文档库 最新最全的文档下载
当前位置:文档库 › 高二第一课时 导数及其运算学案

高二第一课时 导数及其运算学案

高二第一课时 导数及其运算学案
高二第一课时 导数及其运算学案

第一课时 导数及其运算

1.1数的平均变化率与导数

一、知识要点

1、 已知函数)(x f y =在点

0x x =及其附近有定义,令=?x _______,

_______)()(00=-=-=?x f x f y y y ,则当0≠?x 时,比值______=x

y

??,称作自变量在0x 附近的平均变化率.

2、 一般地,如果物体的运动规律是)(t s s =,那么物体在时刻t 的瞬时速度v ,就是物体在t 到t t ?+这段时间内,当0→?t 时__________,即v=______=________

3、 设函数)(x f y =在0x 附近有定义,当自变量在0x x =处有增量x ?时,函数)(x f y =相应地有增量y ?=____ ____.如果0→?x 时,y ?与x ?的比x

y ??有极限(即

x

y

??无限趋近于某个常数),我们就把这个极限值叫做函数)(x f y =在0x x =处的导数,记做______或_______,于是可写作__ __=)(0/x f . 4、 如果函数)(x f y =在开区间(a,b)内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/

x f ,从而构成了一个新的函数)(/

x f ,称这个函数)(/

x f 为函数)(x f y =在开区间(a,b)内的______,简称______.

1.2 导数的运算,导数公式表

一、知识要点

基本初等函数导数公式表

二、典型例题

例1:求下列函数的导数 (1)3x y = (2)x x y =

(3)2x 1y =

(4)x

1y =

【变式练习:求下列函数的导数】

(1)6y x = (2)y =

(3)

21y x = (4)y =

例2:求下列函数的导数

(1)lg x y = (2)x

2y =

(3)2x

cos 2x sin

2y = (4)212sin 2

x y =-

三、巩固练习

1. 函数5

2-

=x

y 的导数为( )

57

52 .-x A 52

57 .--x B 57

52 .x C - 5

7

5

2 .--x D

2. 设函数x x f sin )(=,则)0(f '等于 ( )

1 .A 1 .-B 0 .C 以上均不正确 .D

3. 曲线n x y =在2=x 处的导数为12,则n 等于( )

1 .A

2 .B

3 .C

4 .D

4. 下列计算正确的是 ( )

x x A a 1)(log .=

' x

x B a 10

ln )(log .=' x C 3)(3 .x =' 3ln 3)3( .x x D =' 5. 设函数()cos f x x =,则()2

f π

'等于

6. 设函数()cos f x x =,则()3

f π

'等于

7. 设函数()f x =,则(3)f '等于

8. 设函数()sin x f x =,1

(a)2

f '=

,则a 等于 1.3 导数的四则运算法则

一、课前预习

1、 设函数)(),(x g x f 是可导函数,__________))()((/

=±x g x f

推广/12n ()__________f f f ±±

±=

2、 若)(),(x g x f 是可导的,则/

(()())________________f x g x ?=

/[()]________________Cf x =

3、 )(),(x g x f 是可导的,/()(

)_______________()f x g x =/

1()_______________()

g x =

4.复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

二、典型例题

例1. 求下列函数的导数: (1)2log 2x y x =+; (2)2x y e =;

(3)522354y x x x =-+-; (4)3cos 4sin y x x =-.

(5)52

(23)(54)y x x x =--; (6)23cos y x x =.

变式练习:.求下列函数的导数 (1)32log y x x =?; (2)n x

y x e =;

(3)31

sin x y x

-= (4)tan y x =

(5)y =e x ·cos x ; (6)y =x -sin x 2cos x

2; (7)y =

ln (2x +1)

x

.

例2.求下列函数的导数 (1)4

)

31(1

x y -=. (2)x y 23-=

(3)3

2)2(x y -=; (4)2

sin x y =;

(4)(5))4

cos(

x y -=π

; (6)ln(31)y x =-

变式练习:(1)2x y e =; (2)2

1

(31)y x =-

(3)2ln x x

y e

=

1.4导数的几何意义

一、知识要点

1.对于函数)(x f 的曲线上的定点),(00y x P 和动点))(,(n n n x f x P ,直线n PP 称为这条函数曲线上过P 点的一条__________;其斜率n k =_________________;当P P n →时,直线

n PP 就无限趋近于一个确定的位置,这个确定位置的直线PT 称为过P 点的__________;其

斜率k =

_____________(其中0x x x n -=?),切线方程为_________________;过函数曲线上任意一点的切线最多有__________条,而割线可以作_______条。

2.函数的导数的几何意义是___ _____________。

二、典型例题

例1. 已知函数3

()16f x x x =+-.

