文档库 最新最全的文档下载
当前位置:文档库 › 实验四 心电放大器

实验四 心电放大器

实验四 心电放大器
实验四 心电放大器

实验四心电放大器的性能分析

心电放大器的背景知识

对于心电放大器而言,使用者为医疗单位,有较好的工作环境;心电传感器测得的心电信号幅度一般在50μV~5mV之间,属于微弱信号,要求放大器具有低噪声、低漂移和较高的电压放大倍数;信号的频率范围一般为0.05Hz~200Hz,频带范围不是很宽;人体是心电信号的信号源,人体电阻、检测电极与皮肤的接触电阻等为信号源内阻,其值较大,一般为几十kΩ,因此要求放大器必须有很高的输入阻抗;同时人体相当于一个导体,易接受空间电磁场的各种干扰信号,这些干扰信号对放大器来说相当于共模信号,因此,心电放大器应具有较高的共模抑制比。心电放大器如图1所示。(图中运算放大器为LM324)

一、实验目的:

1.了解PSPICE应用软件

2.掌握PSPICE软件在电路分析设计中的应用

3.熟悉心电放大器的特点和功能;进一步熟悉运算放大器的应用。

二.用PSPICE软件对心电放大器进行性能分析

1.对心电放大器进行差模幅频特性分析,并记录仿真结果(幅频曲线、f L、f H、电路差模增益、共模增益、差模输入阻抗);

2.分别改变R W1、R W2和C3、C4,对上述结果有何影响?

三.实验预习要求

1.学习并了解PSPICE5.1软件的操作使用方法。

2.对心电放大器进行理论分析和性能指标计算。

3.编写用PSPICE软件对心电放大器进行性能分析的文本文件。

四.实验报告要求

分析心电放大器性能,给出仿真结果、仿真曲线(用计算机打印)和仿真有关数据。

五.PSPICE主要的仿真文本

1.交流小信号分析,即幅频特性分析语句

VIN M N AC 0.1MV 其中M N 为电路节点号,下同。

.AC DEC 10 0.01HZ 10KHZ

.PROBE

.END

心电放大器设计报告

心电放大器(直流供电) 设计报告及测试报告 姓名:刘文中 学号:3004202321 班级:生物医学工程1班 指导老师:李刚教授

心电放大器前置通路设计报告 ——直流供电 3004202321-1-刘文中指导老师:李刚教授 一:关于心电 ?心脏作为生物体新陈代谢和能量传递的动力中心,其对人体的重要性是不言而喻的。 各种心脏疾病,几乎都和心脏的生物电活动相关联。在当前的社会中,心脏病等心血管 已经成为了世界死亡人数最多,号称“头号杀手”。由于心脏病有突发性以及长久性, 对心脏病人也需要长期的治疗和监护。然而,要针对心脏病情,首先要做的就是了 解心电信号的特点。 其特点为: 1)信号十分微弱,幅度小于5mV。 2)常见的心电频率一般在0—100Hz之间,能量主要集中在17Hz附近。 3)测量时心电电极阻抗较大,一般在几百千欧以上。 4)极易受到工频干扰。 ?心电图的作用 1、对心律失常和传导障碍具有重要的诊断价值。 2、对心肌梗塞的诊断有很高的准确性,它不仅能确定有无心肌梗塞,而且还可确定梗塞的病变期部位范围以及演变过程。 3、对房室肌大、心肌炎、心肌病、冠状动脉供血不足和心包炎的诊断有较大的帮助。 4、能够帮助了解某些药物(如洋地黄、奎尼丁)和电解质紊乱对心肌的作用。 因此检测出人体的心电图,对于帮助诊断与治疗相关疾病有重要作用。 我所设计的便携式心电放大器主要是方便,低功耗,主要适用于野外或运动场所对于心电的检测。 二:心电放大器的总体设 差模电压增益:A VC=500; 差模输入阻抗:大于10M 共模拟制比:大于80DB 频带宽度: 0.05~100HZ; 陷波:50HZ工频 输入保护电路:能耐5000v的高压 说明:由于我设计的是直流心电放大器;所以放大起必须具有两个特性 第一:要能准确的提取与放大心电信号(放大倍数不能太小,以便能够较方便的观测,由于是直流供电,直流是由电池提供,提供的电压较小,所以放大倍数也不能太大。 第二:要使整个电路的功耗尽量小,这在某种程度上要求该设计中所含的运放器要相对较少; 三:整个电路的整体框架如下;

差动放大器实验报告

差动放大器实验报告 以下是为大家整理的差动放大器实验报告的相关范文,本文关键词为差动,放大器,实验,报告,篇一,实验,差动,放大器,南昌大学,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作报告中查看更多范文。 篇一:实验五差动放大器 南昌大学实验报告 实验五差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器Rp用来调节T1、T2管的静态工作点,使得输入信号ui=0时,双端输出电压uo=0。Re为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较

强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1差动放大器实验电路 1、静态工作点的估算典型电路Ic1=Ic2=1/2Ie恒流源电路Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出:Re=∞,Rp在中心位置时, Ad? 单端输出 △uoβRc ?? △ui Rb?rbe??β)Rp 2 Ad1? △uc11?Ad △ui2 Ad2? △uc21 ??Ad △ui2 当输入共模信号时,若为单端输出,则有 △uc1?βRcR

