文档库 最新最全的文档下载
当前位置:文档库 › 氨基酸和蛋白质

氨基酸和蛋白质

氨基酸和蛋白质
氨基酸和蛋白质

第3章氨基酸和蛋白质单元自测题

一.名词解释或概念比较

1.氨基酸 2.肽键与肽 3.结构域 4.单体蛋白和寡聚蛋白 5.蛋白质的构象与构型 6.肽键 7.蛋白质的化学修饰 8.疏水效应 9.分子伴侣10.Western印迹 11.同促效应与异促效应 12.Bohr效应 13.抗原决定簇 14.半抗原 15.亲和层析 16.必须氨基酸与非必须氨基酸 7.透析 18.双向电泳19.Edman降解法 20.等电点 21.多克隆抗体与单克隆抗体 22.单纯蛋白质与綴合蛋白质 23.同寡聚蛋白与杂寡聚蛋白 24.等电聚焦

二.填空题

1.氨基酸在晶体状态或在水溶液中主要以形式存在。

2.天冬氨酸的pK1(α-COOH)值是2.09,pK2(β-COOH)值是3.86,pK3(α-NH3+)值是9.82,它的等电点是。组氨酸的pK1(α-COOH)值是1.82,pK2(咪唑基)值是6.00,pK3(α-NH3+)值是

9.17,它的等电点是。

3.在近紫外区能吸收紫外光的氨基酸有,和。其中的摩尔吸光系数最大。

4.在氨基酸的含量分析中,可以先用法分离氨基酸,再用显色法进行定量分析。5.在进行蛋白质的N末端氨基酸序列分析中,主要利用反应。

6.根据蛋白质的形状和溶解度的差异,可以将它们分为,和。

7.球状蛋白质中,大部分的氨基酸残基在分子的表面,而大部分的氨基酸残基在分子的内核。

8.生物体内的蛋白质在折叠过程中通常有和参与。

9.目前研究蛋白质晶体结构的方法主要是。

10.血红蛋白(Hb)与氧结合时呈现效应,是通过血红蛋白的现象实现的。肌肉组织中CO2和H+促进O2的释放,这种现象称为效应。

11.用溴化氰水解蛋白质时,肽键在残基的右端裂解。

12.用胰凝乳蛋白酶水解蛋白质时,肽键在和残基的右端裂解。

13.蛋白质分子上的磷酸化修饰位点主要在,和三种氨基酸上。14.在膜蛋白的跨膜区上,氨基酸朝向分子外侧,氨基酸朝向分子内侧。

15.镰刀型红细胞贫血是由于正常血红蛋白分子中的一个被置换引起的。

16.胰岛素是分泌的多肽激素。前胰岛素原被蛋白酶水解,失去N端的,生成。再经过肽酶激活,失去,生成具有生物活性的胰岛素。

17.在不同生物体内行使相同或相似功能的蛋白质称为,其氨基酸序列中有许多位置的氨基酸

残基对大多数物种来说都是相同的,称为;而其它位置的氨基酸残基对大多数物种来说都是不同的,称为。

18.常见的丝氨酸蛋白酶有,和。

19.影响α螺旋形成的主要因素有R基的和。

20.蛋白质变性以后,结构遭到破坏,而结构仍然保持完整。

21.免疫球蛋白是由条肽链组成的血液蛋白,每条肽链的N末端为区,是识别抗原的活性区域,C末端部分是区。

22.蛋白质分子中的α螺旋结构靠链内氢键维持,每转一圈上升个氨基酸残基。

23.细胞色素C中的的脱辅基蛋白与血红素辅基以键结合。

24.在糖蛋白中,糖链通常与蛋白质的,和残基共价结合。

25.现要在葡聚糖凝胶G-75柱上分离下列4种蛋白质,它们的分子量分别是A.12000, B.62000, C.28000,

D.9000。他们从柱中流出的先后次序是,,,和。

26.蛋白质水溶液在pH6具有缓冲作用,这主要是由于蛋白质分子中的基团的解离作用。27.中性盐对球状蛋白质的溶解度有显著的影响。在低浓度时,中性盐可以增加蛋白质的溶解度,这种现象称为。当盐的浓度增加到一定数值时,蛋白质的溶解度开始下降,并有蛋白质沉淀出现,这种现象称为。

28.鉴定蛋白质纯度的电泳方法主要有,和。

29.测定蛋白质相对分子量的主要方法有,和。

30.利用蛋白质分子对其配体分子特有的识别能力建立起来的分离纯化蛋白质的方法是

31.要保持蛋白质胶体溶液稳定,蛋白质分子应该具备下列三个条件:分子大小在范围内,和等。

32.抗原-抗体识别、结合必要条件是和。

33.蛋白质中杂环族氨基酸包括,和。

34.蛋白质的糖基化过程发生在细胞的和部位。

35.蛋白质分子周围的和是稳定蛋白质胶体的主要因素。

36.肌红蛋白和血红蛋白在进化中形成多肽微环境,其作用是,,和。

37.沉淀蛋白质的方法主要有,,,和。

38.研究溶液中蛋白质构象的光谱学方法主要有,,和。三.选择题

1.蛋白质水解过程中,下列哪一种方法对色氨酸的破坏最大()

A. 酸水解法

B. 碱水解法

C. 酶水解法

D. 高温水解法

2.在蛋白质一级结构测定时要确定二硫键的位置,可以用下列哪一种方法测定出含二硫键的肽段()

A. 巯基化合物还原

B. 过甲酸氧化

C. 对角线电泳

D. 双向电泳

3.研究蛋白质的空间结构时,用下列哪一种方法最有效()

A. 荧光光谱

B. 紫外光谱

C. X光衍射

D. 圆二色性

4.蛋白质亚基间的空间排布、相互作用及接触部位的空间结构称为()

A. 二级结构

B. 三级结构

C. 四级结构

D. 结构域

5.遍在蛋白(ubiquitin)具有()的功能

A. 促进蛋白质的降解

B. 协助蛋白质折叠

C. 促进蛋白质合成

6.在蛋白质分子中,下列哪一种氨基酸残基的侧链可以作为糖基化位点()

A. 脯氨酸

B. 赖氨酸

C. 丙氨酸

D. 丝氨酸

7.在SDS聚丙烯酰氨凝胶电泳时,用()还原二硫键。

A. 尿素

B. 巯基乙醇

C. 过甲酸

D. SDS

8.免疫球蛋白是一种()蛋白。

A. 核蛋白

B. 蛋白铁

C. 铜蛋白

D. 糖蛋白

9.胰岛素的活化时,胰岛素原转变成胰岛素的过程是在()中进行的。

A. 线粒体

B. 内质网

C. 溶酶体

D. 高尔基体

10.180个氨基酸残基形成完整的α-螺旋(3.613)时,其螺旋长度是()

A. 27nm

B. 25nm

C. 26nm

D.12nm

11.下列关于D-氨基酸的叙述中,哪一项是不正确的()

A. D-氨基酸多数由L-氨基酸经消旋作用而形成

B. 消旋酶的辅因子是磷酸吡哆醛

C. D-氨基酸往往存在于肽类抗生素中

D. 肽链中的D-氨基酸来源于游离的合成前体D-氨基酸

12.在人工合成多肽时,常用的氨基保护剂是()

A. 叔丁氧甲酰基

B.苄酯

C.叔丁酯

D.苄基

13.下列哪种氨基酸是成人的必需氨基酸()

A. Ala

B. Tyr

C. Leu

D. Ser

14.下面关于锁链素的叙述哪项是正确的()

A.它是非蛋白质氨基酸

B.它是蛋白质的基本氨基酸

C.它存在于某些蛋白质中

D.它只存在于弹性蛋白中

15.胶原蛋白中,含量最多的氨基酸残基是()

A. 组氨酸

B. 丙氨酸

C. 甘氨酸

D. 缬氨酸

16.下列哪一种试剂可以用来测定多肽链的N末端()

A. 溴化氰

B. 胰蛋白酶

C. 盐酸胍

D. 丹磺酰氯

17.一个蛋白质的pI值是5.0,如果把它放在pH6.0缓冲溶液中电泳,其泳动方向是()

A. 向正极移动

B. 向负极移动

C. 在原位不动

18.蛋白质的等离子点是什么情况下净电荷为零的pH值()

A. 无盐情况下

B. 高盐浓度下

C. 低盐浓度下

19.下列关于β-折叠的叙述哪一点是不正确的()

A. β-折叠的肽链处于伸展状态

B. 它是借助疏水作用而稳定的

C. 它的氢键是肽链骨架的C=O与N H间形成的

D. α-角蛋白通过湿热处理可转变成β-折叠结构

20.血红蛋白的氧合曲线向右移动是由于()

A. O2分压降低

B. CO2分压降低

C. CO2分压升高

D. pH增加

21.Edman试剂与多肽链游离N末端氨基酸偶联的反应介质应该是()

A. 弱酸性的

B. 弱碱性的

C. 强酸性的

D. 中性的

22.每分子血红蛋白含铁原子数为()

A. 1个

B. 2个

C. 3个

D. 4个

23.双缩脲反应通常用来用来测定()的含量。

A. DNA

B. RNA

C. 胍基

D. 蛋白质

24.在酶促合成多肽的过程中,可以用下列哪一种酶作为催化剂()

A. 蛋白激酶

B. 氨酰tRNA连接酶

C. 氨基转移酶

D. 蛋白水解酶

25.某一种蛋白质在pH5.0时向阴极移动,其等电点应该是()