(1)求曲线()y f x =在点(2,6)-处的切线方程;

(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.

变式练习:(1)曲线y =x 3-x +3在点(1,3)处的切线方程

例2. 函数()x e x f x

cos =的图像在点()()0,0f 处的切线的倾斜角为( )

A 、4π

B 、0

C 、4

3π D 、1

变式练习:

(1)在曲线y =x 2上切线的倾斜角为π

4

的点是( )

A .(0,0)

B .(2,4) C.????

14,116

D.????

12,14

例 3. 函数y=f(x)的图像在点M(1,f(1))处的切线方程为22

1

+=

x y ,则)1()1(f f '+=______

同步练习

1.曲线x

y e =在点A (0,1)处的切线斜率为 2.曲线32

3y x x =-+在点(1,2)处的切线方程为 3.曲线311y x =+在点(1,12)P 处的切线与y 轴交点的纵坐标是 4.曲线21

x

y x =

-在点()1,1处的切线方程为 5.曲线x

y e =在点2

(2)e ,处的切线与坐标轴所围三角形的面积为

1.3导数在研究函数中的应用

1.3.1 函数的单调性与导数

一、知识要点

函数的单调性与导数

(1)在区间],[b a 内,)('x f >0,?f (x )为单调递增;)('x f <0,?f (x )为单调递减。

(2)用导数求函数单调区间的三个步骤: ①确定函数的定义域;

②求函数f (x )的导数()f x ';

③令()0f x '>解不等式,得x 的范围就是递增区间; ④令()0f x '<解不等式,得x 的范围就是递减区间。

(3)用导数判断或证明函数的单调性的步骤:

①求函数f (x )的导数()f x '; ②判断()f x '的符号; ③给出单调性结论。

二.典例分析

题型一 求函数的单调性

例1确定函数32()267f x x x =-+的单调区间.

变式训练:

求下列函数的单调区间:

(1)3

y x x =- (2)

112322

3+-+=x x x y

(3)

)2()1(2

++=x x y

同步练习:

1.函数x e x x f -?=)(的一个单调递增区间是( )

(A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0

2.已知函数2

1y x ax =+-在区间(,1)-∞-上单调递减,在区间(2,)+∞上单调递增,则实数a 的取值范围_________________. 3.若函数21

()2f x ax x

=-在(]0,1上为增函数,则实数a 的取值范围是_____________.

1.3.2 导数的极值与导数

【典型例题】

题型 一 求函数的极值 例1 求下列函数的极值:

(1)276y x x =-+; (2)2ln y x x =.

变式训练:设32()1f x x ax bx =+++的导数()f x '满足(1)2,(2)f a f b ''==-,其中常数

,a b R ∈.

(1)求曲线()y f x =在点(1,(1))f 处的切线方程.

题型 二 判断函数极值点的情况

例2 判断下列函数有无极值,若有极值,请求出极值;如果没有极值,请说明理由. (1)3

1()43

f x x =+;

(2)3

21()43

f x x x x =++;

(3)23

()1(2)f x x =--.

题型 三导函数的图像与函数极值的关系 例3 函数f (x )的定义域为开区间(a ,b ),导函数f′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点的个数为( )

A 1个 B.2个 C.3个 D.4个

课后作业

1.一个物体的运动方程为2

1t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )

A .7米/秒

B .6米/秒

C .5米/秒

D .8米/秒 2.函数3y x x =+的递增区间是( ) A .),0(+∞ B .)1,(-∞

C .),(+∞-∞

D .),1(+∞

3.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )

A .

319 B .316 C .313 D .3

10

4.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )

A .充分条件

B .必要条件

C .充要条件

D .必要非充分条件 5.函数344+-=x x y 在区间[]2,3-上的最小值为( )

A .72

B .36

C .12

D .0

二、填空题

1.若3'0(),()3f x x f x ==,则0x 的值为_________________; 2.曲线x x y 43

-=在点(1,3)- 处的切线倾斜角为__________;

3.函数sin x

y x

=

的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________;