Ac1?Ac2????c △uiR?r?(1?β)(1R?2R)2Re bbepe 3、共模抑制比cmRR2 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比AA cmRR?d或cmRR?20Logd?db? AcAc 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、典型差动放大器性能测试 按图5-1连接实验电路,开关K拨向左边构成典型差动放大器。 1)测量静态工作点2)①调节放大器零点 信号源不接入。将放大器输入端A、b与地短接,接通±12V直流电源,用直流电压表测量输出电压uo,调节调零电位器Rp,使uo=0。调节要仔细,力求准确。 ②测量静态工作点 零点调好以后,用直流电压表测量T1、T2管各电极电位及射极电阻Re两端电压uRe,记入表5-1。

心电图信号放大器

实验三心电图信号放大器 采用自上而下的设计顺序,一般设计过程为: 1)确定总体设计目标; 2)方案设计;3)详细设计;4)调试;5)印刷电路板设计;6)整机测试。每个步骤不是完全独立的,在实际的设计过程中,各个步骤经常是交叉进行,特别是2)、3)、4)步。下面通过一个实例来说明Pspice对设计方案和具体电路进行分析的过程,通过仿真计算,可发现设计上的错误或不合理之处,然后重新调整设计方案或修改电路元件参数,再仿真,直到设计电路的技术指标满足要求为止。 设计一个心电图信号放大器。 已知: (1)心电信号幅度在50μV~5mV之间,频率范围为0.032Hz~250Hz。 (2)人体内阻、检测电极板与皮肤的接触电阻(即信号源内阻)为几十千欧。 (3)放大器的输出电压最大值为-5V~+5V。 1) 确定总体设计目标; 由已知条件1)可知该放大器的输入信号属于微弱信号,所要求的放大器应具有较高的电压增益和低噪声、低漂移特性。由已知条件2)可知,为了减轻微弱心电信号源的负载,放大器必须有很高的输入阻抗。另外,为了减小人体接收的空间电磁场的各种信号(即共模信号),要求放大器应具有较高的共模抑制比。因此,最后决定的心电放大器的性能指标如下:差模电压增益:1000(5V/5mV) 差模输入阻抗:>10MΩ 共模抑制比:80dB 通频带:0.032Hz~250Hz 2) 方案设计: 根据性能指标要求,要采用多级放大电路,其中前置放大器的设计决定了输入阻抗,共模抑制比和噪声,可选用BiFET型运放,本设计采用了LF4111型运放(其 Avo=4?105,Ri≈4?1011Ω,Avc=2),由于单极同相放大器的共模抑制比无法达到设计要 求(可通过Pspice仿真波形看出),本设计采用了由三个LF411型运放构成的仪用放大器。 第二级放大器的任务是进一步提高放大电路的电压增益,使总增益达到1000。其次为了消除高、低噪声,需要设计一个带通滤波器。因为滤波器没有特殊要求,本设计可采用较简单的一阶高通滤波器和一阶低通滤波器构成的带通滤波器。

生物电放大器 - 心电图(ECG)前置放大器

生物电放大器 - 心电图(ECG)前置放大器 *******信息工程与自动化学院学生实验报告 (******* 学年第一学期) 课程名称:生物医学电子学开课实验室:******* 200******* 年 ******* 月 ******* 日 一、实验目的 1、掌握三运算放大器组成差动放大器的原理; 2、掌握元器件参数变化对放大器性能指标的影响; 3、加深对生物电信号和生物电放大器的理解。 二、实验原理 图2-1 实验二三电极心电前置放大器 如图2-1所示,是典型的三运算放大器组成的差动放大器,根据A 1、A 2、A 3的理想特性,R 5、R 6、R 7中的电流相等,得到 U o 1-U i 1 R 5 = U i 1-U i 2 R 7R 5R 7R 5R 7 = U i 2-U o 2 R 6 从而导出(R 6=R5) (U o 1-U i 1) =(U i 2-U 02) = (U i 1-U i 2) (U i 1-U i 2) 以上二式相加得 (U o 1-U o 2) =(1+

2R 5R 7 )(U i 1-U i 2) 注意到 U o =- R 10R 8 (U o 1-U o 2) 则其差模增益为 A d = U o U i 2-U i 1 =R 10R 8 (1+ 2R 5R 7 ) 只要调节R 7,就可改变三运算放大器的增益,而不影响整个电路的对称性。三运算放大器组成差动放大器具有高共模抑制比、高输入阻抗和可变增益等一系列优点,它是目前最典型的生理参数测量用的前置放大器,且已在各类生物医学仪器中获得广泛应用 三、实验内容及步骤 1、用EWB 软件按图2-1三电极心电前置放大器电路图接线、设置各元器件参数、创建电路,接入示波器、,并保存电路; 2、激活仿真电路,用示波器、万用表,观察波形、读取实验数据,并记录于表2-1中; 3、计算放大倍数,并记录于表2-2中; 4、将模拟正弦输入信号调整为零(Vi=0),测量出此时的输出电压(零漂);改变R11的数值使其零点漂移最小、记录下R11的数值;将三只运算放大器改设为理想运算放大器,记录有关数据、填入表2-3。 四·实验结果记录及分析总结 表2-1三电极心电前置放大器实验记录表 截图1:

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下

1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的差动放大器 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 100.43-? 双出 A m 100.43-? 单出 A m 100.43-? 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 109.83-? 双出 A m 109.83-? 单出 A m 100.93-? 分析内容 u A i R o R CMR K 空载 -189 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω 分析内容 u A i R o R CMR K 空载 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω

心电放大器设计报告

生物医学电子学课程设计 设计报告 学校:东北大学 学院:中荷生物医学与信息工程学院 专业班级:生医1202班 姓名:鱼忘七秒 学号: 201252xyz 指导老师:李刚

