,由于非弹性的纤维分子之间相互缠绕,一般不能恢复原来的结构和形状。在冷却以后强度增加,成为成型燃料。压缩时如果对生物质原料进行加热,有利于减少成型时的挤压力。 对于木质素含量较低的原料,在压缩成型过程中,可掺入少量的黏结剂,使成型燃料保持给定形状。当加入黏结剂时,原料颗粒表面会形成吸附层,颗粒之间产生引力,使生物质粒子之间形成连锁的结构。这种成型方法所需的压力较小,可供选择的黏结剂包括黏土、淀粉、糖蜜、植物油和造纸黑液等。 2 压缩成型生产工艺 压缩成型技术按生产工艺分为黏结成型、压缩颗粒燃料和热压缩成型工艺,可制成棒状、块状、颗粒状等各种成型燃料。 生物质—-干燥—-粉碎—-调湿—-成型—-冷却—-成型燃料 主要操作步骤如下: (1)干燥 生物质的含水率在20%-40%之间,一般通过滚筒干燥机进行烘干,将原料

的含水率降低至8%-10%。如果原料太干,压缩过程中颗粒表面的炭化和龟裂有可能会引起自燃;而原料水分过高时,加热过程中产生的水蒸气就不能顺利排出,会增加体积,降低机械强度。 (2)粉碎 木屑及稻壳等原料的粒度较小,经筛选后可直接使用。而秸秆类原料则需通过粉碎机进行粉碎处理,通常使用锤片式粉碎机,粉碎的粒度由成型燃料的尺寸和成型工艺所决定。 (3)调湿 加入一定量的水分后,可以使原料表面覆盖薄薄的一层液体,增加黏结力,便于压缩成型。 (4)成型 生物质通过压缩成型,一般不使用添加剂,此时木质素充当了黏合剂。生物质压缩成型的设备一般分为螺旋挤压式、活塞冲压式和换模滚压成型。 螺旋挤压机源于日本,是目前国内比较常见的技术,生产的成型燃料为棒状,直径50-70mm。将已经粉碎的生物质通过螺旋推进器连续不断推向锥形成型筒的前端,挤压成型。因为生产过程是连续进行的,所以成型燃料的质量比较均匀,外表面在挤压过程中发生炭化,容易点燃。但是,由于螺杆处在较高温度和压力下工作,螺杆与物料始终处于摩擦状态,导致压缩区螺纹的磨损非常严重。当螺杆磨损到一定程度,螺杆与出料筒失去尺寸配合,原料就无法完成成型。因此,压缩区螺纹的磨损决定了螺杆的使用寿命,螺杆使用寿命成为生物质压缩成型技术实用化决定性因素。对螺杆磨损,由于受工艺技术的制约,目前没有从根本上解决问题,平均寿命仅为60-80h。

(完整版)花生壳生物质热解特性研究毕业设计

毕业论文 学院:材料科学与工程学院 专业年级:08级高分子二班 题目:花生壳生物质热解特征研究 指导教师:杨素文博士 评阅教师: 2012年5月

摘要 生物质能是重要的可再生资源之一,而热解是未来最有前景的生物质利用方式之一。通过对生物质的热解动力学研究,可以获得热解反应动力学参数,对于判断热解反应机理和影响因素以及优化反应条件具有重要意义。利用热分析仪,在氮气气氛下,采用不同升温速率对花生壳热解行为进行了研究。通过热重分析实验了解生物质受热过程中的基本变化规律及其影响因素,结果表明,随升温速率的增大,达到最高热解速率时所对应的温度也越高,且升温速率越高热解越快,达到相同热解程度所需的时间越短。通过热重曲线研究花生壳的热解动力学,求出动力学参数。 关键词:生物质, 热解、热重分析,动力学 ABSTRACT Biomass energy is one of most important renewable energies. Paralysis is one of most promising methods of biomass utilization in the future. Study on biomass paralysis kinetics which can obtain paralysis kinetic parameters is of great important significance toward judging paralysis mechanism and influence factors and optimizing reaction