A. >5.0

B. =5.0

C. <5.0

26.在pH7的水溶液中,典型的球状蛋白质分子中,处在分子内部的氨基酸残基是()

A. Asp

B. Lys

C. Phe

D. Thr

27.下列关于HbA的叙述哪一项是正确的()

A. 由两个α-亚基和两个β-亚基组成(α2β2)

B. 由两个α-亚基和两个γ-亚基组成(α2β2)

C. 由两个β-亚基和两个γ-亚基组成(β2γ2)

D. 由两个β-亚基和两个δ-亚基组成(β2δ2)

28.在丁醇-乙酸-水溶剂系统中进行纸层析时,发现氨基酸的Rf值太小,为了使R f值增大,应在()

A. 层析缸中多加一些展层溶剂

B. 溶剂系统中加大丁醇的比例

C. 溶剂系统中加大乙酸的比例

D. 溶剂系统中加大水的比例

29.GSH的全称是()

A. 谷氨酰-半胱氨酰-甘氨酸

B. γ-谷氨酰-半胱氨酰-甘氨酸

C. γ-谷氨酰-胱氨酰-甘氨酸

D. 谷氨酰-胱氨酰-甘氨酸

30.蛋白质分子中的天冬酰胺和谷氨酰胺是()

A. 蛋白质合成好以后经过转酰胺作用生产的

B. 蛋白质合成好以后经过转氨基作用生产的

C. 生物合成时从mRNA模板上译读出来的

D. 生物合成时从rRNA模板上译读出来的

31.下列关于纤维状蛋白质的叙述哪一项是正确的()

A. 纤维状蛋白质包括α-角蛋白、β-角蛋白、胶原蛋白、弹性蛋白和肌球蛋白等

B. β-角蛋白主要存在于皮肤中

C. 胶原蛋白主要在肌肉组织中存在

D. 丝心蛋白是α-角蛋白

32.世界上第一个人工合成的酶是()

A. 牛胰核糖核酸酶

B. 胰蛋白酶

C. 溶菌酶

D. 羧肽酶A

33.下列哪种蛋白质分子中含有γ-羧基谷氨酸()

A. 胰蛋白酶

B. 凝血酶原

C. 胶原蛋白

D. 胰岛素

34.下列关于IgG的叙述中哪一项是不正确的()

A. 每个抗体有两个抗原结合部位

B. 在多发性骨髓细胞癌患者的尿中有不完整的免疫球蛋白

C. 轻链和重链都有恒定的C-末端氨基酸序列和可变为N-末端氨基酸序列

D. 保持免疫球蛋白链间连结的唯一作用力是非共价键

35.下列的四种氨基酸中,没有旋光性的氨基酸是()

A. Gly

B. Arg

C. Phe

D. His

36.对丙酮酸激酶缺乏症患者来说,测定其生理生化指标之前,你能预示会发生下述哪种现象()

A. 血红蛋白对氧亲和力升高

B. 血红蛋白对氧亲和力降低

C. 2,3-二磷酸甘油酸水平下降

D. 2,3-二磷酸甘油酸水平不变

四.是非题

1.蛋白质在结构和功能上的多样性,是由20种基本氨基酸R侧链的物理和化学性质的差异造成的。2.用碱水解蛋白质,得到的游离氨基酸都是L-氨基酸。

3.在蛋白质分子中,每一种氨基酸至少都有一个对应的遗传密码。

4.蛋白质在生物体内合成之后的共价修饰都属于不可逆化学修饰。

5.在用凯氏定氮法测定粗蛋白质的含量时,不同种类蛋白质的含氮量都是16%。

6.多肽链中游离α-氨基与游离α-羧基的距离比氨基酸中的大,因此多肽中的末端α-羧基的pKa值比游离氨基酸中的大一些。

7.生物体内蛋白质的合成方向是从N端到C端,在体外用化学合成法合成蛋白质时,通常是从C端到N 端。

8.在各种α-螺旋结构中,每圈螺旋占3.6个氨基酸残基。

9.蛋白质的α-螺旋结构中,左手螺旋比右手螺旋更稳定。

10.糖蛋白中,糖与蛋白质以共价键连接。

11.蛋白质变性时,蛋白质分子的天然构象解体,共价键被破坏。

12.β桶型膜蛋白分子中,跨膜肽段的二级结构是α-螺旋。

13.蛋白质折叠过程中,折叠结构在生理条件下是自由能最低的构象,因此多肽链的折叠是自发过程。14.在蛋白质分子中,肽键是唯一的一种连接氨基酸残基的共价键。

15.甘氨酸和脯氨酸在α-螺旋中出现的频率很高。

16.hsp70蛋白是一类热休克蛋白质,它们通过抑制新生肽链的不恰当聚集,协助多肽链的正确折叠。17.在免疫分析中,单克隆抗体比多克隆抗体具有对抗原更强的专一性。

18.具有单个跨膜肽段的膜蛋白分子中,跨膜肽段的二级结构通常是β折叠。

19.在生物膜上,膜蛋白可以多次穿过脂双层。

20.蛋白质分子中任何一个氨基酸改变,一定会引起该蛋白质功能的改变。

21.20种基本氨基酸中都有不对称碳原子,因此它们都具有旋光性。

22.具有天然构象的蛋白质,主链上的单键可以自由旋转。

23.不同种类的蛋白质,对280nm紫外光的摩尔吸光系数是相同的。

24.蛋白质变性以后,摩尔吸光系数会增大。

25.蛋白质在小于等电点的pH溶液中,向阳极移动;在大于等电点的pH溶液中,向阴极移动。

26.从DNA的序列可以准确推断出蛋白质中氨基酸的序列,反之从氨基酸的序列也可以准确推断出DNA序列。

27.溶液中的球状蛋白质分子,在等电点时溶解度最大。

28.凝胶过滤法可以用来测定蛋白质的相对分子量,分子量小的蛋白质先流出层析柱,分子量大的后流出层析柱。

29.蛋白质的SDS聚丙烯酰氨凝胶电泳中,分子量大的蛋白质在凝胶中的迁移速度较快。

30.质膜上的糖蛋白的糖基都位于膜的外侧。

31.血红蛋白与肌红蛋白的结构相似,都具有结合氧的能力。在生理条件下氧与血红蛋白的亲和力比与肌红蛋白的亲和力强。

32.多聚谷氨酸在pH7时,由于γ-羧基解离,不易形成α螺旋结构。

33.核糖核酸酶分子的变性-复性实验可以证明,蛋白质的一级结构决定高级结构。

34.茚三酮在弱酸中与 -氨基酸共热,引起氨基酸的氧化脱氨、脱羧反应,茚三酮与氨和还原茚三酮反应,生成紫色化合物。

35.肽链中的肽键一般是反式构型,而脯氨酸的肽键可能出现顺、反两种构型。

36.双缩脲反应是肽和蛋白质特有的反应,游离氨基酸没有此反应。

37.蛋白质分子中,一个氨基酸的α-氨基与另一个氨基酸的α-羧基缩合,只有末端基团及侧链基团具有化学活性。

38.从能量学上看,反平的β-折叠比平行的更稳定。

39.多肽链的二级结构主要由R基的长程顺序决定,多肽链的三级结构主要由氨基酸的短程顺序决定。40.二磷酸甘油酸(BPG)能降低氧与血红蛋白的亲和力。

五.简答与计算

1.根据下列实验结果,推断多肽的序列。

A.氨基酸的组成是Gly,Leu,Phe和Tyr,它们的摩尔比是2:1:1:1

B.用2,4-二硝基氟苯处理该多肽,然后完全水解。水解产物中有Tyr的2,4-二硝基氟苯衍生物,但

是没有游离的Tyr。

C.用胃蛋白酶完全水解该多肽,产物中含有Leu和Phe的二肽,及含有Gly和Tyr(比例为2:1)的三

肽。(胃蛋白酶的特异降解位点是Phe和Tyr的N端肽键。)

2.α螺旋的稳定性不仅取决于肽链内部的氢键,而且还与氨基酸侧链的性质有关。室温下,在溶液中下列多聚氨基酸哪些能形成α螺旋?哪些能形成其他有规则的结构?哪些能形成无规则的结构?并说明其理由。

(1)多聚亮氨酸pH=7,(2)多聚异亮氨酸pH=7.0 (3)多聚精氨酸pH=7.0 (4)多聚精氨酸

pH=13.0 (5)多聚谷氨酸pH=1.5 (6)多聚苏氨酸pH=7.0

(7)多聚羟脯氨酸pH=7.0

3.谷氨酸解离基团的pK值分别是pK1(α-COOH)=2.19,pK2(α-NH3+)=9.67,pKR(γ-COOH)=4.25,谷氨酸的等电点应是多少?为什么?

4.某一蛋白质分子含有100个氨基酸残基,它是一条充分伸展的多肽链,试计算该蛋白质肽链的长度和分子量。

5.举例说明蛋白质的一级结构决定蛋白质的高级结构。

6.在真核细胞的染色体DNA上有大量的组蛋白(pI约10.8),这些组蛋白能与DNA分子上的磷酸基团紧密结合。试问组蛋白的等电点为什么会很高,组蛋白依靠什么力与磷酸基团结合?

7.血库中长时间储存的血液,如果不采取措施,2,3-BPG的浓度会下降。如果这样的血用于输血,可能会产生什么后果?

8.在有蛋白质抗体存在或不存在情况下,请各写出一种方法证明某一种较低分子量的蛋白质是否为此蛋

白质的降解产物?