低功耗心电放大器设计报告 1.概述 心脏是循环系统中重要的器官。由于心脏不断地进行有节奏的收缩和舒张活动,血液才能在闭锁的循环系统中不停地流动。心脏在机械性收缩之前,首先产生电激动。心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。 基本心电图如上所示,包含如下几个波段: P波――两心房除极时间 P-R间期――心房开始除极至心室开始除极时间 QRS波群――全心室除极的电位变化 ST段――心室除极刚结束尚处以缓慢复极时间 T波――快速心室复极时间 2.设计背景 心电放大器是一种常见的生物电放大仪器,在如今已经得到了广泛的应用,并已经研发出了便携家用的医疗仪器。心电放大器可以实时观测被测者的心电信号,有助于病征的观测,并能辅助诊断。心电放大器作为精密医疗仪器,在现代的应用越来越广泛,低成本是它的一个重要趋势。

心电信号有几个显著的特点。 1)心电信号很微弱,其幅值为10μV(胎儿)-4mV(成人),放大倍数 约为500~1000倍; 2)频率很低,约为0.05Hz-75Hz,能量主要集中在17Hz附近; 3)有很强的随机性,并不稳定。 4)人体作为信号源,本身内阻很大。 5)干扰多。如肌电等人体噪声,以及在心电放大器中不可避免的工频 等设备噪声。 3.设计意义 1)对心律失常和传导障碍具有重要的诊断价值; 2)对心肌梗塞的诊断有很高的准确性,它不仅能确定有无心肌梗塞, 而且还可确定梗塞的病变期部位范围以及演变过程; 3)对房室肌大、心肌炎、心肌病、冠状动脉供血不足和心包炎的诊断 有较大的帮助; 4)能够帮助了解某些药物(如洋地黄、奎尼丁)和电解质紊乱对心肌 的作用。 4.设计要求 1)输入电阻>5M 2)共模抑制比>80dB 3)输出摆幅>2.5V(采用单片机采集时动态范围≧28) 4)频带:0.05~75Hz 5)功耗<5mA 6)直流供电,使用三节1.5V干电池,便于携带 5.总体方案设计

3 简单差动放大器的仿真实验

国家集成电路人才培养基地 培训资料(3) 简单差动放大器实验 2006-X-XX

西安交通大学国家集成电路人才培养基地 简单差动放大器实验 本实验包括对简单差动放大器进行DC扫描、AC分析,并学习根据输出波形确定相位裕度、输入输出共模范围、共模增益、共模抑制比(CMRR)以及电源抑制比(PSRR)。 1. 启动cadence 启动电脑,进入solaris9系统,打开终端Teminal,输入cds.setup后按回车,再输入icfb&按回车,candence启动成功。在自己的Library中新建一个cellview,命名为amp。 2. 电路图输入 按下图输入简单差动放大器电路图,其中的元件参数我们在下一步中设置,图中用到的元件(vdc, pmos4,nmos4,vdd,gnd,cap)都在analogLib库中能找到。 图2.1 简单差动放大器电路图 第1页,共14页

简单差动放大器实验 3. 计算、设置元件参数 根据放大倍数,功耗,输出摆幅等要求确定各个mos管的宽长比(W/L)和栅压。由于我们实验时间有限,请同学们直接按下面的步骤设置好元件值(选中元件后按q键调出如下的元件属性设置框): M0,M1,M2:于Model name 栏输入n18,于Width栏输入4u,于Lenth栏输入700n,最后点击ok。 图3.1 M0、M1、M2管的参数设置 M3,M4:于Model name 栏输入p18,于Width栏输入10u,于Lenth栏输入3u,最后点击ok。 图3.2 M3、M4管参数设置 第2页,共14页

西安交通大学国家集成电路人才培养基地 第3页,共14页 直流电压源V0,V1的值分别设为1.8,0.6。设置完毕后点击工具栏上的进行保存。 4. 仿真 4.1 DC 扫描及输入输出共模范围 在菜单栏依次选择Tools →Analog Environment ,弹出如图4.1所示的Simulation 窗口: 点击Setup →Model Libraries 在弹出的对话框中设好Model Library 。点击 Browse …按钮,选择/cad/smic018_tech/Process_technology/Mixed-Signal/SPICE_Model/ms018_v1p6_spe.lib ,在Section(opt.)中填入tt ,点Add ,再点ok 退出。 图4.1 Simulation 窗口 图4.2 添加Model Library

心电信号放大器设计

成绩: 2015-2016学年01 学期 “电力电子电气传动与可编程控制技术(1)”BUCK变换器的设计与仿真 姓名: 专业: 班级: 学号:

2015 年12 月

一、设计用于检测人体心电信号的放大器,要求如下: 1、输入阻抗≥10MΩ。 2、共模抑制比≥80dB。 3、电压放大倍数1000倍。 4、频带宽度为0.5Hz~100Hz。 5、放大器的等效输入噪声(包括50Hz交流干扰)≤200μV。 二、设计方案分析 1、心电信号的特点及检测 人体的各种生理参数如心电、脑电、肌电等生物电信号都是属于强噪声背景下微弱的低频信号,是由复杂的生命体发出的不稳定的自然信号。心电信号是人类最早研究并应用于临床医学的生物电信号之一,与其他生物电信号相比,该信号也比较容易检测同时具有直观的规律性。一般人体心电信号的幅值约20μV~5mV,频带宽度为0.05Hz~100Hz,由于心电信号取自于活体,所以信号源内阻较高,且存在着较强的背景噪声和干扰。 在检测人体生物电信号时,需要采用所谓的生物电测量电极,