辽宁抚顺大尺度油页岩热解特性的研究

辽宁抚顺大尺度油页岩热解特性的研究 摘要:通过研究油页岩热解过程和性质,对比不同尺度下其热解性质的变化。 研究表明,油页岩热解可分为三个阶段:常温至300℃为第一阶段,300℃~550℃为第二阶段,550℃~700℃为第三阶段。其中第二阶段为热解主要阶段,该阶段可 分为三个小阶段:第1阶段在300℃~400℃,油母开始热解;第2阶段在 400℃~500℃,热解进行;第3阶段在500℃~550℃,矿物质发生脱水或分解。并且尺度的增大主要影响热解过程中第一、第二阶段,会导致其失重率以及失重速 率的降低,造成产生的油气减少甚至热解不完全现象。 关键词:油页岩;大尺度;热解特性;热重分析;尺度分析 引言 人类社会的发展依赖于能源的供给,而如今煤、石油等不可再生资源在人类的大量开采 和消耗下已显得难以为继。油页岩作为化石燃料,其储量折算为发热量仅此于煤,位居第二,对其燃烧热解是高效经济利用的途径之一[[[] 闫澈,姜秀民.中国油页岩的能源利用研究[J].中国 能源,2000,(9):22-26.]][[[] 于廷云,孙桂大,张连江,刘姝.抚顺油页岩灰分的检测与利用的可能性[J].抚顺石油学院学报,1994,33(1):12-14.]]。因此,油页岩吸引了国内外大量研究者的目光。 油页岩是一种高灰分的腐泥煤,其干馏炼油工艺技术分为地上干馏技术和地下原位干馏 技术[[[] 孙纯国,陈丽.国内油页岩开采工艺模拟研究进展[J].化工设计通讯,2018,44(1):56.]]。地 上干馏技术由于需要将油页岩开采至地面再进行加工和炼制,具有生产成本高、干馏工艺技 术和设备不完善、环境污染大的缺点。而地下原位干馏技术则不需要将油页岩开采至地面, 直接在地下进行加热干馏[[[] 方朝合,郑德温,刘德勋,王义凤,薛华庆.油页岩原位开采技术发展 方向及趋势[J].能源技术与管理,2009,02:78-80.]],然后再用相关装置将生成的页岩油和热解气 通至地面[[[] 刘德勋,王红岩,郑德温,方朝合,葛稚新.世界油页岩原位开采技术进展[J].天然气工业,2009,29(5):128-132.]]。因此不需要井工开采,且页岩渣可留在地下,具有节约成本的优点[[[] 陈家伟,陈家全. 油页岩干馏工艺技术进展[J]. 广州化工, 2016, 44(10): 38-41.]]。但同时由 于在地下无法对油页岩进行加工破碎,只能对块体较大的油页岩进行热解,因此本文采用辽 宁省抚顺市油页岩[[[] 韩放,李焕忠,李念源.抚顺油页岩开发利用条件分析[J].吉林大学学报(地球科学版),2006,36(6):915-922.]],通过对不同大尺度油页岩热解对其热重规律进行研究。 1.实验部分 1.1实验样品准备 油页岩:产自辽宁抚顺,用切割机将油页岩样品切割成10×10×10mm3,30×30×30mm3、50×50×50mm3、80×80×80mm3的立方体若干。 1.2实验仪器 油页岩热解装置:主要包括电阻丝加热炉、热重仪、页岩油冷凝装置等部分。电阻丝加 热炉尺寸:外壳尺寸长80cm,宽60cm,高100cm。内炉尺寸长50cm,宽30cm,高60cm。 气相色谱与质谱仪(GCMS-QP2010)、循环水式多用真空泵、旋转蒸发器、过程气体分 析仪。 1.3实验方法 首先分别对10×10×10mm3、30×30×30mm3、50×50×50mm3、80×80×80mm3的油页岩进 行称重,记录数据。用二氯甲烷和甲醇以3:1的比例配置溶液400m1,用于页岩油的收集。利用电阻丝加热炉在氮气氛围中分别对各个尺度的油页岩进行热解,采用10℃/min的升温速率进行加热,每损失0.1kg样品质量记录一次时间,直至质量恒定不变。在炉内温度到达100℃、200℃、300℃、400℃、500℃、600℃、700℃时收集气体。炉内温度到达700℃之后调整电流以保持温度恒定,每隔30min收集一次气体,共4次,之后再每隔60min收集一次 气体,共4次。 利用过程气体分析仪测收集气体的组分,同时根据油页岩热解失重规律进行分析。利用