9.某种溶液中含有下列三种三肽:Tyr-Arg-Ser,Glu-Met-Phe和Asp-Pro-Lys。并且,α-COOH 基团的pK=3.8,α-NH3+pK8.5。问在哪种pH(2.0,6.0,13.0)条件下,用电泳分离这三种三肽效果最好?

10.血红蛋白含铁量为0.34%,血红蛋白的最小相对分子质量是多少?实验数据表明血红蛋白的相对分子质量是64500,计算血红蛋白含有几个铁原子?

11.向1.0L浓度为1.0mol/L的处于等电点的甘氨酸溶液中加入0.3mol的HCL,问所得溶液的pH值是多少?如果加入1.0L浓度为0.3mol的NaOH以替代HCL时,溶液的pH值是多少?

12.试以IgG为例,简述免疫球蛋白分子的结构特点。

13.氨基酸混合物的分离可用哪些方法?

14.从某种植物中分离得到一种脯氨酸羟化酶的抑制剂,将它喂食大鼠,会导致其血管变脆,牙龈出血,为什么?人类患维生素C缺乏症时也会出现上述症状,为什么?

15.分别计算谷氨酸的γ-COOH四分之三被解离时溶液的pH;赖氨酸的ε-NH3+五分之一被解离时溶液的pH。

(γ-COOH pKa=4.25,ε-NH3+ pKa=10.53)

16.将含有天冬氨酸(pI=2.98)、甘氨酸(pI=5.97)、苏氨酸(pI=6.53)、亮氨酸(pI=5.98)、赖氨酸(pI=9.84)的pH3.0柠檬酸缓冲液,加到预先用同样缓冲液平衡过的Dowex-50的将阳离子交换树

脂中,用缓冲液洗脱,这5种氨基酸将按什么顺序洗脱下来?

17.有一个A肽,经过酸水解后分析氨基酸组成,得知由Lys、His、Asp、Ala、Val、Tyr和两Glu及两个NH3分子组成。

(1)FDNB与A肽反应后,水解得到DNP-Asp。

(2)用羧肽酶水解A肽,得到游离Val。

(3)用胰蛋白酶水解A肽,得到两种肽段。一个肽段(Lys、Asp、Glu、Ala、Tyr)在pH6.4时净电荷为零;另一个肽段(His、Glu、Val)与FDNB反应后,水解得到DNP-His,且此肽段在pH6.4时带正电荷。(4)用糜蛋白酶水解A肽,得到两种肽段。一个肽段(Asp、Ala、Tyr)在pH6.4时净电荷为零;另一个肽段(Lys、His、2Glu、Val)在pH6.4时带正电荷,求A肽的氨基酸序列。

18.简述制备单克隆抗体的基本步骤。

19.蛋白质A和B各有一个配体X的结合部位,蛋白质A的解离常数Kd为1.0×10-6mol/L,蛋白质B的解离常数Kd为1.0×10-9mol/L。问(1)哪一个蛋白质对配体的亲和力高?(2)将这两个蛋白质的解离常数Kd转换为结合常数Ka。

20.谷氨酸各个基团的解离常数及等电点分别是pK1α-COOH为2.19,pK2α-N+H3为9.67,pKRR-COOH 为4.25,pI为3.22。

(1)Glu-和Glu=各一半时的pH值

(2)Glu总是带正电荷的pH范围

(3)Glu±和Glu-能作为缓冲液使用的pH范围

21.人工合成的多聚L脯氨酸,能够形成胶原三螺旋结构中的一个单股螺旋的构象,试问:

(1)多聚L脯氨酸能否形成三螺旋?为什么?

(2)你认为多聚(甘—脯—甘—脯)能否组成类似胶原的三螺旋结构?为什么?

参考答案

(一)名词解释或概念比较

1.氨基酸是含有至少一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连接在α-碳原子上。氨基酸是肽和蛋白质的构件分子。

2.肽键是一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合形成的酰胺键。肽是指两个或两个以上氨基酸通过肽键形成的聚合物。

3.多肽链在二级结构或超二级结构基础上折叠成两个或多个趋于紧密的近乎球状的三维实体,这种实体称为结构域。结构域是大分子球状蛋白质三级结构的折叠单位,一般由100-200个氨基酸残基构成。

4.由一条多肽链组成或由有共价键连接的多条多肽链组成的蛋白质称为单体蛋白,例如溶菌酶和胰凝乳蛋白酶。由两个或两个以上亚基组成的蛋白质称为寡聚蛋白,亚基之间是非共价间连接的。例如血红蛋白是一个由4个亚基组成的寡聚蛋白,寡聚蛋白具有别构作用。

5.蛋白质的构象是指蛋白质的立体结构或空间结构,表示在蛋白质分子中由于单键的旋转所产生的所有原子或基团的空间排列。一个蛋白质构象有无数种,构象的变化不需要共价键的断裂,只需要单键的旋转。在生物体内,蛋白质往往只有一种构象,称为天然构象。

构型表示在立体异构体中其取代基团的空间排布。构型的改变必须要有共价键的断裂和重新生成。构型的改变会引起光学性质的变化,而且D-型和L-型异构体可以区分和分离。

6.一个氨基酸的α-氨基与另一个氨基酸的α-羧基脱水缩合形成的酰胺键称为肽键,肽键具有平面性质。7.在较温和条件下,以可控制的方式使蛋白质与某种试剂(称化学修饰剂)起特异反应,以引起蛋白质中个别氨基酸残基的侧链基团发生共价化学改变。可用于研究某个氨基酸残基的功能或改变蛋白质的理化性质。

8.水介质中的球状蛋白质的折叠总是趋向于把疏水残基埋藏在分子的内部,这种现象称为疏水作用。蛋白质溶液系统的熵增加是疏水作用的主要动力。

9.是一个协助新合成的多肽链正确折叠和转运的蛋白质家族。它们能够抑制新生肽链的不恰当的聚集,排除与其它蛋白质的不合理结合,协助多肽链的正确折叠和跨膜转运,协助寡聚蛋白的组装。

10.是一种利用抗原-抗体反应检测特异蛋白质的方法。首先对蛋白质样品进行凝胶电泳分离,将被分离开的蛋白质转移到硝酸纤维素膜上,然后相继用第一抗体、酶标第二抗体以及底物进行处理,只有含待测蛋白质的条带显示颜色。

11.别构效应可以分为同促效应和异促效应。同促效应发生作用的部位是相同的,例如都是催化部位,即一种配体的结合对其它部位的同种配体的亲和力的影响。异促效应发生作用的部位是不相同的,即活性部位的结合行为受到别构部位与效应物结合的影响。

12.氧与血红蛋白的结合深受pH和CO2浓度的影响。H+和CO2浓度增加,使得血红蛋白的氧合曲线向右移动,提高了O2从血红蛋白的释放量。

13.一个单独的抗体或T细胞受体只能结合抗原内的一个特定的分子结构,这个分子结构称为抗原决定簇或表位。抗原决定簇可以是蛋白质分子表面的氨基酸基团或糖链上的单糖残基。

14.分子量小于5000的化合物一般没有抗原性,不能引起免疫反应。如果将这些小分子化合物共价连接到蛋白质上,这种形式的小分子可以引起免疫反应。这种自身无抗原性,与载体结合以后有了抗原性的物质称为半抗原。

15.亲和层析是利用蛋白质分子对其配体分子特有的识别、结合能力建立起来的高效的分离纯化方法。把待纯化的蛋白质的特异配体共价连接到载体表面,将此载体装入层析柱。当蛋白质混合物加到层析柱上

时,待纯化的蛋白质与配体特异结合,吸附在层析柱上,而其它的蛋白质(杂蛋白)不能被吸附,通过洗脱可以除去。最后用含游离配体的溶液可以将与配体结合的蛋白质洗脱下来。

16.必须氨基酸是指人(或其它脊椎动物)自己不能合成,需要从食物中直接获得的氨基酸,例如赖氨酸、苏氨酸等氨基酸。非必须氨基酸是指人(或其它脊椎动物)自己能从简单的前体合成的,不需要从食物中直接获得的氨基酸,例如甘氨酸、丙氨酸等氨基酸。

17.小分子化合物能自由穿过半透膜扩散到水或缓冲液中,而生物大分子(例如蛋白质)不能透过半透膜,被截留在半透膜内。用此技术可以将小分子化合物与生物大分子分离。

18.是将等电点聚焦电泳和SDS-聚丙烯酰胺凝胶电泳结合起来的一种电泳方法。首先,先进行等电点聚焦电泳,按照蛋白质的等电点差异分离;然后,再进行SDS-聚丙烯酰胺凝胶电泳,按照蛋白质的大小差异分离。染色后得到的电泳图是二维分布的蛋白质图。

19.是一种用来测定多肽和蛋白质氨基酸序列的方法。用异硫氰酸苯酯与多肽的N末端的氨基酸反应,从多肽链的N末端切下第一个氨基酸残基,用层析法可以测定这个被切下的氨基酸残基。回收余下的多肽链(少了一个氨基酸残基),再进行下一轮Edman降解循环,切下N末端的第二个氨基酸残基,并测定。

重复循环过程,直到测定出整个多肽的氨基酸序列。

20.氨基酸、肽和蛋白质分子都是两性分子,使得这些分子带有的净电荷为零时,对应的溶液的pH值称为等点电。结构不同的两性分子,等电点不同。

21.多克隆抗体是识别一个蛋白质(抗原)的不同抗原决定簇的多种抗体的混合物。单克隆抗体由同一个B细胞克隆合成并分泌,是一种均一的抗体,识别同一个抗原决定簇。

22.仅由氨基酸组成的蛋白质称为单纯蛋白质,例如核糖核酸酶和肌动蛋白。由氨基酸和其它各种化学成分组成的蛋白质称为綴合蛋白质,其中非蛋白质部分称为辅基或配体,例如糖蛋白和脂蛋白。