又称引导电极来实现的,通过引导电极将生物电信号引入到放大器的输入端。对于心电信号的检测,临床上为了统一和便于比较所获得心电信号波形,对测定心电信号(ECG)的电极和引线与放大器的联接方式有严格的统一规定,称之为心电图的导联系统。目前国际上均采用标准导联,即将电极捆绑在手腕或脚腕的内侧面,并通过较长的屏蔽导线与心电放大器相连接。标准导联有Ⅰ、Ⅱ、Ⅲ。其具体联接方法如图。 LA Ⅰ 导联Ⅱ 导联Ⅲ导联 图1 标准导联联线方法 2、心电信号放大器设计要求及组成 根据心电信号的特点,对心电信号放大器的要求是高输入阻抗、高增益、高共模抑制比、低噪声、低漂移、合适的通频带宽度和输出较大的动态范围等。典型的心电信号放大器的组成如图所示,主要有前置放大、高通滤波、低通滤波、50Hz陷波器、电压放大

差动放大器

实验四 差动式直流放大器 一、 实验目的 1. 了解差动放大器的性能特点和调试方法. 2. 学会测量差动放大器的放大倍数和共模抑制比. 二、实验仪器 直流稳压电源(双路), GDM —8045数字万用表, 模拟电路实验箱 三、实验原理 差动式直流放大器(简称差放)的原理图如图,1T 、2T 的性能相同,21C C R R =,21R R =,21S S R R =,发射极共用一只电阻e R .由图可见,它由两个共发射极放 大器联体而成,与单管放大器比较,有以下三点不同: 1. 输入信号i U 对地对称,叫差模信号,1T 、2T 两管基极得到的信号是大小相等、方向相反的信号.在无线电技术中称这种输入形式为“平衡输入”或“对称输入”. 2. 输出信号o U 在两管的集电极上取出,对地也是对称的,所以也叫“平衡输出”“对称输出”,也叫“双端输出”. 3. 两晶体管共用一只发射极电阻e R 由于这三点不同,使差放具有了零点漂移小,能够放大频率低至直流的信号的特点.它广泛用于测量技术中,在集成电路中应用更普遍. 当输入差模信号i U 时,1T 的集电极电位下降1C U '?,2T 的集电极电位上升2C U '?,而且因电路对称,='?1C U 2C U '?,输出电压21C C O U U U '?+'?=?.差放双端输出时的差模放大倍数dd A 为:

21212222d d i C i C i o dd A A U U U U U U A =='?='?=?= , 21d d A A ,是单端输出时的差模电压放大倍数. 当1T 、2T 的基极上加大小相等,相位相同的共模信号i U 时,两管集电极电位同 时上升或下降1C U ''?和2C U ''?且1C U ''?=2C U ''?,此时若采用单端输出,则O U ?=1C U ''?=2C U ''?,差放单端输出时的共模电压放大倍数i C CS U U A 11''?=,i C CS U U A 22''?= ,它们均大于0;若采用双端输出,则共模电压放大倍数021=''?-''?=?= i C C i O cd U U U U U A ,差放的这一特点,就是它能消除“零点漂移”的原理.因为象温度变化、外界干扰那样的信号,都是同时同相等量的加在差放的两只晶体管上的,相当于共模信号. 在实际应用中,电路不可能完全对称,所以cd A 也不可能完全为0.另外,差放也经常采用单端输出的方式,即使电路完全对称,1CS A 、2CS A 也不可能等于0,所以在两管发射极上接公用电阻e R .该电阻对差模信号不起作用,但对共模信号有负反馈作用,使1CS A 、2CS A 下降,从而起到抑制漂移的作用.显然,e R 越大,这种抑制作用越大,在数量上,e C e C CS CS R R R R A A 222121-=- ==,但e R 也不能太大. 四、实验内容 实验电路如图所示,检查实验电路板,接好+12v 和-12v 电源,将①接①’,②接②’,开始实验。 1. 典型差动放大器性能测试 开关K 拨向1,构成典型差动放大器。 (1) 测量静态工作点 ①调节放大器零点

实验五 差动放大器

南昌大学实验报告 实验五 差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。 它由两个元件参数相同的基本共射放大电路组成。当开关K 拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。R E 为两管共用的发射极电阻, 它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1 差动放大器实验电路 1、静态工作点的估算 典型电路 Ic1=Ic2=1/2IE 恒流源电路 Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (121r R βR △U △U A +++- == 单端输出 d i C1d1A 2 1△U △U A ==

d i C2d2A 21 △U △U A -== 当输入共模信号时,若为单端输出,则有 3、 共模抑制比CMRR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 或 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、 典型差动放大器性能测试 按图5-1连接实验电路,开关K 拨向左边构成典型差动放大器。 1) 测量静态工作点 2) ①调节放大器零点 信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压U O ,调节调零电位器R P ,使U O =0。 调节要仔细,力求准确。 E C E P be B C i C1C2C12R R )2R R 2 1β)((1r R βR △U △U A A -≈++++-====d c A CMRR A () =d c A CMRR 20Log dB A