5.函数5523--+=x x x y 的单调递增区间是___________________________。 三、解答题

1.求垂直于直线2610x y -+=并且与曲线3

2

35y x x =+-相切的直线方程。

2.求函数()()()y x a x b x c =---的导数。

3.求函数543

()551f x x x x =+++在区间[]4,1-上的最大值与最小值。

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

导数的运算练习题.doc

导数的运算练习 一、常用的导数公式 (1)'C = (C 为常数); (2)()'n x = ; (3)(sin )'x = ; (4)(cos )'x = ; (5)()'x a = ; (6)()'x e = ; (7)_____________; (8)_____________; 二、导数的运算法则 1、(1) ; (2) ; (3)______________________________________; (4) =___________________________________;(C 为常数) 2、复合函数的导数 设 . 三、练习 1、已知()2f x x =,则()3f '等于( ) A .0 B .2x C .6 D .9 2、()0f x =的导数是( ) A .0 B .1 C .不存在 D .不确定 3、32y x 的导数是( ) A .23x B .213x C .12- D 33x

4、曲线n y x =在2x =处的导数是12,则n 等于( ) A .1 B .2 C .3 D .4 5、若()f x =()1f '等于( ) A .0 B .13- C .3 D .13 6、2y x =的斜率等于2的切线方程是( ) A .210x y -+= B .210x y -+=或210x y --= C .210x y --= D .20x y -= 7、在曲线2y x =上的切线的倾斜角为4 π的点是( ) A .()0,0 B .()2,4 C .11,416?? ??? D .11,24?? ??? 8、设()sin y f x =是可导函数,则x y '等于( ) A .()sin f x ' B .()sin cos f x x '? C .()sin sin f x x '? D .()cos cos f x x '? 9、函数()2 2423y x x =-+的导数是( ) A .()2823x x -+ B .()2 216x -+ C .()()282361x x x -+- D .()()242361x x x -+- 10、曲线34y x x =-在点()1,3--处的切线方程是( ) A .74y x =+ B .72y x =+ C .4y x =- D .2y x =- 11、点P 在曲线323y x x =-+ 上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ) A .0,2π?????? B .30,,24πππ????????????U C .3,4ππ?????? D .3,24ππ?? ???

第三章 导数 导学案

§3.1.1 变化率问题 1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程. 体会数学的博大精深以及学习数学的意义; 2.理解平均变化率的意义,为后续建立瞬时变化. 7880 复习1:曲线22 1259 x y +=与曲线 22 1(9)259x y k k k +=<--的( ) A .长、短轴长相等 B .焦距相等 C .离心率相等 D .准线相同 复习2:当α从0 到180 变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 二、新课导学 ※ 学习探究 探究任务一: 问题1:气球膨胀率,求平均膨胀率 吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象? 问题2:高台跳水,求平均速度 新知:平均变化率: 2121()()f x f x f x x x -?=-? 试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ?,即 x ?= 或者2x = ,x ?就表 示从1x 到2x 的变化量或增量,相应地,函数的变化量或增量记为y ?,即y ?= ;如果它们 的比值y x ??,则上式就表示为 , 此比值就称为平均变化率. 反思:所谓平均变化率也就是 的增量与 的增量的比值. ※ 典型例题 例 1 过曲线3()y f x x ==上两点(1,1P 和(1,1)Q x y +?+?作曲线的割线,求出当0.1x ?=时割线的斜率. 变式:已知函数2()f x x x =-+的图象上一点 (1,2)--及邻近一点(1,2)x y -+?-+?,则y x ??= 例 2 已知函数2 ()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001] 小结:

最新3.1-3.2导数学案汇总

3.1-3.2导数学案

第三章导数及其应用 3.1导数(刘骏宇) 第1课时平均变化率、瞬时速度与导数 学习要求 1.了解函数的平均变化率的概念 2.会求函数的平均变化率 3.知道函数的瞬时速度的概念 4.理解导数的概念,能利用导数的定义求导数 自学评价 1、已知函数?Skip Record If...?在点?Skip Record If...?及其附近 有定义,令?Skip Record If...?_______, ?Skip Record If...?,则当?Skip Record If...?时,比值______=?Skip Record If...?,称作自变量在?Skip Record If...?附近的平均变化率. 2、一般地,如果物体的运动规律是?Skip Record If...?,那么物体在 时刻t的瞬时速度v,就是物体在t到?Skip Record If...?这段时 间内,当?Skip Record If...?时__________,即 v=______=________ 3、设函数?Skip Record If...?在?Skip Record If...?附近有定义, 当自变量在?Skip Record If...?处有增量?Skip Record If...? 时,函数?Skip Record If...?相应地有增量?Skip Record If...?=________.如果?Skip Record If...?时,?Skip Record If...?与?Skip Record If...?的比?Skip Record If...?(也叫做 函数的______)有极限(即?Skip Record If...?无限趋近于某个常 数),我们就把这个极限值叫做函数?Skip Record If...?在?Skip Reco rd If...?处的导数,记做______或_______,于是可写作 ______=?Skip Record If...?. 4、如果函数?Skip Record If...?在开区间(a,b)内的每点处都有导 数,此时对于每一个?Skip Record If...?,都对应着一个确定的导 数?Skip Record If...?,从而构成了一个新的函数?Skip Record If...?,称这个函数?Skip Record If...?为函数?Skip Record If...?在开区间(a,b)内的______,简称______. 【精典范例】 例1:(1)求?Skip Record If...?在?Skip Record If...?到?Skip Record If...?之间的平均变化率.