23.由相同亚基组成的寡聚蛋白称为同寡聚蛋白,例如乳酸脱氢酶LDH1,由4个H亚基组成。由两种或两种以上亚基组成的寡聚蛋白称为杂寡聚蛋白,例如血红蛋白,由2个α亚基和2个β亚基组成。24.是一种高分辨率的蛋白质分离技术,也可以用于测定蛋白质的等电点。将蛋白质混合物放在具有pH 梯度的电泳介质中,在外电场的作用下蛋白质移动并聚焦(停留)在等于其等电点的pH梯度处,形成一个很窄的区带。

(二) 填空题

1. 两性离子

2. 2.97,7.59

3. 苯丙氨酸,色氨酸,酪氨酸;色氨酸

4. 离子交换层析,茚三酮

5. 苯异硫氰酸酯或Edman

6. 纤维状蛋白质,球状蛋白质,膜蛋白

7. 极性,非极性

8. 异构酶,伴侣蛋白

9. X射线衍射法 / X射线晶体结构分析

10. 协同效应,变构,波尔

11. 甲硫氨酸

12. 赖氨酸,精氨酸

13. 丝氨酸,苏氨酸,酪氨酸

14. 非极性或疏水,极性或亲水

15. 谷氨酸,缬氨酸

16. 胰岛β细胞,信号肽,胰岛素原,C肽

17. 同源蛋白质,不变残基,可变残基

18. 胰蛋白酶,胰凝乳蛋白酶,弹性蛋白酶

19. 大小,电荷性质

20. 高级结构 / 二、三和四级,一级

21. 4,可变,不变

22. 3.6

23. 共价

24. 天冬酰胺,丝氨酸,苏氨酸

25. B, C, A, D

26. 组氨酸的咪唑基

27. 盐溶,盐析

28. 等电点聚焦电泳,毛细管电泳,聚丙烯酰胺凝胶电泳

29. 沉降速度法 / 沉降平衡法,凝胶过滤法,SDS-聚丙烯酰胺凝胶电泳法

30. 亲和层析法

31. 1-100nm,带有同种电荷,能形成水化层

32. 抗原决定簇与抗体结合部位构象互补,二者各有对应的化学基团通过作用力使二者结合(离子键、氢

键等)

33.色氨酸,组氨酸,脯氨酸

34.内质网,高尔基体

35.双电层,水化层

36.固定血红素,保护血红素铁免遭氧化,为氧分子提供一个合适的结合部位

37.盐析法,有机溶剂沉淀法,重金属盐沉淀法,生物碱试剂沉淀法,加热变性沉淀法

38.紫外差光谱法,荧光和荧光偏振法,圆二色性法,核磁共振法

(三)选择题

1.A 2.C 3.C 4.C 5.A 6.D 7.B 8.D 9.D 10.A 11.D 12.A 13.C 14.D 15.C 16.D 17.A 18.A 19.B 20.C 21.B 22.D 23.D 24.D 25.A 26.C 27.A 28.B 29.B 30.C 31.A 32.A 33.B 34.D 35.A 36.B

(四)是非题

1.对 2.错 3.错 4.错 5.错 6.对 7.对 8.错 9.错 10.对 11.错12.错 13.对 14.错 15.错 16.对 17.对 18.错 19.对 20.错 21.错22.错 23.错 24.对 25.错 26.错 27.错 28.错 29.错 30.错 31.错32.对 33.对 34.对 35.对 36.对 37.对 38.对 39.错 40.对

(五)简答与计算

1.Tyr-Gly-Gly-Phe-Leu

2.(1)多聚亮氨酸的R基团不带电荷,适合于形成。螺旋。

(2)异亮氨酸的β碳位上有分支,所以形成无规则结构

(3)在pH7.0时,所有精氨酸R的基团都带正电荷,正电荷彼此相斥,使氢键不能形成,所以形成无规

则结构。

(4)在pHl3.0时,精氨酸的R基团不带电荷,并且β碳位上没有分支,所以形成α螺旋。

(5)在pHl.5时,谷氨酸的R基团不带电荷,并且芦碳位上没有分支,所以形成α螺旋。

(6)因为苏氨酸β碳位上有分支,所以不能形成α螺旋。

(7)脯氨酸和羟脯氨酸折叠成脯氨酸螺旋,这脯氨酸螺旋是不同于α螺旋的有规则结构。

一个小肽的氨基酸顺序的测定用异硫氰酸苯酯;多肽链的氨基末端的确定用丹磺酰氯;一个没有二硫

键的蛋白质的可逆变性用尿素;芳香族氨基酸残基的羧基一侧肽键的水解用胰凝乳蛋白酶;甲硫氨酸的羧

基一侧肽键的裂解用溴化氰;通过氧化途径将二硫键打开用过甲酸。

3.pI=(2.19+4.25)/2 =3.22

谷氨酸的等电点应是3.22。在pH3.22时,α-COOH和γ-COOH共解离1个基团,即Glu分子处于净电荷为零的两性离子状态。

4.在伸展的多肽链中,每一个氨基酸残基长度是0.36nm。该肽链的长度是0.36?100=36nm。氨基酸残基的平均分子量为120(也可为110),则该蛋白质的分子量是100?120=12000

5.牛胰核糖核酸酶变性-复性实验。天然的牛胰核糖核酸酶在8 mol/L的尿素或6mol/L的盐酸胍存在下,用β硫基乙醇处理后,分子内的4个二硫键断裂,紧密的球状结构伸展成松散的无规卷曲构象,活性丧失。用透析法将变性剂除掉后,牛胰核糖核酸酶能回复到天然构象,活性能达到原来活性的95%以上。

而8个半胱氨酸随机结合,形成正确构象的概率是1/105。

这说明牛胰核糖核酸酶肽链上的氨基酸序列信息控制肽链折叠成正确的天然构象。

6.Lys,His和Arg的含量较高。静电相互作用。组蛋白的pI值是10.8,在生理条件下组蛋白带大量的正电荷,而DNA的磷酸基团带大量的负电荷。

7.长时间储存的血液中,红血球经过酵解途径消耗2,3-BPG。2,3-BPG的浓度下降会使得血红蛋白氧合曲线左移,P50值变小,卸载氧的能量下降,造成运送氧的效率下降。如果这样的血用于输血,可能引起病人窒息。

8.如果一个抗体同时对两个分子量不同的蛋白质都有作用,则分子量较低的蛋白质非常可能是分子量较高蛋白质的降解产物。证明抗原性相同的方法,可以用免疫双扩散,有时分子量较小的肽链不能产生免疫沉淀反应,则可用免疫抑制实验。可是也有相当数量的蛋白质可以具有相同或相似的免疫原性,能产生免疫交叉反应,但是结构上仍有差异。为此,要证明一个组份是否另一个蛋白质的降解产物,更有效的方法是比较两者的酶解图谱。例如,早年用的双向图谱,以及近年来常用的HPLC。最为有效的方法是酶解产物的质谱比较。然而,这些方法均较免疫反应复杂,而且耗时。

9.pH=6.0比pH=2.0或pH=13.0时电泳能提供更好的分辨率。因为在pH=6.0时,这三种肽的净电荷分别是+1,-1,0。在pH=2.0时,这三种肽的净电荷分别是+2,+1,+2。在pH=13.0时,这三种肽的净电荷分别是-1,-2,-2。

10.16400/mol,4个

11.2.71,9.23

12.IgG分子由两条相同的重链和两条相同的轻链组成,四条肽链间有二硫键连接。重链的分子量为53000左右,轻链的分子量为22000左右。重链和轻链各分两个区域,重链N-端1/4为可变区,C-端3/4为恒定区,轻链N-端1/2为可变区,C-端1/2为恒定区。重链的可变区和轻链的可变区共同组成一个抗原结合部位。

13.分配柱层析、纸层析、薄层层析、离子交换层析、气相色谱、高效液相色谱。

14.脯氨酸羟化酶可以催化脯氨酸残基转变为羟基脯氨酸残基,产生大量氢键结合位点,稳定胶原三股螺旋及胶原纤维的结构。胶原纤维是血管的结构成分,如果抑制脯氨酸羟化酶的作用,会引起血管变脆、牙龈出血。维生素C是保证脯氨酸羟化酶和赖氨酸羟化酶活性所必须的组分。人和灵长类动物不能以葡萄糖为原料合成维生素C,因此缺乏维生素C会引起脯氨酸和赖氨酸残基无法羟化,出现上述症状。15.4.7,9.9

16.Asp,Thr,Gly,Leu,Lys

17.Asn-Ala-Tyr-Glu-Lys-His-Gln-Val

18.以制备A蛋白的单克隆抗体为例。

(1)用A蛋白作抗原免疫小鼠脾脏,制成B淋巴细胞悬液。

(2)繁殖小鼠骨髓病细胞。

(3)制得的B淋巴细胞与骨髓瘤细胞融合,产生杂交瘤细胞系。

(4)杂交瘤细胞转移到只有杂交瘤细胞才能生长的介质中进行选择培养。

(5)用ELISA筛选出分泌A蛋白质单克隆抗体的杂交瘤细胞株。

(6)对所得的杂交瘤细胞株进行扩大化培养,从培养物中分离纯化所需的单克隆抗体。

19.(1)蛋白质B对配体的亲和力高

(2)蛋白质A的结合常数Ka=1.0×106(mol/L)-1

蛋白质B结合常数Ka=1.0×109(mol/L)-1

20.(1)Glu-和Glu=各50%时的pH值为9.67

(2)pH<3.22时Glu总带正电荷

(3)Glu±和Glu-缓冲范围在pH4.25左右

21.多聚脯氨酸不能形成形成胶原样的三股螺旋,因为胶原特有的(甘—脯—X)n结构。多聚(甘—脯—甘—脯)虽然具有类似胶原的特征结构,然而,和多聚(甘—脯—甘—脯)中的6个残基(甘—脯—甘—脯—甘—脯)中,只有一个甘氨酸的定位和胶原中的甘氨酸相当,即少了一半定位正确的甘氨酸。因此,有可能形成类似胶原状的三股螺旋结构,但是比较松散,稳定性明显降低。