心电设计报告

直流心电放大仪设计报告 心电信号作为心脏电活动在人体体表的表现,信号比较微弱,其频谱范围是0.05~200Hz,电压幅值为0~5mV,信号源的阻抗为数千欧到数百千欧,并且存在着大量的噪声,测量时,除了受包括肌电信号,脑电信号,呼吸波信号等体内干扰信号的干扰,还受到基线漂移,电极接触等体外干扰。心电的这些特点,要求设计在强噪声下能有效抑制各种干扰的便携式心电采集放大仪,来得到正确的心电信号。 本直流心电放大仪设计思路是:由携带在人体上的电极采集心电信号,经过前置放大器的初步放大,并且在前置放大器电路部分设计滤波和右腿驱动电路,对各种信号进行一定的抑制后送入仪用放大器,输出后送入低通滤波器,以滤除心电频率范围以外的干扰信号,最后经过主放大器,得到能观察范围内的心电信号。在进行实验元件参数选取时,既要考虑满足设计要求,同时又要保证所用的元件必须能找到,而且考虑到元件精度要求。 心电放大仪总体结构图: 人体电极拾取前置放大器(共模抑制电路)低通滤波器 后级放大电路示波器显示 本设计的电路主要由五部分组成:电源变换电路;前置放大器和抑制共模电路;低通滤波电路;后级放大电路(主放大电路)。 由携带在人体上的电极拾取的心电信号首先经过前置放大器的初

步放大,并对各种干扰信号进行一定的抑制后进入低通滤波器以滤除心电频率以外的干扰信号,然后经过后级主放大器进一步放大后,输入示波器,进行观察。设计没有采用50HZ工频滤波电路,是因为本设计由电池供电,共模工频干扰很小(外界电场影响),可以通过右腿驱动电路很好的滤除。 一、电源变换电路: 由于电池最多只能用四节,也就是6V,而实验采用的芯片是LM324,因此采用具有升压能力的电路,它能将Ec转换为±Ec。其原理是NE555,时基电路接成无稳态电路,555和R21、C13接成无稳态多谐振荡器,振荡频率约在20kHz左右,由于充、放电时间常数皆为R21C13,故占空比为50%。输出的20kHz脉冲波经D1、C14和 D2、C15分别整流滤波后,输出±EDD双电源。它的3脚输出占空

心电放大器的设计与仿真

电子线路CAD短学期设计报告 学院:电子信息学院 学号:15041523 班级:15040211 姓名:卢虎林 日期: 2017年3月11日

一、实验目的 通过一个实例来说明Pspice对设计方案和具体电路进行分析的过程,理解电路的自上而下的设计方法。 二、实验原理 设计一个心电图信号放大器。已知: (1)心电信号幅度在50μV~5mV之间,频率范围为0.032Hz~250Hz。 (2)人体内阻、检测电极板与皮肤的接触电阻(即信号源内阻)为几十千欧。 (3)放大器的输出电压最大值为-5V~+5V。 1、确定总体设计目标 由已知条件(1)可知该放大器的输入信号属于微弱信号,所要求的放大器应具有较高的电压增益和低噪声、低漂移特性。由已知条件(2)可知,为了减轻微弱心电信号源的负载,放大器必须有很高的输入阻抗。另外,为了减小人体接收的空间电磁场的各种信号(即共模信号),要求放大器应具有较高的共模抑制比。因此,最后决定的心电放大器的性能指标如下: 差模电压增益:1000(5V/5mV); 差模输入阻抗: >10MΩ; 共模抑制比:80dB; 通频带:0.05Hz~250Hz。 2、方案设计 根据性能指标要求,要采用多级放大电路,其中前置放大器的设计决定了输入阻抗,共模抑制比和噪声,可选用BiFET型运放,本设计

采用了LF4111型运放(其中Avo=4 10 ,Rid≈4 10 Ω,Avc=2),由 于单极同相放大器的共模抑制比无法达到设计要求(可通过Pspice 仿真波形看出),本设计采用了由三个LF411型运放构成的仪用放大器。 第二级放大器的任务是进一步提高放大电路的电压增益,使总增 益达到1000。其次为了消除高、低噪声,需要设计一个带通滤波器。因为滤波器没有特殊要求,本设计可采用较简单的一阶高通滤波器 和一阶低通滤波器构成的带通滤波器。 3、详细设计 根据上述设计方案,确定了心电放大电路的原理图,如图5-1所示。A1、A2、A3及相应的电阻构成前置放大器,其差模增益被分配 为40,其中A1、A2构成的差放被分配为16,其计算公式为: Avd1=(Vo1-Vo2)/Vi=(R1+R2+R3)/R1,Avd2=Vo3/(Vo1-Vo2)=- R6/R4=1.6。 为了避免输入端开路时放大器出现饱和状态,在两个输入端到地 之间分别串接两个电阻R11、R22,其取值很大,以满足差模输入阻 抗的要求。第二级由 A4及相应的电阻、电容构成。在通带内,其 被分配的差模增益应为(1000/40=25),即 Avd3=vo/vo3=1+R10/R9=25 取R9=1KΩ,R10=24KΩ。C1、R8 构成高通滤波器,要求 f =0.05Hz。取R8=1MΩ,则可算出C1=4.58μF,取标称值电容 C1=4.7μF,算得fL=1/(2л C1 R8)=0.034Hz。C2,R10构成低通滤 波器,要求f =200Hz。取R10=24KΩ,可算出C2=0.03316μF,取标称 值电容C2=0.033μF,最后算出f =1/(2л C2 R10)=251.95Hz。可 见满足带宽要求。