导数计算练习习题

欢迎阅读 导数计算练习题 1、已知()2f x x =,则()3f '等于() A .0 B .2x C .6 D .9 2、()0f x =的导数是() A .0 B .1 C .不存在 D .不确定 3、 y A .3x 4A .15、若 A .06、y A .2C .27A .(8A .()sin f x 'B .()sin cos f x x '? C .()sin sin f x x '? D .()cos cos f x x '? 9、(理科)函数()2 2423y x x =-+的导数是() A .()2823x x -+B .()2 216x -+ C .()()282361x x x -+- D .()()242361x x x -+-

10、曲线34y x x =-在点()1,3--处的切线方程是() A .74y x =+ B .72y x =+ C .4y x =- D .2y x =- 11、点P 在曲线323y x x =-+ 上移动,设点P 处切线的倾斜角为α,则角α的取值范围是() A .0,2π??????B .30,,24πππ????????????C .3,4ππ??????D .3,24ππ?? ??? 122 131415(5)y =(6)y =(7)y =16(1)(2)(3)(4)(5)2 1x +(6)232x y x x =- - 17、求下列各函数的导数 (1)sin cos y x x x =+ (2)1cos x y x =-

(3)tan tan y x x x =- (4)5sin 1cos x y x =+ 18、(理科)求下列各函数的导数 (1)25(1)y x =+ (2)2(23y x =+ (3)(4)y (5)y =(6)y =(7)y =(8)y =(9)y =(10)y (11)y

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

基本初等函数的导数公式及导数运算法则综合测试题(附答案)

基本初等函数的导数公式及导数运算法则综合测试题(附答案) 选修2-21.2.2第2课时基本初等函数的导数公式及导数运算法则 一、选择题 1 .函数y = (x+ 1)2(x—1)在x= 1处的导数等于() A.1B.2 C. 3 D. 4 答案]D 解析]y = (x+1)2]'—x1 )+(x+ 1)2(x—1)' =2(x + 1)?(x—1) + (x+ 1)2= 3x2 + 2x—1, y‘ =1= 4. 2.若对任意x€ R, f‘ =)4x3, f(1) = —1,则f(x)=() A. x4 B. x4— 2 C. 4x3—5 D. x4+ 2 答案]B 解析]丁f‘(=4x3.f(x) = x4+c,又f(1) = — 1 ? ? ? 1 + c= — 1 ,? ? ? c= —2,—f(x) = x4 — 2. 3 .设函数f(x) = xm + ax 的导数为f‘ =)2x+1,则数列{1f(n)}(n € N*) 的前n 项和是() A.nn+1 B.n+2n+1 C.nn—1 D.n+1n 答案]A 解析]T f(x) = xm+ ax 的导数为f‘(x)2x + 1,

/. m = 2, a= 1,二f(x) = x2+ x, 即f(n) = n2+n=n(n+ 1), 二数列{1f(n)}(n € N*)的前n项和为: Sn= 11 X2 12X3 13 x+…+ 1n(n+ 1) =1 —12+ 12—13+…+ 1n —1n + 1 =1 —1n+ 1= nn+ 1, 故选 A. 4.二次函数y = f(x)的图象过原点,且它的导函数y= f‘的)图象是过第 一、二、三象限的一条直线,贝卩函数y= f(x)的图象的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案]C 解析]由题意可设f(x)= ax2 + bx, f' (=2ax + b,由于f‘(的图象是过第一、二、三象限的一条直线,故2a>0, b>0,则f(x) = ax+ b2a2—b24a, 顶点—b2a,—b24a 在第三象限,故选 C. 5 .函数y = (2 + x3)2的导数为() A. 6x5+ 12x2 B. 4+ 2x3 C. 2(2+ x3)2 D. 2(2+ x3)?3x 答案]A 解析]t y= (2+ x3)2= 4+ 4x3+ x6, /. y = 6x5 + 12x2.