生物质热解技术

生物质热解技术 按温度,升温速率,固定停留时间(反应时间)和颗粒大小等实验条件可将热解分为炭化(慢热解),快速热解和气化。由于液体产物的诸多优点和随之而来的人们对其研究兴趣的日益高涨,对液体产物收率相对较高的快速热解技术的研究和应用越来越受到人们的重视。快速热解过程在几秒或更短的时间内完成。所以,化学反应,传热传质以及相变现象都起重要作用。关键问题是使生物质颗粒只在极短的时间内处于较低温度(此种低温利于生成焦炭),然后一直处于热解过程最优温度。要达到此目的的一种方法是使用小生物质颗粒(应用于流化床反应器),另一种方法是通过热源直接与生物质颗粒表面接触达到快速传热(这一方法应用于生物质烧蚀热解技术中)。由众多实验研究得知,较低的加热温度和较长气体停留时间会有利于炭的生成,高温和较长停留时间会增加生物质转化为气体的量,中温和短停留时间对液体产物增加最有利。 秸秆发电商品化前景分析 解决浪费性生物质能资源的唯一出路在于商品化。生物质能秸秆发电技术,不仅为农村提供更多电力,更有意义的是将使生物质能资源的商品化成为可能,一方面农民可通过出售秸秆获得更多的收入;另一方面过去农村使用直接燃烧秸秆的方式进行炊事,要为秸秆的收集、运输、储存以及在直接燃烧时花费大量的时间和劳力。如果能使用秸秆发电,农村使用更多的商品能源,农民将获得更多的时间从事生产性劳动,以尽早脱贫致富。因此,将秸秆发电进行能源方式转化,是一件利国利民的好事。 1 生物质能秸秆发电的工艺流程 农作物秸秆在很久以前就开始作为燃料,直至1973年第一次石油危机时丹麦开始研究利用秸秆作为发电燃料。在这个领域丹麦BWE公司是世界领先者,第一家秸秆燃烧发电厂于1998年投入运行(Haslev,5Mw)。此后,BWE公司在西欧设计并建造了大量的生物发电厂,其中最大的发电厂是英国的Elyan发电厂,装机容量为38Mw。 1.1 秸秆的处理、输送和燃烧 发电厂内建设两个独立的秸秆仓库。每个仓库都有大门,运输货车可从大门驶入,然后停在地磅上称重,秸秆同时要测试含水量。任何一包秸秆的含水量超过25%,则为不合格。在欧洲的发电厂中,这项测试由安装在自动起重机上的红外传感器来实现。在国内,可以手动将探测器插入每一个秸秆捆中测试水分,该探测器能存储99组测量值,测量完所有秸秆捆之后,测量结果可以存入连接至地磅的计算机。然后使用叉车卸货,并将运输货车的空车重量输入计算机。计算机可根据前后的重量以及含水量计算出秸秆的净重。 货车卸货时,叉车将秸秆包放入预先确定的位置;在仓库的另一端,叉车将秸秆包放在进料输送机上;进料输送机有一个缓冲台,可保艚崭?分钟;秸秆从进料台通过带密封闸门(防火)的进料输送机传送至进料系统;秸秆包被推压到两个立式螺杆上,通过螺杆的旋转扯碎秸秆,然后将秸秆传

医疗废物典型组分的热解特性研究

硕士学位论文 论文题目 医疗废物典型组分的热解特性研究 作者姓名苏鹏宇 指导教师岑可法教授 马增益副教授 学科(专业) 工程热物理 所在学院机械与能源工程学院 提交日期 2005年1月

