文档库 最新最全的文档下载
当前位置:文档库 › 毛孔粗想变细不再是难题

毛孔粗想变细不再是难题

毛孔粗想变细不再是难题
毛孔粗想变细不再是难题

每个人都希望自己的肌肤能够细腻、弹性、光洁无暇,然而总是有那么多肌肤问题让我们不能如愿,毛孔粗大就是一个让人讨厌的让我们魅力大折扣的肌肤问题,要想解决毛孔粗大,首先要认清毛孔粗大类型,有的放矢,才能收缩毛孔细致肌肤!

芦荟有很好的消炎、镇静杀菌功效,菜场买回新鲜的芦荟,切小片敷在患部,或者去皮榨成汁,洗脸后抹在脸上,经过约三十分钟再冲洗掉,很有效喔!

毛孔粗大的类型,毛孔粗大分为三型:

市售的纯水一瓶(600cc),只要一周用纯水洗脸3~4次,并经常以化妆绵沾纯水敷面,脸自然而然的光滑漂亮!

角质型毛孔粗大

特征:额头部位经常泛油光。毛孔发黑。

皮肤医生解读:这种情况是由于角质层堵塞毛孔,肌肤表面的老旧角质代谢不良,使毛孔开口阻塞,甚至使毛孔周围的老旧角质掉进毛孔里,与毛孔里囤积的皮脂相互混合,形成角栓的固体,慢慢堆积变大,最后撑大了毛孔。

当角栓发展至肌肤表面并接触到空气时,就会氧化变黑,出现让人在意的黑色颗粒,就是所谓的黑头粉刺。出现这种毛孔问题的,通常是油性肌肤。

皮脂分泌旺盛,出油过剩,而清洁工作跟不上去,或者饮食过于油腻,都会迫使毛孔呈现粗大及油光。

皮肤医生解读:毛孔有时还好,有时却很粗大,没有使用乳液时更为明显,那么你的毛孔问题一定与干燥缺水有关。缺水时,毛孔开口处的角质层会变得较薄,使毛孔扩张和明显。

另外,当肌肤老化,毛孔开口附近的胶原蛋白流失,破坏毛囊周边的支持系统,也会使毛孔扩张。

甜酒酿是蒸熟的糯米拌上酒酵发酵而成的一种甜米酒,酒酿也叫醪糟。

甜酒酿倒在一个干净的容器里,连米也一起倒出来。把米压碎一点,然后就可以把面膜纸放进容器里吸足够量的酒酿,敷八到十分钟就可以了。然后一样清水洗一下脸,,正常护肤程序即可。

缺水型毛孔粗大

特征:皮肤水分和皮脂较少,易干燥和长皱纹。鼻头两侧毛孔粗大。

用面膜纸放在鲜柠檬水中充分浸泡,然后敷在脸上,15-20分钟左右取下。或者将一个鲜柠

檬切片直接贴在脸部15-20分钟取下,洗净脸部。每天一次,七天为一个疗程,起到很好的美白、收敛毛孔的功效,长期坚持能够延缓皮肤衰老。

老化型毛孔粗大

特征:毛孔狭长,呈直长型或水滴型

皮肤医生解读:随年龄增长,身体内胶原蛋白与弹力蛋白变得纤细且脆弱,无法有效支撑肌肤,使毛孔周围的肌肤出现松弛凹陷的状态,毛孔因而扩张呈现水滴状。

怎样细致肌肤:

做好基础清洁,充分保湿和防晒工作。

选择能增生胶原蛋白、弹力纤维及收缩毛孔成分的保养品,尽可能去改善已经形成的粗大毛孔。

对于讨厌的黑头,可以选择含有硅(silica)或一些添加有光线修饰成分,让肌肤看起来平滑柔顺以修饰毛孔。

用银耳加一点点水煮一个小时左右,最好熬成很厚的汤,然后敷在眼睛上,用不掉的可以放在冰箱里,时间长了会有很好的效果。眼睛容易长细纹的MM可以试试看,蛮有用的。当然你要提前煮好,涂起来很快速。

彻底清洁,注意调节油水平衡。

补水保湿,收紧毛孔

每天使用平衡油脂分泌,清理毛孔的化妆水和乳液。每周用去角质产品深层清洁,用按摩霜做按摩。按摩和去角质时应注意力道,做到不给肌肤造成负担。去角质后的肌肤处于完全没有防备的状态,一定要及时用乳液修护。