配套学案:导数的计算

导数的计算(复习课) 【学习目标】 1.掌握基本初等函数的导数公式以及导数的运算法则; 2.会求含有加、减、乘、除运算的函数导数; 3.会求简单复合函数的倒数. 【知识回顾】 1.基本初等函数的导数公式: (1)c '=___________(c 为常数); (2))('α x =________(α为常数); (3))('x a =________(0a >且1a ≠); (4))(log 'x a =______(0a >且1a ≠); (5))('x e =_____________; (6))(ln 'x =_____________; (7)=')(sin x ___________; (8))(cos 'x =____________. 2.设两个函数分别为f(x)和g(x), (1)=')]([x f c _____________; (2)[]='±)()(x g x f ___________; (3)[]='?)()(x g x f __________________; (4)='?? ????)()(x g x f ____________)0)((>x g . 3. 复合函数()[]x f y ?=,设u φ=(x ), 则))((x f ?'=_________________. (复合函数求导的基本步骤是:分解——求导——相乘——回代) 【典例精析】 例1. 求曲线2 y x =过下列点的切线方程:(1)P (-1,1);(2)Q(0,-1).联合例5后置处理

例2.求下列函数的导数: (1)y=3x ·lnx ; (2)y=lgx- 2x 1; (3)y= x x -1cos ; (4)2)2(-=x y .

3.1 导数的概念及其运算导学案

§3.1 导数的概念及其运算 2014高考会这样考 1.利用导数的几何意义求切线方程;2.考查导数的有关计算,尤其是简单的复合函数求导. 复习备考要这样做 1.理解导数的意义,熟练掌握导数公式和求导法则;2.灵活进行复合函数的求导;3.会求某点处切线的方程或过某点的切线方程. 1. 函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1) x 2-x 1,若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平 均变化率可表示为Δy Δx . 2. 函数y =f (x )在x =x 0处的导数 学&科& (1)定义 称函数y =f (x )在x =x 0处的瞬时变化率lim Δx → f (x 0+Δx )-f (x 0)Δx =lim Δx →0 Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即f ′(x 0)=lim Δx → Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3. 函数f (x )的导函数 称函数f ′(x )=lim Δx → f (x +Δx )-f (x ) Δx 为f (x )的导函数,导函数有时也记作y ′. 4. 基本初等函数的导数公式

5. (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x ) g 2(x ) (g (x )≠0). 6. 复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [难点正本 疑点清源] 1. 深刻理解“函数在一点处的导数”、“导函数”、“导数”的区别与联系 (1)函数f (x )在点x 0处的导数f ′(x 0)是一个常数; (2)函数y =f (x )的导函数,是针对某一区间内任意点x 而言的.如果函数y =f (x )在区间(a ,b )内每一点x 都可导,是指对于区间(a ,b )内的每一个确定的值x 0都对应着一个确定的导数f ′(x 0).这样就在开区间(a ,b )内构成了一个新函数,就是函数f (x )的导函数f ′(x ).在不产生混淆的情况下,导函数也简称导数. 2. 曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系 (1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不

3.1导数导学案

导数的概念及运算 一、预习案 (一)高考解读 能利用给出的基本初等函数的导数公式求简单函数的导数,通过图像直观地理解导数的几何意义,会求在某点和过某点的切线方程。 (二)知识清单 2、求导法则 ①运算 (1)=±' )]()([x g x f 。 (2)=?')]()([x g x f 。 (3)=?? ????' )()(x g x f 。 ②复合函数的导数:设)(x v u =在x 处可导,)(u f y =在点u 处可导, 则复合函数)]([x v f 在点x 处可导,且=)('x f 。 (三)预期效果及存在困惑

二、导学案 (一)完成《新亮剑(红色)》第50页查缺补漏。 (二)高考类型 考点一、导数运算 1、已知函数ax x x x f +=sin )(,且1)2 ('=π f ,则a 的值等于( ) A.0 B.1 C.2 D.4 2、函数)(x f 的定义域是R ,2)0(=f ,对任意1)()(,'>+∈x f x f R x ,则不等式1)(+>?x x e x f e 的解集为 考点二、导数几何意义的应用 3、已知函数454)(23-+-=x x x x f 。 (1)求曲线)(x f 在点))2(,2(f 处的切线方程; (2)求经过点)2,2(-A 的曲线)(x f 的切线方程。 练习: 1(2018课标I )设函数ax x a x x f +-+=23)1()(。若)(x f 为奇函数,则曲线)(x f y =在)0,0(处的切线方程为( ) A. x y 2-= B.x y -= C.x y 2= D.x y =