加法器及差分放大器项目实验报告

加法器及差分放大器项目实验报告 一、项目内容和要求 (一)、加法器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容: 2.1 设计一个反相加法器电路,技术指标如下: (1)电路指标 运算关系:)25(21i i O U U U +-=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电 压波形。 C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。 D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为 2kHz ,测量该加法器的幅频特性。 2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标 运算关系:21i i O U U U +=。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压 波形。 (二)、差分放大器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容 2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标 运算关系:)(521i i O U U U --=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件

心电信号放大电路

浅谈滤波器在心电信号放大电路中的应用 1 实验目的与意义 心电信号十分微弱,一般在0.05-100Hz之间,幅度小于5mv。在检测心电信号的同时存在着极大的干扰。心电波仪器通过传感系统把心脏跳动信号转化为电压信号波形,一般为微伏到毫伏数量级。这是需经过信号放大才能驱动测量仪表把波形绘制出来。本实验通过应用运算放大器设计心电放大电路,目的是可以实现有效滤除与心电信号无关的高频信号,通过系统,可以得到放大,无干扰的心电信号。 本实验将就心电放大电路中的滤波器部分进行重点研究,采用multisim10.1进行仿真,分析其实现的功能以及所起的作用。心电信号放大电路的其余部分将做简要介绍。

2 心电放大电路工作原理 心电信号放大电路原理流程图 2.1前置放大电路 放大微弱的心电信号。具有高输入阻抗、高共模抑制比、低噪声、低漂移、具有一定的电压放大能力的特点。 2.2高通滤波电路 通过频率大于 0.05Hz 的信号,排除低频信号干扰。 2.3低通滤波电路 通过频率低于100Hz 的信号,排除高频信号干扰。 2.4带阻滤波电路 有效阻断工频为50Hz 的信号干扰。 2.5电压放大电路 对处理过的心电信号进行放大,以便能够观察出微弱的心电信号。 3 技术指标 信号放大倍数:1000倍 输入阻抗:≥10M Ω 共模抑制比:K cmr ≥60dB 频率响应:0.05-100Hz 信噪比:≥40dB 4心电放大电路介绍与分析 4.1前置放大电路 可应用AD620来设计放大电路,设计图如下 输入心电信号 前置放大 高通滤波 电压放大 带阻滤波 低通滤波

根据心电信号特点,前置放大电路具有以下特点: 1)高输入阻抗:被提取的心电信号是不稳定的高内阻源的微弱信号,为了减少信号源内阻的影响,应提高放大电路的输入阻抗。 2)高共模抑制比:人体所携带的工频干扰以及所测量的参数以外的生理作用的干扰,一般为共模干扰,前置级须采用共模抑制比高的差动放大电路,以减少共模干扰。 3)低噪声,低漂移:使其对信号源影响小,输出稳定。 此放大电路可实现增益1-1000倍的调节。 4.2滤波电路 正常心电信号的频率范围为0.05-100Hz。噪声信号来源主要有工频干扰、电极接触噪声、人为运动肌电干扰、基线漂移等,其中50Hz的工频干扰最为严重。为了消除这些干扰信号,在心电信号放大器电路中,应加入高通滤波器、低通滤波器和50Hz工频信号陷波器。 4.2.1 高通滤波电路 本实验采用二阶有源滤波器,参数设置以及电路图如下。 f min=错误!未找到引用源。=0.05Hz 令C1=C2=100μF R1=R2≈32kΩ 输入1Vpk,0.05Hz的正弦交流信号

武汉大学差动放大电路实验报告

武汉大学计算机学院教学实验报告 课题名称:电工实验专业:计算机科学与技术2013 年12 月14 日实验名称差动放大电路实验台号实验时数3小时姓名学号年级2013班3班 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识点;实验内容;必要的原理分析) 一、实验目的 1 、熟悉差动放大器工作原理 2、掌握差动放大器的基本测试方法 实验内容 1.计算下列差动放大器的静态工作点和电压放大 倍数电路图见5.1 信号源已替代 5.1 在图5.1的基础上画出单端输入时和共模输入时的电路图 二、实验环境及实验步骤 (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用表 4.TPE-A3模拟电路实验箱 3、实验步骤: 1、将电路图5.1接线 2、测量静态工作点 3、测量差模电压放大倍数 4、测量共模电压放大倍数 5、在实验台上组成单端输入的差动电路进行下列实验

三、实验过程与分析 (详细记录实验过程中发生的故障和问题,进行故障分析,说明故障排除的过程和方法。根据具体实验,记录、整理相应的数据表格、绘制曲线、波形图等) 实验内容及数据记录 1、将电路图5.1接线 2、测量静态工作点 ①调零 将放大器输入端V11、V12接地,接通直流电源,调节调零电位器R P,使V O=0。 ②测量静态工作点:测量V1,V2,V3各极各地电压, 并填入表5.1中。 5.1 对地 电压 Vc1 Vc2 Vc3 Vb1 Vb2 Vb3 Ve1 Ve2 Ve3 测量值 6.29 6.31 -0.74 0 0 - 7.77 -0.61 -0.61 - 8.39 3)测量差模电压放大倍数 在两个输入端各自加入直流电压信号,按有5.2要求测量并记录,由测量得到的数据计算出单端和输出的电压放大倍数。接入到V11t和V12,调节Dc信号源,使其输出为0.1和-0.1. (须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 4) 测量共模电压放大倍数 将输入端b1和b2 短接,接到信号源的输入端,信号源另一端接地。DC信号先后接OUT1和OUT2 测量有关数据后填入表5.32.,由测量得到的数据计算出单端和双端输出的电压放大倍数,并进一步计算出共模抑制比。 5.2 差模输入共模输入抑制 比测量值计算值测量值计算值计算 值Uc1 Uc2 Uo双Ad1 Ad2 Ad双Uc1 Uc2 Uco双Ac1 Ac2 Ac双CMRR +0.1V 10.08 2.55 7.46 -16. 8616.8 6-33. 71 6.29 6.31 -0.02 0.00 5 0.00 5 0 186.5 -0.1V 6.29 6.31 -0.02 0.00 50.00 5 0 186.5