蛋白质与氨基酸的关系

蛋白质与氨基酸的关系 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从% 增至% 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降低异亮氨酸的吸收率, 使

蛋白质与氨基酸的关系

一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降低异亮氨酸的吸收率, 使尿中异亮氨酸排出量增加。此外, 精氨酸和甘氨酸可消除由于其他氨基酸过量所造成的有害作用, 这种作用可能与它们参加尿酸的形成有关。 一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降

最经典总结-组成蛋白质的氨基酸的结构及种类

考点一组成蛋白质的氨基酸及其种类(5年6考) 组成蛋白质的氨基酸的结构及种类 观察下列几种氨基酸的结构 (1)写出图中结构的名称 a.氨基; b.羧基。 (2)通过比较图中三种氨基酸,写出氨基酸的结构通式 (3)氨基酸的不同取决于R基的不同,图中三种氨基酸的R基依次为 (4)氨基酸的种类:约20种 ■助学巧记 巧记“8种必需氨基酸” 甲(甲硫氨酸)来(赖氨酸)写(缬氨酸)一(异亮氨酸)本(苯丙氨酸)亮(亮氨酸)色(色氨酸)书(苏氨酸) 注:评价蛋白质食品营养价值主要依据其必需氨基酸的种类和含量。

组成蛋白质的氨基酸的种类与结构 1.(海南卷)关于生物体内组成蛋白质的氨基酸的叙述,错误的是() A.分子量最大的氨基酸是甘氨酸 B.有些氨基酸不能在人体细胞中合成 C.氨基酸分子之间通过脱水缩合形成肽键 D.不同氨基酸之间的差异是由R基引起的 解析甘氨酸应是分子量最小的氨基酸,它的R基是最简单的氢。 答案 A 2.下图为氨基酸分子的结构通式,下列叙述正确的是() A.结构④在生物体内约有20种 B.氨基酸脱水缩合产生水,水中的氢来自于②和③ C.结构④中含有的氨基或羧基全部都参与脱水缩合 D.生物体内n个氨基酸形成一条多肽链需要n种密码子 解析①为氨基,③为羧基,④为侧链基团(R基)。构成人体氨基酸的种类约有20种,A正确;脱水缩合形成水,水中氢来自①③,B错误;R基中的氨基或羧基不参与脱水缩合,C错误;生物体内n个氨基酸形成一条多肽链需要n个密码子而不是需要n种密码子,D错误。 答案 A 解答本类题目的关键是熟记氨基酸的结构通式,如下图所示

找出氨基酸的共同体,即图中“不变部分”(连接在同一碳原子上的—NH2、—COOH和—H),剩下的部分即为R基。倘若找不到上述“不变部分”,则不属于构成蛋白质的氨基酸。

2018版高中生物人教版必修一学案:2.2.1 氨基酸及蛋白质的形成 含答案

第2节 生命活动的主要承担者——蛋白质 第1课时 氨基酸及蛋白质的形成 学习目标 1.能写出氨基酸的结构通式并说出其特点(重难点)。2.据图说出氨基酸的脱水缩合及蛋白质空间结构的形成过程(重难点)。 |基础知识| 一、氨基酸及其种类 1.氨基酸的作用 组成蛋白质的基本单位。 2.氨基酸 (1)结构通式: ①写出字母所代表的结构: a .氨基; b .羧基。 ②氨基酸的种类、性质不同取决于R 基不同。 (2)氨基酸的种类及分类: ①种类:组成生物体蛋白质的氨基酸约有20种。 二、蛋白质的形成过程 1.蛋白质的结构层次 氨基酸――→脱水缩合 二肽―→三肽―→多肽――→盘曲、折叠 蛋白质 2.蛋白质的形成过程

(1)过程:脱水缩合。 (2)写出序号代表的物质或结构: 产物①:水。 产物②:二肽。 结构③:肽键。 |自查自纠| 1.组成蛋白质的氨基酸都只含有一个氨基与一个羧基,并且连接在同一个碳原子上;每一条肽链至少含有一个游离的氨基与一个游离的羧基。() 2.生物体内组成蛋白质的氨基酸中,有些氨基酸不能在人体细胞中合成。() 3.脱水缩合发生在相邻氨基酸的氨基和羧基之间,H2O中的H来自于—COOH和—NH2,O来自于—COOH。() 4.连接两个氨基酸分子的化学键叫做磷酸键,表示式为NH—CO。() 5.蛋白质由C、H、O、N、P元素组成,只有一条肽链。() 6.组成蛋白质的氨基酸之间可按不同的方式脱水缩合。() 7.生物体内组成蛋白质的氨基酸中,不同氨基酸之间的差异是由R基引起的。() 8.含有两个肽键的化合物称为二肽。() 答案 1.× 2.√ 3.√ 4.× 5.× 6.×7.√8.× |图解图说| ★把氨基酸分子比喻成人,两只手分别代表氨基和羧基,两条腿代表氢,头代表R基,躯干代表中心碳原子 ________________________________________________________________________ ________________________________________________________________________ ★三个同学手牵手连在一起,牵在一起的手代表“肽键”。两端同学的没牵在一起的手分别代表肽链两端游离的氨基和羧基。 ________________________________________________________________________ ________________________________________________________________________

蛋白质和氨基酸的呈色反应

实验二蛋白质和氨基酸的呈色反应 一、实验目的 1.了解构成蛋白质的基本结构单位及主要联接方式。 2.了解蛋白质和某些氨基酸的呈色反应原理。 3.学习几种常用的鉴定蛋白质和氨基酸的方法 二、呈色反应: (一)双缩脱反应: 1.原理: 尿素加热至180℃左右生成双缩脲并放出一分子氨。双缩脲在碱性环境中能与cu2+结合生成紫红色化合物,此反应称为双缩脲反应。蛋白质分子中有肽键,其结构与双缩脲相似,也能发生此反应。可用于蛋白质的定性或定量测定。 一切蛋白质或二肽以上的多肽部有双缩脲反应,但有双缩脲反应的物质不一定都是蛋白质或多肽。 2.试剂: (1)尿索: 10克 (2)10%氢氧化钠溶液 250毫升 (3)1%硫酸铜溶液 60毫升 (4)2%卵清蛋白溶液 80毫升 3.操作方法: 取少量尿素结晶,放在干燥试管中。用微火加热使尿素熔化。熔化的尿素开始硬化时,停止加热,尿素放出氨,形成双缩脲。冷后,加10%氢氧化钠溶液约1毫升,振荡混匀,再加1%硫酸铜溶液1滴,再振荡。观察出现的粉红颜色。避免添加过量硫酸铜,否则,生成的蓝色氢氧化铜能掩盖粉红色。 向另一试管加卵清蛋白溶液约l毫升和10%氢氧化钠溶液约2毫升,摇匀,再加1%硫酸铜溶液2滴,随加随摇,观察紫玫色的出现。

(二)茚三酮反应 1.原理: 除脯氨酸、羟脯氨酸和茚三酮反应产生黄色物质外,所有α—氨基酸及一切蛋白质都能和茚三酮反应生成蓝紫色物质。 该反应十分灵敏,1:1 500 000浓度的氨基酸水溶液即能给出反应,是一种常用的氨基酸定量测定方法。 茚三酮反应分为两步,第一步是氨基酸被氧化形成CO 2、NH 3 和醛,水合 茚三酮被还原成还原型茚三酮;第二步是所形成的还原型茚三酮同另一个水合茚三酮分于和氨缩合生成有色物质。 反应机理如下: 此反应的适宜pH为5—7,同一浓度的蛋白质或氨基酸在不同pH条件下的颜色深浅不同,酸度过大时甚至不显色。 2.试剂: (1)蛋白质溶液 100毫升 2%卵清蛋白或新鲜鸡蛋清溶液(蛋清:水=1:9) (2)0.5%甘氨酸溶液 80毫升 (3)0.1%茚三酮水溶液 50毫升 (4)0.1%茚三酮—乙醇溶液 20毫升

构成蛋白质的氨基酸种类

构成蛋白质的氨基酸种类、分子量、功能和作用(一) 序号分类名称 缩写及 分子量 生理功能 必需氨基酸 1 赖氨酸Lys 146.13 促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化; 2 蛋氨酸 (甲硫氨酸) Met 149.15 参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能; 3 色氨酸 Trp 204.11 促进胃液及胰液的产生; 4 苯丙氨酸 Phe 165.09 参与消除肾及膀胱功能的损耗; 5 苏氨酸 Thr 119.18 有转变某些氨基酸达到平衡的功能; 6 异亮氨酸 Ile 131.11 参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺; 7 亮氨酸Leu 131.11 作用平衡异亮氨酸; 8 缬氨酸 Val 117.09 作用于黄体、乳腺及卵巢; 指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。成人必需氨基酸的需要量约为蛋白质需要量的20%~37%。 条件必需氨基酸 9 精氨酸Arg 174.4 它能促使氨转变成为尿素,从而降低血氨含量。它也是精子蛋白的主要成分,有促进精子生成,提供精子运动 能量的作用。 10 组氨酸 His 155.09 在组氨酸脱羧酶的作用下,组氨酸脱羧形成组胺。组胺具有很强的血管舒张作用,并与多种变态反应及发炎有 关。