2.(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0 课堂总结: 三、巩固案 1.(2016北京节选)设函数bx xe x f x a +=-)(,曲线)(x f y =在))2(,2(f 处的切线方程为4)1(+-=x e y ,求b a ,的值。 2.(2015全国II )设函数)('x f 是奇函数)(x f 的导函数,0)1(=-f ,当 0>x 时,0)()('<-x f x xf ,解不等式0)(>x f 。

(完整版)导数的计算练习题及答案

【巩固练习】 一、选择题 1.设函数310()(12)f x x =-,则'(1)f =( ) A .0 B .―1 C .―60 D .60 2.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( ) A.(0,1) B.()(),10,1-∞-U C. ()()1,01,-+∞U D.()1,+∞ 3.(2014春 永寿县校级期中)下列式子不正确的是( ) A.()'23cos 6sin x x x x +=- B. ()'1ln 2 2ln 2x x x x -=- C. ()' 2sin 22cos 2x x = D.'2sin cos sin x x x x x x -??= ??? 4.函数4538 y x x =+-的导数是( ) A .3543 x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为' ()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( ) A. 2 B.-2 C. 94 D.94- 6.设曲线1(1)1 x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12 D .―2 7.23log cos (cos 0)y x x =≠的导数是( ) A .32log tan e x -? B .32log cot e x ? C .32log cos e x -? D . 22log cos e x 二、填空题 8.曲线y=sin x 在点,12π?? ??? 处的切线方程为________。 9.设y=(2x+a)2,且2'|20x y ==,则a=________。 10.31sin x x '??-= ??? ____________,()2sin 25x x '+=????____________。 11.在平面直角坐标系xOy 中,点P 在曲线C :y=x 3―10x+3上,且在第二象限内,已知曲

苏教版数学高二- 选修2-2导学案 《常见函数的导数》

1.2.1 常见函数的导数 导学案 一、学习目标 掌握初等函数的求导公式; 二、学习重难点 用定义推导常见函数的导数公式. 三、学习过程 【复习准备】 1.导数的相关知识 ①导数的定义;②导数的几何意义;③导函数的定义;④求函数的导数的流程图. (1)求函数的改变量 (2)求平均变化率 (3)取极限,得导数/ y =()f x '= 2.如何求切线的斜率? (0)PQ x k P ?→当时,无限趋近于点处切线的斜率 3.导数:函数在某点处的瞬时变化率 设函数y =f(x)在区间(a ,b)上有定义,x0∈(a ,b),若△x 无限趋近于零时,比值 00()()f x x f x y x x +?-?=??.无限趋近于一个常数A ,则称f(x)在x =x 0处可导,并称

该常数A 为函数f(x)在x =x0处的导数,记作f/(x 0). 4.由定义求导数(三步法) ①求函数的增量:=?y ②算比值(平均变化率): =??x y ③取极限,得导数:0 x x y ='= 【情境引入】 本节课我们将学习常见函数的导数.首先我们来求下面几个函数的导数. (1)y=x; (2)y=x 2 ; (3)y=x 3 . 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? 【数学建构】 1.几种常见函数的导数: 问题引入1: (1)(23)x '-+= (4)x '= (2)(2)x '-= (5)(5)x '+= (3)3'= (6)(4)'-= 通过以上运算我们能得到什么结论? 公式一:

问题引入2: (1)x '= 2(2)()x '= 2(3)(3)x '= 1(4)()x '= 通过以上运算我们能得到什么结论? 公式二: 【知识应用】 例1 求下列函数的导数: (1)()'3x ;(2)'21x ?? ??? ;(3 )' . 解: 拓展 例2 求下列函数的导数: 4(1)y x =; 3(2)y x -=; 1(3)y x =; (4)y = =0(5)sin 45y ; =(6)cos u v . 解:

2017函数的最值与导数学案.doc

3.3.3 函数的最值与导数 【学习目标】 是多少?最小值是多少? 2.函数的最大值、最小值与函数的极大值和极小值的区别与联系是什么?能列表的应采用列表的方法. 3.利用导数求函数的最大值和最小值的方法是什么? 4.利用导数求函数的最值步骤是什么? 5.不等式恒成立问题,常常转化为求函数的最值,f(x)≥c对x∈R 恒成立,常怎么转化? f(x)≤c对x∈R恒成立,常怎么转化?【自主检测】 1.下列说法正确的是( ) A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值