心电放大电路

交流心电放大器设计报告 天津大学生物医学工程王博 一概述 心脏是循环系统中重要的器官。由于心脏不断地进行有节奏的收缩和舒张活动,血液才能在闭锁的循环系统中不停地流动。心脏在机械性收缩之前,首先产生电激动。心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。 基本心电图如上所示,包含如下几个波段: P波――两心房除极时间 P-R间期――心房开始除极至心室开始除极时间 QRS波群――全心室除极的电位变化 ST段――心室除极刚结束尚处以缓慢复极时间 T波――快速心室复极时间 普通心电图有一下几点用途 1、对心律失常和传导障碍具有重要的诊断价值。 2、对心肌梗塞的诊断有很高的准确性,它不仅能确定有无心肌梗塞,而且还可确 定梗塞的病变期部位范围以及演变过程。 3、对房室肌大、心肌炎、心肌病、冠状动脉供血不足和心包炎的诊断有较大的帮 助。 4、能够帮助了解某些药物(如洋地黄、奎尼丁)和电解质紊乱对心肌的作用。 5、心电图作为一种电信息的时间标志,常为心音图、超声心动图、阻抗血流图等 心功能测定以及其他心脏电生理研究同步描纪,以利于确定时间。 6、心电监护已广泛应用于手术、麻醉、用药观察、航天、体育等的心电监测以及 危重病人的抢救。 本设计由于采用交流供电,其实际意义在于用在,心电监护以及心电的静态检测方面,因此在设计上就力求全面反应各个波段上的电位情况,并尽量减少噪声,以达到国家基本心电图机要求 二系统设计

心电监护仪设计实验报告

心电监护仪的设计实验报告 一、设计任务与要求 1、设计一个标准导联的心电信号采集、处理和显示系统。 2、能记忆当前时刻前若干秒的数据,由设计者确定参数。 3、数据回放功能。 4、软件数字滤波,计算瞬时心率,并在LED 数码管上显示出来。 5、报警参数设计,通过软件实现当心率输入大于某个固定值时,报警装 置工作。 二、总体方案论证 采集到的心电信号有如下特点:信号弱、信噪比低、信号源阻抗大、电磁 干扰大、信号频率低等特点,然后经过放大滤波电路,放大滤波电路由前 置放大电路、后级放大电路、滤波及功率放大电路组成,此时得到的是放 大的模拟信号,需要转换成数字信号,因此要再经过A/D 转换,得到数字 信号,再经单片机系统处理,最终在LED 液晶屏上显示。总体方案设计流 程如图所示

三、硬件电路设计 (1)前置放大电路 前置放大电路是心电信号采集的关键环节,由于人体心电信号十分微弱,噪声强且信号源阻抗较大,加之电极引入的极化电压差值较大,因此,通常要求前置放大器具有高输入阻抗、高共模抑制比、低噪声、低漂移、非线性度小、合适的频带和动态范围等性能。为达到心电放大器的上述技术要求,本设计选用了AD公司的仪表放大器AD620作为前置放大器的核心器件,并且采用了差动输入的方式。同时考虑到心电信号中混杂着比其幅度大得多的直流信号,太大的前置放大器增益会影响电路的直流稳定性,为了保证前置放大器不工作在截 止区或饱和区,因此设计的第一级放大倍数为10倍,如下图所示 (2))右腿驱动电路抗干扰 电路的共模抑制比主要由心电前置放大器决定,而AD620的140dB(G=10)的共模抑制比符合我们的设计要求。为了进一步提高前置放大器的共模抑制比同时抑制50HZ工频干扰,设计了由TL084以及R2、R3、R4、R5和C1构成激励系统电路。人体的共模电压被两个阻值相等的电阻R2、R3检测出,经过TL084将其倒相、放大并反馈到人体上。这是个负反馈,其使共模电压降低。人体的位移电流不流到地,而是流到运放输出电路。就心电放大器来说,这样就减小了共模电压的拾取,并且有效地使病人接地。 (3) 高通滤波电路 由于电极极化电压的不平衡、前置放大器的失调漂移以及人体动作等因素,前置放大器输出的心电信号中除了夹杂不少工频干扰外,还有很大的直流或低频分

实验六 差动放大器

实验六差动放大器 学院:信息科学与技术学院专业:电子信息工程 姓名:刘晓旭 学号:2011117147

一.实验目的 1.熟悉差动放大器的工作原理。 2.掌握差动放大器的静态测试方法。 3.掌握差动放大电路的动态参数测量方法。 二.实验仪器 1.双踪示波器2.数字万用表3.直流稳压电源4.交流信号源 三.预习要求 1.分析实验电路图5-6-1 的结构特点及工作原理。 2.计算实验电路的静态工作点(设r be=300Ω,β=100)及差模电压放大倍数。3.拟制差放电路静态值及动态值的测试方案及数据记录表格。 四.实验原理及测试原理 差动放大器是由参数完全对称的两个单级放大器组成。有两个输入端和两个输 出端,所以在使用时,有四种组态可供选择,分别为,双端输入双端输出、双入 单出、单入单出、单入双出。差动放大器在电路对称程度比较高的情况下能够 很好地抑制零点漂移。图 5-6-1 所示电路为实验测试电路,电位器 R P 用来 调整电路的对称程度,但会影响电路对有用信号的放大能力。 1.差模电压放大倍数A ud