人体虽能够合成,但通常不能满足正常的需要,因此,又被称为半必需氨基酸或条件必需氨基酸,在幼儿生长期这两种是必需氨基酸。人体对必需氨基酸的需要量随着年龄的增加而下降,成人比婴儿显著下降。(近年很多资料和教科书将组氨酸划入成人必需氨基酸) 构成蛋白质的氨基酸种类、分子量、功能和作用(二) 序号分类名称 分子量及缩 写 生理功能和作用 非必需氨基酸 11 丙氨酸Ala 89.06 预防肾结石、协助葡萄糖的代谢,有助缓和低血糖,改善身体能量。 12 脯氨酸Pro 115.08 脯氨酸是身体生产胶原蛋白和软骨所需的氨基酸。它保持肌肉和关节灵活,并有减少紫外线暴露和正常老化造 成皮肤下垂和起皱的作用。 13 甘氨酸Gly 75.05 在中枢神经系统,尤其是在脊椎里,甘氨酸是一个抑制性神经递质。 14 丝氨酸Ser 105.06 是脑等组织中的丝氨酸磷脂的组成部分,降低血液中的胆固醇浓度,防治高血压 15 半胱氨酸Cys 121.12 异物侵入时可强化生物体自身的防卫能力、调整生物体的防御机构。 16 酪氨酸 Tyr 181.09 是酪氨酸酶单酚酶功能的催化底物,是最终形成优黑素和褐黑素的主要原料。 17 天冬酰胺Asn 132.6 天冬酰胺有帮助神经系统维持适当情绪的作用,有时还有助于预防对声音和触觉的过度敏感,还有助于抵御疲 劳。 18 谷氨酰胺Gln 146.08 平衡体内氨的含量,谷酰胺的作用还包括建立免疫系统,加强大脑健康和消化功能 19 天冬氨酸Asp 133.6 它可作为K+、Mg+离子的载体向心肌输送电解质,从而改善心肌收缩功能,同时降低氧消耗,在冠状动脉循环 障碍缺氧时,对心肌有保护作用。它参与鸟氨酸循环,促进氧和二氧化碳生成尿素,降低血液中氮和二氧化碳 的量,增强肝脏功能,消除疲劳。 20 谷氨酸 Glu 147.08 参与脑的蛋白和塘代谢,促进氧化,改善中枢神经活动,有维持和促进脑细 胞功能的作用,促进智力的增加 指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。 备注:以上简单阐述了各种氨基酸在体内发挥的生理作用,没有阐述其药理和保健作用。以上分类是从营养学角度区分。

食品营养学_练习题_第六章蛋白质和氨基酸

第六章蛋白质和氨基酸 一、填空 1、除8种必需氨基酸外,还有组氨酸是婴幼儿不可缺少的氨基酸。 2、营养学上,主要从蛋白质含量、被消化吸收程度和被人体利用程度三方面来全面评价食品蛋白质的营养价值。 3、谷类食品中主要缺少的必需氨基酸是赖氨酸。 4、最好的植物性优质蛋白质是大豆蛋白。 5、谷类食品含蛋白质7.5-15% 。 6、牛奶中的蛋白质主要是酪蛋白。 7、人奶中的蛋白质主要为乳清蛋白。 8、蛋白质和能量同时严重缺乏的后果可产生干瘦性营养不良。 9、蛋白质与糖类的反应是蛋白质或氨基酸分子中的氨基与还原糖的羰基之间的反应,称为羰氨反应,该反应主要损害的氨基酸是赖氨酸,蛋白质消化性和营养价值也因此下降。 10、谷类蛋白质营养价值较低的主要原因是优质蛋白质含量较低。 11、蛋白质净利用率表达为消化率*生物价。 12、氮平衡是指摄入氮和排出氮的差值。 二、选择 1、膳食蛋白质中非必需氨基酸A具有节约蛋氨酸的作用。 A.半胱氨酸 B.酪氨酸 C.精氨酸 D.丝氨酸 2、婴幼儿和青少年的蛋白质代谢状况应维持D。 A.氮平衡 B. 负氮平衡 C.排出足够的尿素氮 D.正氮平衡 3、膳食蛋白质中非必需氨基酸B具有节约苯丙氨酸的作用。 A.半胱氨酸 B.酪氨酸 C.丙氨酸 D.丝氨酸 4、大豆中的蛋白质含量是D。 A.15%-20% B.50%-60% C.10%-15% D.35%-40% 5、谷类食物中哪种氨基酸含量比较低? B A.色氨酸 B.赖氨酸 C.组氨酸 D.蛋氨酸 6、合理膳食中蛋白质供给量占膳食总能量的适宜比例是B。 A. 8% B. 12% C.20% D.30% 7、在膳食质量评价内容中,优质蛋白质占总蛋白质摄入量的百分比应为D。 A. 15% B. 20% C.25% D.30% 8、以下含蛋白质相对较丰富的蔬菜是B。 A. 木耳菜 B. 香菇 C. 菠菜 D. 萝卜 9、评价食物蛋白质营养价值的公式×100表示的是D。 A.蛋白质的消化率 B.蛋白质的功效比值 C.蛋白质的净利用率 D.蛋白质的生物价 10、限制氨基酸是指D。

蛋白质中氨基酸数

蛋白质中氨基酸数、氨基数、羧基数、肽链数、肽键数、脱水数、分子量等各因素之间的数量关系是高考的必考点,为生物计算题型的命题提供了很好的素材,因此,对蛋白质中有关数量的计算题应重点关注。现对此归类如下: 题型1 有关蛋白质相对分子质量的计算 在解答这类问题时,必须明确的基本关系式是:蛋白质的相对分子质量=氨基酸数×氨基酸的平均相对分子质量-脱水数×18(水的相对分子质量)【例1】组成生物体某蛋白质的20种氨基酸的平均相对分子质量为128,一条含有100个肽键的多肽链的分子量为多少 【解析】本题中含有100个肽键的多肽链中氨基酸数为:100+1=101,肽键数为100,脱水数也为100,则依上述关系式,蛋白质分子量=101×128-100×18=11128。 题型2 有关蛋白质中氨基酸数、肽链数、肽键数、脱水数的计算在解答这类问题时,必须明确的基本知识是蛋白质中氨基酸数、肽链数、肽键数、脱水数的数量关系。基本关系式有: n个氨基酸脱水缩合形成一条多肽链,则肽键数=(n-1)个; n个氨基酸脱水缩合形成m条多肽链,则肽键数=(n-m)个; 无论蛋白质中有多少条肽链,始终有:脱水数=肽键数=氨基酸数肽链数 【例2】若某蛋白质的分子量为11935,在合成这个蛋白质分子的过程中脱水量为1908,假设氨基酸的平均分子量为127,则组成该蛋白质分子的肽链有() 条 B. 2条 条条 【答案】C

【解析】据脱水量,可求出脱水数=1908÷18=106,形成某蛋白质的氨基酸的分子质量之和=11935+1908=13843,则氨基酸总数=13843÷127=109,所以肽链数=氨基酸数脱水数=109-106=3。 变式:现有一分子式为C63H103O45N17S2的多肽化合物,已知形成该化合物的氨基酸中有一个含2个氨基,另一个含3个氨基,则该多肽化合物水解时最多消耗多少个水分子 【解析】本题首先要搞清楚,多肽水解消耗水分子数=多肽形成时生成水分子数;其次,要知道,要使形成多肽时生成的水分子数最多,只有当氨基酸数最多和肽链数最少两个条件同时满足时才会发生。已知的2个氨基酸共有5个N原子,所以剩余的12个N原子最多可组成12个氨基酸(由于每个氨基酸分子至少含有一个-NH2),即该多肽化合物最多可由14个氨基酸形成;肽链数最少即为1条,所以该化合物水解时最多消耗水分子数=14-1=13。答案:13. 题型3 有关蛋白质中至少含有氨基数和羧基数的计算 【例3】某蛋白质分子含有4条肽链,共有96个肽键,则此蛋白质分子中至少含有-COOH和-NH2的数目分别为( ) A. 4、100 B. 4、 4 C. 1 00、100 D. 96、96 【答案】B 【解析】以一条由n个氨基酸组成的肽链为例:在未反应前,n个氨基酸至少含有的-COOH和-NH2的数目都为n(因每个氨基酸至少含有1个-COOH和1个-NH2),由于肽链中包括(n-1)个肽键,而形成1个肽键分别消耗1个-COOH 和1个-NH2,所以共需消耗(n-1) 个-COOH和(n-1)个-NH2 ,所以至少含有的-COOH和-NH2的数目都为1,与氨基酸R基团中-COOH和-NH2 的数目无关。本题中蛋白质包含4条肽链,所以至少含有-COOH和-NH2的数目都为4。 题型4 有关蛋白质中氨基酸的种类和数量的计算