2.函数y=f(x)在区间[a,b ]上的最大值是M ,最小值是m,若M=m, 则f ′(x) ( ) A.等于0 B.大于0 C.小于0 D.以上都有可能 【典型例题】 例1.(1)求()31443f x x x =-+在[]0,3的最大值与最小值; (2)求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值; (3)求函数x x x y -+=23在闭区间]1,2[-上的最大值与最小值. 例2.已知函数f (x )=x 3+ax 2+bx +c 在x =-23 与x =1时都取得极值 (1)求a 、b 的值与函数f (x )的单调区间; (2)若对x ∈[]12-,,不等式f (x )b,则 ( ) A .2,29a b =-=- B .2,3a b == C .3,2a b == D .2,3a b =-=- 2. 已知f(x)=2x 3-6x 2+m(m 为常数)在[-2,2]上有最大值3,求此函数在[-2,2]上的最小值__________________. 4.求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值,并画出函数的图像.

导数及其应用学案+作业 (答案)

变化率与导数、导数的计算 1.函数y =f (x )在x =x 0处的导数:f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . 2.函数f (x )在点x 0处的导数f ′(x 0)的几何意义:f ′(x 0)是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 二、基本初等函数的导数公式 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=lo g a x f ′(x )=1x ln a f (x )=ln x f ′(x )=1x 三、导数的运算法则 1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 3.????f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2 (g (x )≠0). 1.函数求导的原则 对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误. 2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系 (1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 1.用定义法求下列函数的导数. (1)y =x 2; (2)y =4x 2. [自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx =(x +Δx )2-x 2 Δx

导数的运算专项练习(含答案)

导数的运算 一、单选题(共33题;共66分) 1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为() A. 0 B. 3 C. 4 D. - 2.函数的导数为() A. B. C. D. 3.设函数,若,则等于() A. B. C. D. 4.设则等于( ) A. B. C. D. 5.已知函数的导函数,且满足,则=( ) A. B. C. 1 D. 6.已知函数的导函数为,且,则() A. 2 B. 3 C. 4 D. 5 7.下列求导运算的正确是() A. 为常数 B. C. D. 8.已知函数的值为() A. B. C. D. 9.下列求导运算正确的是() A. B. C. D. 10.已知函数f(x)=sinx-cosx,则f'()=() A. B. C. D. 11.若函数f(x)=2+xcos2x,则f'(x)=() A. cos 2x-xsin 2x B. x-sin 2x C. 1-2sin 2x D. cos2x-2sin2x 12.函数的导数为() A. =2 B. = C. =2 D. = 13.设函数的导函数为,且,则=( ) A. 0 B. -4 C. -2 D. 2

14.设,若,则() A. B. C. D. 15.已知函数,则其导数() A. B. C. D. 16.若函数,则的值为() A. 0 B. 2 C. 1 D. -1 17.已知函数,且,则的值为() A. B. C. D. 18.已知函数,为的导函数,则的值为() A. B. C. D. 19.下列求导运算正确的是() A. B. C. D. 20.已知函数的导函数为,且满足,则() A. B. C. D. 21.若,则函数的导函数() A. B. C. D. 22.函数的导数为() A. B. C. D. 23.下列导数式子正确的是() A. B. C. D. 24.已知,则等于() A. -2 B. 0 C. 2 D. 4 25.已知函数,则() A. B. C. D. 26.已知,则() A. B. C. D. 27.设,,则x0=( ) A. e2 B. e C. D. ln 2 28.下列求导数运算正确的是()

高中数学《导数的计算》学案1 新人教A版选修

高中数学《导数的计算》学案1 新人教A版选 修 3、2 导数的计算 【成功细节】 张玥谈导数的计算的方法(xx年,北京文9) 已知是的导函数,则的值是____、本节内容公式和法则比较多,以公式的推导、记忆以及应用为主,重点是基本初等函数导数公式以及导数的四则运算法则的灵活运用,公式的形式多样,容易引起混淆,并且公式中往往会有一些条件容易忽略,导致遗漏错误、所以在学习时,我认为应注意以下几个方面:(1)要牢记常数函数和幂函数的求导公式,能用定义法求这些函数的导数的方法,注意四种常见函数实际上就是四种特殊的幂函数;(2)要熟记基本初等函数的导数公式,特别是对数函数和指数函数的导函数的形式,;(3)熟练掌握导数的四则运算法则,注意公式的形式以及前提条件,两个函数的和与差的导数与两个函数积的导数的形式是不同的;(4)和(或差)、积的函数的导数运算法则可以推广到两个以上函数的和(差)、积的求导;(5)在求函数的导数时,一定要先化简函数的表达式,尽量不使用积的函数的导数的法则;(6)若两个函数不可导,则它们的和、差、积、商不一定不可导。如,这个题主要考查基本初等