Study on Pyrolysis Characteristics of Typical Components in Medical Waste Candidate: Su Pengyu Supervisor: Professor Cen Kefa Associate Professor Ma Zengyi Thermal Physics Engineering Clean Energy and Environmental Engineering Key Laboratory of Ministry of Education Institute of Thermal Power Engineering Zhejiang University, Hangzhou, China Jan.2005

学号 独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得浙江大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 学位论文作者签名:签字日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解浙江大学有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。本人授权浙江大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。 (保密的学位论文在解密后适用本授权书) 学位论文作者签名:导师签名: 签字日期:年月日签字日期:年月日 学位论文作者毕业后去向: 工作单位:电话: 通讯地址:邮编:

吉木萨尔油页岩热解动力学的实验研究

?武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室项目(FMRU201502) 收稿日期:2018-06-12 潘一妮(1980-一),博士;430074湖北省武汉市三吉木萨尔油页岩热解动力学的实验研究?潘一妮一吕一伟一戴方钦 (武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室) 摘一要一在升温速率为30?/min 时对吉木萨尔油页岩进行热重实验研究,根据实验所得TG /DTG 曲线特点,采用高斯多峰拟合法将油页岩热解过程分解为五个阶段,每个阶段代表油页岩热解过程的不同特征反应三采用峰值分析法对不同特征反应建模并求解动力学参数(活化能E 二指前因子A 及反应级数n ),不同特征反应对油页岩热解过程转化率贡献不同,其权重即为峰值分析中子峰曲线下方面积,采用加权叠加的方法对油页岩热解过程进行模拟,得到了油页岩热解过程动力学模型三结果表明:模拟结果与实验曲线吻合良好三 关键词一油页岩一热解一高斯多峰拟合一峰值分析法Pyrolysis kinetic model of Jimsar oil shale Pan Ni一Lv Wei一Dai Fangqin (The State Key Laboratory of Refractories and Metallurgy,Wuhan University of Science and Technology) Abstract 一Gravimetric experiments of Jimsar oil shale with a heating rate of 30?/min were conduc-ted.According to the experimental results of TG /DTG curve and the theory of Gauss multi -peaks fit-ting method,oil shale pyrolysis process was divided into 5stages,each stage represents different re-sponse characteristics of oil shale pyrolysis process.The peak analysis method was used to determine the kinetic parameters (activation energy E ,the pre -exponential factor A and the reaction order n )for each stage.The weight of each stage is different,which is represented by the area of the sub -peak,the oil shale pyrolysis process was simulated by using the method of weighted superposition,and the oil shale pyrolysis kinetic model was obtained finally.It is show that the simulation results and ex-perimental results are in good agreement.Keywords 一oil shale一pyrolysis一gauss multi -peak fitting一peak analysis method 一一油页岩是一种高灰分的固体可燃有机岩石[1],由于储量高二商业潜力大越来越受到重视[2],作为石油的替代品,经过转换后还可以用于其他化工产品[3,4]三近年来,热分析技术有了长足发展,越来越多的学者采用热分析技术来 研究油页岩热解动力学三王擎[5]二K?k [6]等采用 非等温升温速率下热重实验对油页岩的燃烧过程 进行研究,得到了油页岩的燃烧特性和动力学参数三Liu Q.Q.[7]二Pan L.W.[8]二K?k [9]等采用非等温升温速率下热重实验对油页岩热解过程进行了研究,同样,得到了油页岩热解特性和动力学参数三此外,也有学者采用计算机模拟方法对油页岩热解过程也进行了研究[10-13]三应用较多的热分析方法有微分法和积分法,文章采用高斯多峰拟合方法三李睿[14]等采用该方法计算了四种生物质燃料的热解过程;王擎[15]等采用该方法求取了油页岩燃烧过程的动力学参数;马伟[15]等采用该方法计算了酚醛树脂的热解5 1Vol.37一No.6Nov.2018一一一一一一冶一金一能一源ENERGY FOR METALLURGICAL INDUSTRY 万方数据

相关文档