差模信号指大小相等,相位相反的两个信号。在本实验图中,u id 加在输入端 1,2 之间, 由于电路的对称性,左部分电路和右部分电路接受的输入信号分别为 u i1d 和 u i2d ,应为 u id /2, 且相位相反。双端空载输出时,对应的差模电压放大倍数为: ud A 其中: r 单端空载输出时,差模电压放大倍数为双端输出放大倍数的 1/2。 2.共模电压放大倍数 A uc 共模信号指大小相等,相位相同的两信号。将共模输入信号 u ic 同时加至差动放大器 的两个输入端 1、2,在双端输出时,对应的共模电压放大倍数 Auc=Uoc/Uic 理想对称情况下,A uc (双出)=0;单端输出时,对应的共模电压放大倍数由于两管射极等效 动态电阻非常大,形成很强的负反馈,所以也近似为零。 差动放大器工作时,不可能理想对称,所以在输入共模信号时,总有很小的共模输出信 号存在,此信号可以通过测量得到,通过计算得到电路的共模电压放大倍数 A uc 。 3.共模抑制比 K CMRR 共模抑制比定义为电路的差模放大倍 数与共模放大倍数的比值, 即 K CMRR =A ud / A uc K CMRR 综合表征了电路对有用信号的放大能力和对零点漂移的抑制能力,值越大表明差放 电路的性能越好。实际使用时,也用分贝值来表示。 五.实验内容及步骤 1.按图 5-6-1 电路接线。 2.测量静态工作点 将输入端 1,2 短路并接地,接通直流电源+12V ,调节调零电位器 R P ,测量 U C1、U C2 之间 的电压 U O ,尽量使双端输出电压 U O =0 或接近 0,表明电路基 对称。然后测量差放电路中 T 1、T 2 和 T 3 的静态值,主要有基极电位和集电极电位值,并和理论计算值进行比较。 3.测量差模电压放大倍数

心电放大器的设计与仿真

电子线路CAD短学期 设计报告 学院:电子信息学院 学号: 15041523 班级: 15040211 姓名:卢虎林 日期: 2017年3月11日

一、实验目的 通过一个实例来说明Pspice对设计方案和具体电路进行分析的过程,理解电路的自上而下的设计方法。 二、实验原理 设计一个心电图信号放大器。已知: (1)心电信号幅度在50μV~5mV之间,频率范围为0.032Hz~250Hz。 (2)人体内阻、检测电极板与皮肤的接触电阻(即信号源内阻)为几十千欧。 (3)放大器的输出电压最大值为-5V~+5V。 1、确定总体设计目标 由已知条件(1)可知该放大器的输入信号属于微弱信号,所要求的放大器应具有较高的电压增益和低噪声、低漂移特性。由已知条件(2)可知,为了减轻微弱心电信号源的负载,放大器必须有很高的输入阻抗。另外,为了减小人体接收的空间电磁场的各种信号(即共模信号),要求放大器应具有较高的共模抑制比。因此,最后决定的心电放大器的性能指标如下: 差模电压增益:1000(5V/5mV); 差模输入阻抗: >10MΩ; 共模抑制比:80dB; 通频带:0.05Hz~250Hz。 2、方案设计 根据性能指标要求,要采用多级放大电路,其中前置放大器的设计决定了输入阻抗,共模抑制比和噪声,可选用BiFET型运放,本设计采用了LF4111型运放(其中Avo=4 10 ,Rid≈4 10 Ω,Avc=2),由

于单极同相放大器的共模抑制比无法达到设计要求(可通过Pspice 仿真波形看出),本设计采用了由三个LF411型运放构成的仪用放大器。 第二级放大器的任务是进一步提高放大电路的电压增益,使总增益达到1000。其次为了消除高、低噪声,需要设计一个带通滤波器。因为滤波器没有特殊要求,本设计可采用较简单的一阶高通滤波器和一阶低通滤波器构成的带通滤波器。 3、详细设计 根据上述设计方案,确定了心电放大电路的原理图,如图5-1所示。A1、A2、A3及相应的电阻构成前置放大器,其差模增益被分配为40,其中A1、A2构成的差放被分配为16,其计算公式为:Avd1=(Vo1-Vo2)/Vi=(R1+R2+R3)/R1,Avd2=Vo3/(Vo1-Vo2)=- R6/R4=1.6。 为了避免输入端开路时放大器出现饱和状态,在两个输入端到地之间分别串接两个电阻R11、R22,其取值很大,以满足差模输入阻抗的要求。第二级由 A4及相应的电阻、电容构成。在通带内,其被分配的差模增益应为(1000/40=25),即 Avd3=vo/vo3=1+R10/R9=25 取R9=1KΩ,R10=24KΩ。C1、R8 构成高通滤波器,要求 f =0.05Hz。取R8=1MΩ,则可算出C1=4.58μF,取标称值电容 C1=4.7μF,算得fL=1/(2л C1 R8)=0.034Hz。C2,R10构成低通滤波器,要求f =200Hz。取R10=24KΩ,可算出C2=0.03316μF,取标称值电容C2=0.033μF,最后算出f =1/(2л C2 R10)=251.95Hz。可见满足带宽要求。

相关文档
相关文档 最新文档