2018年浙科版生物必修1 第1章 微专题突破 氨基酸形成蛋白质的相关数量关系总结

氨基酸形成蛋白质的相关数量关系总结 1.链状肽 (1)多肽中各原子数的计算: ①碳原子数=氨基酸的分子数×2+R基上的碳原子数。 ②氢原子数=各氨基酸中氢原子的总数-脱去的水分子数×2+二硫键数×2。 ③氧原子数=各氨基酸中氧原子的总数-脱去的水分子数。 ④氮原子数=肽链数+肽键数+R基上的氮原子数=各氨基酸中氮原子的总数。 ⑤由于R基上的碳原子数不好确定,且氢原子数较多,因此以氮原子数或氧原子数的计算为突破口,计算氨基酸的分子式或氨基酸个数最为简便。 ⑥含2个氨基的氨基酸数=N原子数-肽键数-1。 ⑦含2个羧基的氨基酸数为:O原子数-肽键数-2 2。 (2)基团数和相对分子质量的计算: ①脱水数=肽键数=氨基酸数-肽链数。 ②氨基数=肽链数+R基上的氨基数=各氨基酸中氨基的总数-肽键数。 ③羧基数=肽链数+R基上的羧基数=各氨基酸中羧基的总数-肽键数。 ④蛋白质相对分子质量=氨基酸平均相对分子质量×氨基酸数-18×脱水数。 2.环状肽 环状多肽主链中无氨基和羧基,环状肽中氨基或羧基数目取决于构成环状肽的氨基酸R基中的氨基和羧基的数目,如下图所示。(Aa表示氨基酸) 由图示可知:肽键数=脱去的水分子数=氨基酸数。

1.现有氨基酸800个,其中氨基总数为810个,羧基总数为808个,则由这些氨基酸合成的含有2条肽链的蛋白质共有肽键、氨基和羧基的数目依次为() A.798、2和2 B.798、12和10 C.799、1和1 D.799、11和9 【解析】800个氨基酸中有氨基810个和羧基808个,则说明10个氨基和8个羧基在R基中。800个氨基酸合成的含有2条肽链的蛋白质,其肽键数目=800-2=798,氨基数目=10+2=12,羧基数目=8+2=10。 【答案】 B 2.已知天冬酰胺的R基为—C2H4ON,现有分子式为C63H103O31N17S2的多肽,其中含有2个天冬酰胺,那么,此多肽中的肽键数最多是() A.17个B.16个 C.15个D.14个 【解析】由分子式可知,该多肽中含17个N,因所含的2个天冬酰胺的R基中都含有1个N,故该多肽最多由15氨基酸脱水缩合而成,若是链状多肽,应含有14个肽键;若是环状多肽,则含有15个肽键。 【答案】 C 3.某蛋白质由m条肽链、n个氨基酸组成,则该蛋白质至少含有氧原子的个数是() 【导学号:36500023】A.n-m B.n+m C.n-2m D.n+2m 【解析】肽键中含有一个氧原子,肽链一端的羧基中含有2个氧原子,每条肽链的氧原子数是氨基酸数+1,因此n个氨基酸组成的m条肽链至少含有氧原子的个数为n+m。 【答案】 B 4.如图是由n个氨基酸组成的某蛋白质的结构图,其中二硫键“—S—S—”是一种连接蛋白质中两条肽链之间的化学键(—SH+—SH→—S—S—+2H)。则()

蛋白质与氨基酸的关系

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降低异亮氨酸的吸收率, 使尿中异亮氨酸排出量增加。此外, 精氨酸和甘氨酸可消除由于其他氨基酸过量所造成的有害作用, 这种作用可能与它们参加尿酸的形成有关。 一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。

“氨基酸缩合形成蛋白质相关计算分析”专题

“氨基酸缩合形成蛋白质相关计算的分析”专题 类型一白质中氨基酸数、肽链数、肽键数、脱水数的计算 ●链状肽:肽键数=脱水数=氨基酸数-肽链数 ●环状肽:肽键数=脱水数=氨基酸数 例1某蛋白质分子共有四条肽链,300个肽键,则形成这个蛋白质分子所需氨基酸分子数以及它们在脱水缩合过程中生成的水分子数分别是() A.296和296 B.304和304 C.304和300 D.300和300 例2氨基酸分子脱水缩合形成含2条肽链的蛋白质分子时,相对分子量减少了900,由此可知,此蛋白质分子中含有的氨基酸数和肽键数分别是() A.52、52B.50、50 C.52、50D.50、49 类型二蛋白质中游离氨基和羧基数目的计算 氨基酸脱水缩合形成肽链的过程中,羧基和羟基皆被破坏,若不考虑R基中的氨基和羧基,则仅肽链的两端分别存在1个游离氨基和1个游离羧基羧基,即蛋白质中游离氨基和羧基位于蛋白质多肽链的两端及氨基酸的R基中: ●蛋白质中游离氨基(羧基)数=肽链数+ R基中的氨基(羧基)数 =各氨基酸中氨基(羧基)总数—肽键数 【注意】有时需考虑其他化学变化过程,如二硫键(—S—S—)的形成等,在肽链上出现二硫键时,与二硫键结合的部位要脱去两个H。 例3现有1000个氨基酸,其中氨基有1020个,羧基1050个,则由此合成的4条肽链中氨基、羧基的数目分别是() A.1016、1046 B.4、4 C.24、54 D.1024、1054 例4含有215个N原子的200个氨基酸,形成了5个四肽、4个六肽和1个2条肽链构成的蛋白质分子。这些多肽和蛋白质分子中,肽键与氨基数目的最大值分别是() A.200和200 B.200和215 C.189和11 D.189和26 类型三蛋白质中氨基酸分子式和种类的计算 组成蛋白质的氨基酸约20种,氨基酸的多样性由R基决定,分子通式可表示为C2H4O2NR。故此类型题目的关键是观察所给蛋白质及氨基酸的分子式,根据脱水缩合原理反向推断。 例 5 谷胱甘肽(C10H17O6N3S)是存在于动植物和微生物细胞中的一种重要三肽,它是由谷氨酸(C5H9O4N)、甘氨酸(C2H5O2N)和半胱氨酸缩合而成的,则半胱氨酸可能的分子式为()

生物化学习题及答案(氨基酸和蛋白质)

生物化学习题(氨基酸和蛋白质) 一、名词解释: 两性离子:指在同一氨基酸分子上含有正负两种电荷,又称兼性离子或偶极离子 必需氨基酸:指人体(和其他哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的环境pH,用符号pI表示。 一级结构:蛋白质多肽链中氨基酸的排列顺序 二级结构:蛋白质分子的局部区域内,多肽链按一定方向盘绕和折叠的方式 三级结构:蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象 四级结构:多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构 超二级结构:蛋白质分子中相邻的二级结构单位组合在一起形成的有规则的、在空间上能辨认的二级结构组合体 盐析:在蛋白质分子溶液中加入一定量的高浓度中性盐(如硫酸铵),使蛋白质溶解度降低并沉淀析出的现象 盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象 蛋白质的变性:蛋白质分子的天然构象遭到破坏导致生物活性丧失的现象; 蛋白质在受到光照、热、有机溶剂及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变 蛋白质的复性:在一定条件下,变性的蛋白质分子回复其原有的天然构象并回复生物活性的现象同源蛋白质:来自不同种类生物的序列和功能类似的蛋白质。如血红蛋白 别构效应:某些不涉及蛋白质活性的物质,结合于蛋白质活性部位以外的其它部位(别构部位),引起蛋白质的构象变化,而导致蛋白质活性改变的现象。 肽单位:又称肽基,是肽链主链上的重复结构。由参与肽键合成的N原子、C原子和它们的四个取代成分:羰基氧原子、酰胺氢原子和两个相邻的α-C原子组成的一个平面单位。 二、填空题: 1、天然氨基酸中,甘氨酸(Gly)不含不对称碳原子,故无旋光性。 2、常用于检测氨基酸的颜色反应是茚三酮。 3、通常可用紫外分光光度法测定蛋白质含量,这是因为蛋白质分子中的 Phe 、 Tyr和Trp (三字符表示)三种氨基酸残基有紫外吸收能力。 4、写出四种沉淀蛋白质的方法:盐析、有机溶剂、重金属盐和加热变性。 (生物碱试剂、某些酸类沉淀法) 5、蛋白质多肽链中的肽键是通过一个氨基酸残基的氨基和另一氨基酸的羧基连接而形成的。 6、大多数蛋白质中氮的含量较恒定,平均为16 %,如测得1g样品含氮量为10mg,则蛋白质含量

蛋白质和氨基酸性质

实验一蛋白质与氨基酸的理化性质实验 一、实验目的 1.了解蛋白质和某些氨基酸的颜色反应原理。 2.学习几种常用的鉴定蛋白质和氨基酸的方法。 3.学习蛋白质等电点的测定。 二、蛋白质的盐析与变性 1.原理 在水溶液中的蛋白质分子由于表面生成水化层和双电层而成为稳定的亲水胶体颗粒,在一定的理化因素影响下,蛋白质颗粒可因失去电荷和脱水破坏水化层和双电层而沉淀。 蛋白质的沉淀反应分为可逆反应和不可逆反应两类。 (1)可逆的沉淀反应此时蛋白质分子的结构尚未发生显著变化,除去引起沉淀的因素后,沉淀的蛋白质仍能重新溶解于溶剂中,并保持其天然性质而不变性。如大多数蛋白质的盐析作用或在低温下用乙醇(或丙酮)短时间作用与蛋白质。提纯蛋白质时,常利用此类反应分离蛋白质。 (2)不可逆的沉淀反应此时蛋白质分子内部结构发生重大变化,蛋白质常因变性而发生沉淀现象,沉淀后的蛋白质不再复溶于同类的溶剂中,加热引起的蛋白质沉淀与凝固、蛋白质与重金属离子或某些有机酸的反应都属于此类反应。 有时蛋白质变性后,由于维持溶液稳定的条件仍然存在(如电荷层),蛋白质并不絮凝析出。因此变性后的蛋白质并不一定都表现出沉淀现象。反之沉淀的蛋白质也未必都已变性。 2.试剂与材料 (1)蛋白质溶液[5%卵清蛋白溶液或鸡蛋清的水溶液 500ml (新鲜鸡蛋清:水=1:9)] (2)pH4.7乙酸-醋酸钠的缓冲溶液 100 ml (3)3%硝酸银溶液 10 ml (4)5%三氯乙酸溶液 50 ml (5)95%乙醇 250 ml (6)饱和硫酸铵溶液 250 ml