函数的导数公式以及函数和的导数的计算法则,是一个简单的小题,但计算时要细心,可先求出导函数,然后再求导数值,显然有公式可得,,所以、 【高效预习】 (核心栏目)“要养成学生阅读书籍的习惯就非教他们预习不可”。叶圣陶 【关注、思考】 1、阅读课本第8182页,总结四个常用函数的导数公式,认真阅读导数公式的推导过程,这四个常用函数有什么共同的特征,其导数有什么意义?细节提示:利用导数的定义求解四种函数的导数,对照函数图象,把握住导数的物理意义和几何意义;四种常用函数实际上都是幂函数,探讨规律时,应把导函数的系数与幂指数与原函数进行对比、 【领会、感悟】 1、这四种函数实质上都是特殊的幂函数,它们的导函数的系数为幂函数的指数,指数为幂函数的指数减去1所的数值;函数的导数的几何意义是函数图象在该点处的切线的斜率 【领会感悟】 2、基本初等函数的导数公式是我们求解函数导数的基础,要记准确,记牢,才可能在运算过程中不出现错误。例1是导数的简单应用、 【精读细化】

导数学案(有答案)

3、1、1平均变化率 课时目标1、理解并掌握平均变化率得概念、2、会求函数在指定区间上得平均变化率、3、能利用平均变化率解决或说明生活中得实际问题. 1.函数f(x)在区间[x1,x2]上得平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx瞧作就是相对于x1得一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)得平均变化率可以表示为________. 2.函数y=f(x)得平均变化率Δy Δx= f(x2)-f(x1) x2-x1 得几何意义就是:表示连接函数y=f(x) 图象上两点(x1,f(x1))、(x2,f(x2))得割线得________. 一、填空题 1.当自变量从x0变到x1时,函数值得增量与相应自变量得增量之比就是函数________.(填序号) ①在[x0,x1]上得平均变化率; ②在x0处得变化率; ③在x1处得变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数得增量Δy=______________、 3.已知函数f(x)=2x2-1得图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________、 4.某物体做运动规律就是s=s(t),则该物体在t到t+Δt这段时间内得平均速度就是______________. 5.如图,函数y=f(x)在A,B两点间得平均变化率就是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0、1时,Δy得值为________.

导数的运算练习题答案Word版

1.设a 为实数,函数R x a x e x f x ∈+-=,22)(。 (Ⅰ)求)(x f 的单调区间与极值; (Ⅱ)求证:当12ln ->a 且0>x 时,122 +->ax x e x 。 2. 已知 函数f(x)=))(6(3)4(2 3 R x n mx x m x ∈-+--+的图像关于原点对称,其中m,n 为实常数。 (1) 求n m ,的值; (2) 试用单调性的定义证明:f (x) 在区间[-2, 2] 上是单调函数; (3) 当-2≤x ≤2 时,不等式)log ()(a n x f m -≥恒成立,求实数a 的取值范围。 解(1)由于f(x)图象关于原点对称,则f(x)是奇函数, f(-x)=-f(x) 恒成立,)6(3)4()6(3)4(2323--+---=-++-+-n mx x m x n mx x m x []()()()()()(), ,0, 012022) 12)(()12()12(,2,2,,12)()1()2(.6,40)6()4(2121222121212122212121232131212 12132x f x f x f x f x x x x x x x x x x x x x x x x x x x f x f x x x x x x x f n m n x m >>-<-++<-≤<≤--++-=---=-<-∈-====-+-即从而,知,由且任取可知由恒成立,必有即

∴f(x)在[-2,2]上是减函数。 (3)由(2)知f(x)在[-2,2]上是减函数,则-22≤≤x 时,()().162-=≥f x f 故-2时,2≤≤x 不等式f(x)a a n m m log )log (-≥恒成立 .4161 08 log 2log 0)2)(log 8(log log )log 6(168444444≥≤ +++=a d cx bx x a x f , 且方程09)('=-x x f 的两个根分别为1,4。 (Ⅰ)当a=3且曲线)(x f y =过原点时,求)(x f 的解析式; (Ⅱ)若)(x f 在),(+∞-∞无极值点,求a 的取值范围

2.11-变化率与导数、导数的计算学案(高考一轮复习)

2014年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

相关文档
相关文档 最新文档