(7)硫酸铵结晶粉末 1000g (8)0.1mol/L盐酸溶液 300 ml (9)0.1mol/L氢氧化钠溶液 100ml (10)0.05mol/L碳酸钠溶液 100ml (11)0.1mol/L乙酸溶液 100ml (12)2%氯化钡溶液 150 ml 3.实验步骤 (1)蛋白质的盐析加入无机盐(硫酸铵、硫酸钠、氯化钠等)的浓溶液后,蛋白质水溶液溶解度发生变化,过饱和的蛋白质会发生絮凝沉淀,这种加入盐溶液或固体盐能析出蛋白质的现象称为盐析。加入的盐浓度不同,析出的蛋白质现象也不同,人们常用逐步提高蛋白质溶液中盐浓度的方法,使蛋白质分批沉淀,此类盐析方法称为分段盐析。 例如,球蛋白可在半饱和硫酸铵溶液中析出,而清蛋白则在饱和硫酸铵溶液中才能析出。通过盐析来制备的蛋白质沉淀物,当加水稀释降低盐类浓度时,它又能再溶解,故蛋白质的盐析作用是一种可逆沉淀过程。 加5%卵清蛋白溶液5ml于试管中,再加等量的饱和硫酸铵溶液,搅拌均匀后静置数分钟则析出球蛋白的沉淀。倒出少量沉淀物,加少量水,观察是否溶解,试解释实验现象。将试管内沉淀物过滤,向滤液中逐渐添加硫酸铵粉末,并慢速搅拌直到硫酸铵粉末不再溶解为止(饱和状态),此时析出的沉淀为清蛋白。 取出部分清蛋白沉淀物,加少量蒸馏水,观察沉淀的再溶解现象。 (2)重金属离子沉淀蛋白质重金属离子与蛋白质结合成不溶于水的复合物。 取1支试管,加入蛋白质溶液2ml,再加3%硝酸银溶液1~2滴,震荡试管,观察是否有沉淀产生。放置片刻,倾去上层清液,加入少量的蒸馏水,观察沉淀是否溶解。(3)某些有机酸沉淀蛋白质取1支试管,加入蛋白质溶液2ml,再加入1ml5%三氯乙酸溶液,振荡试管,观察沉淀的生成。放置片刻,倾出上清液,加入少量蒸馏水,观察沉淀是否溶解。 (4)有机溶剂沉淀蛋白质取1支试管,加入2ml蛋白质溶液,再加入2ml95%乙醇。混匀,观察沉淀的产生。加入少量的蒸馏水,观察沉淀是否溶解。 三、蛋白质的颜色反应

有机化学 第十四章 氨基酸和蛋白质的性质

第十四章氨基酸和蛋白质的性质 蛋白质和核酸是生命现象的物质基础,是参与生物体内各种生物变化最重要的组分。蛋白质存在于一切细胞中,它们是构成人体和动植物的基本材料,肌肉、毛发、皮肤、指甲、血清、血红蛋白、神经、激素、酶等都是由不同蛋白质组成的。蛋白质在有机体中承担不同的生理功能,它们供给肌体营养、输送氧气、防御疾病、控制代谢过程、传递遗传信息、负责机械运动等。核酸分子携带着遗传信息,在生物的个体发育、生长、繁殖和遗传变异等生命过程中起着极为重要的作用。 人们通过长期的实验发现:蛋白质被酸、碱或蛋白酶催化水解,最终均产生α-氨基酸。因此,要了解蛋白质的组成、结构和性质,我们必须先讨论α-氨基酸。 第一节氨基酸 氨基酸是羧酸分子中烃基上的氢原子被氨基(-NH2)取代后的衍生物。目前发现的天然氨基酸约有300种,构成蛋白质的氨基酸约有30余种,其中常见的有20余种,人们把这些氨基酸称为蛋白氨基酸。其它不参与蛋白质组成的氨基酸称为非蛋白氨基酸。 一、α-氨基酸的构型、分类和命名 构成蛋白质的20余种常见氨基酸中除脯氨酸外,都是α-

氨基酸,其结构可用通式表示: RCHCOOH NH2 这些α-氨基酸中除甘氨酸外,都含有手性碳原子,有旋光性。其构型一般都是L-型(某些细菌代谢中产生极少量D-氨基酸)。 氨基酸的构型也可用R、S标记法表示。 根据α-氨基酸通式中R-基团的碳架结构不同,α-氨基酸可分为脂肪族氨基酸、芳香族氨基酸和杂环族氨基酸;根据R-基团的极性不同,α-氨基酸又可分为非极性氨基酸和极性氨基酸;根据α-氨基酸分子中氨基(-NH2)和羧基(-COOH)的数目不同,α-氨基酸还可分为中性氨基酸(羧基和氨基数目相等)、酸性氨基酸(羧基数目大于氨基数目)、碱性氨基酸(氨基的数目多于羧基数目)。 氨基酸命名通常根据其来源或性质等采用俗名,例如氨基乙酸因具有甜味称为甘氨酸、丝氨酸最早来源于蚕丝而得名。在使用中为了方便起见,常用英文名称缩写符号(通常为前三个字母)或用中文代号表示。例如甘氨酸可用Gly或

蛋白质与氨基酸的关系教案资料

精品文档 一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降低异亮氨酸的吸收率, 使尿中异亮氨酸排出量增加。此外, 精氨酸和甘氨酸可消除由于其他氨基酸过量所造成的有害作用, 这种作用可能与它们参加尿酸的形成有关。 一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降 精品文档

1.蛋白质结构与功能-----氨基酸

蛋白质结构与功能——氨基酸 2010遗传学 Chapter 1 氨基酸 I 蛋白质的天然组成 天然蛋白质几乎都是由18种普通的氨基酸组成:L-氨基酸,L-亚氨基酸(脯氨酸)和甘氨酸。 一些稀有的氨基酸在少量的蛋白质中结合了L-硒代胱氨酸。 II 氨基酸的结果 每种氨基酸(除了脯氨酸):都有一个羧基,一个氨基,一个特异性的侧链(R基)连接在α碳原子上。 在蛋白质中,这些羧基和氨基几乎全部都结合成肽键。在一般情况下,除了氢键的构成以外,是不会发生化学反应的。 氨基酸的侧链残基(R基)提供了多种多样的功能基团,这些基团赋予蛋白质分子独特的性质,导致: A.一种独特的折叠构象 B.溶解性的差异 C.聚集态 D.和配基或其他大分子构成复合物的能力,酶 活性等等。 蛋白质的功能是与蛋白质氨基酸排列顺序和每个氨基酸残基的特征有关。那些残基赋予蛋白质独一无二的功能。 氨基酸的分类是依照它的侧链性质的 A.非极性侧链的氨基酸 B.不带电的极性侧链氨基酸 C.酸性侧链的氨基酸

D . 碱性侧链的氨基酸 A.非极性侧链氨基酸 非极性氨基酸在蛋白质中的位置: 在可溶性蛋白质中,非极性氨基酸链趋向于集中在蛋白质内部。 甘氨酸 (Gly G ) 结构:最简单的氨基酸,在蛋白质氨基酸当中,是唯一缺乏非对称结构的氨基酸。 特征:甘氨酸在蛋白质结构中起到一个很重要的作用,与其它氨基酸残基相比,由于缺少β-碳原子,它在蛋白质的构象上有很大的灵活性和更容易达到它的空间结构。 功能和位置: 1. 甘氨酸经常位于紧密转角;和出现在大分子侧链产生空间位阻影响螺旋的紧密包装处(如胶原) 和结合底物的地方。 2. 由于缺乏空间位阻侧链,所以甘氨酸在邻近的肽键的位置有更强化学反应活性。例如:Asn-Gly 3. 甘氨酸也出现在酶催化蛋白质特异性修饰的识别位点,例如N 端的十四酰基化(CH2(CH2)12CO -)和精氨酸甲基化的信号序列。 丙氨酸 (Ala A ) 结构:是20种氨基酸中最没有“个性”的氨基酸,没有长侧链,没有特别的构象性质,可以出现在蛋白质结构的任何部位。 特征: 1、 丙氨酸是蛋白质中含量最丰富的氨基酸残基 之一,弱疏水性。 2、 化学活性非常弱。 缬氨酸 (Val V) 特征:中度疏水的脂肪族侧链残基。 功能: 3、 这个中度疏水残基β碳原子上的甲基降低了 蛋白质的构象的灵活性。 2、使邻近的肽键的化学反应产生空间位阻,特别是相邻残基具有β-分支的侧链(缬氨酸或异亮氨酸)。 异亮氨酸 (Ile I ) 特征:疏水的脂肪族残基侧链 功能: 1. β-分支链在空间上阻碍邻近的肽键反应。 2. 疏水侧链趋向在折叠蛋白的内部,比起α螺 旋这种侧链在二级结构中更容易形成β折叠。

相关文档