复变函数与积分变换精彩试题及问题详解

复变函数与积分变换试题(一) 一、填空(3分×10) 1.)31ln(i --的模 ,幅角 。 2.-8i 的三个单根分别为: , , 。 3.Ln z 在 的区域内连续。 4.z z f =)(的解极域为: 。 5.xyi y x z f 2)(22+-=的导数=')(z f 。 6.=?? ? ???0,sin Re 3z z s 。 7.指数函数的映照特点是: 。 8.幂函数的映照特点是: 。 9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f 。 10.若f (t )满足拉氏积分存在条件,则L [f (t )]= 。 二、(10分) 已知222 1 21),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为 解析函数,且f (0)=0。 三、(10分)应用留数的相关定理计算 ?=--2||6)3)(1(z z z z dz 四、计算积分(5分×2) 1.?=-2 ||) 1(z z z dz

2.? -c i z z 3 )(cos C :绕点i 一周正向任意简单闭曲线。 五、(10分)求函数) (1 )(i z z z f -= 在以下各圆环内的罗朗展式。 1.1||0<-

五种方法搞定变力做功问题

五种方法搞定变力做功 一.微元法思想。 当物体在变力作用下做曲线运动时,我们无法直接使用θcos s F w ?=来求解,但是可以 将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。 例1. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图1所示,已知物块的 质量为m ,物块与轨道间的动摩擦因数为μ。求此过程中摩擦力所做的功。 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大 小不变,方向时刻变化,是变力,不能直接用求解; 但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直 线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做 的功,然后再累加起来,便可求得结果 图1 把圆轨道分成无穷多个微元段,摩擦力在每一 段上可认为是恒力,则每一段上摩擦力做的功分别 为 , ,…,,摩擦力在一周内所做的功 二、平均值法 当力的大小随位移成线性关系时,可先求出力对位移的平均值2 21F F F +=,再由αc o s L F W =计算变力做功。如:弹簧的弹力做功问题。 例2静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运 动(如图2甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆.则 小物块运动到x 0处时的动能为 ( ) A .0 B .02 1x F m C .04x F m π D .204 x π 【精析】由于W =Fx ,所以F-x 图象与x 轴所夹的面积表示功,由图象知半圆形的面积为 04m F x π.C 答案正确. 图2

三.功能关系法。 功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。 例3 如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体, 物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经 过A 、B 、C 三点时的动能分别为E KA ,E KB ,E KC ,则它们间的关系 一定是: A .E K B -E KA =E K C -E KB B .E KB -E KA E KC -E KB D . E KC <2E KB 【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,求拉力做功可将此变力做功转化为恒力做功问题.设滑块在A 、B 、C 三点时到滑轮的距离分别为L 1、L 2、L 3,则W 1=F (L 1-L 2),W 2=F (L 2-L 3),要比较W 1和W 2的大小,只需比较(L 1-L 2)和(L 2-L 3)的大小.由于从L 1到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个极端情况.L 1与杆的夹角很小,推到接近于0°时,则L 1-L 2≈AB ,L 3与杆的夹角较大,推到接近90°时,则L 2-L 3≈0,由此可知,L 1-L 2> L 2-L 3,故W 1> W 2.再由动能定理可判断C 、D 正确.答案CD. 四.应用公式Pt W =求解。 当机车以恒定功率工作时,在时间内,牵引力做的功Pt W =。 例 4.质量为m 的机车,以恒定功率从静止开始启动,所受阻力是车重的k 倍,机车经过时间t 速度达到最大值m v 。求机车在这段时间内牵引力所做的功。 解析:机车以恒定功率启动,从静止开始到最大速度的过程中,所受阻力不变,但牵引力是变力,因此,机车的牵引力做功不能直接用公式αcos FS W =来求解,但可用公式Pt W =来计算。 根据题意,机车所受阻力kmg f =。且当机车速度达到最大值时,f F =牵。 所以机车的功率为:max max max kmgv fv v F P ===牵。 根据Pt W =,机车在这段时间内牵引力所做的功为: t kmgv Pt W m ==牵。 五.S F -图象法。 在S F -图像中,图线与坐标轴围成的面积在数值上表示力F 在相应的位移上对物体做的功。这一点对变力做功问题也同样适用。 例5.如图4所示,一个劲度系数为的轻弹簧,一端固定在墙壁上,在另一端沿弹簧的轴 图4

学习复变函数与积分变换的心得

学习复变函数与积分变换的心得 我是一名自考生,通过网络学习这门课程,学习了不少以前书本上学不到的东西。它的应用及延伸远比概率统计广,复杂得多。我从中学到了很多,上课也感受到了这门课程的魅力及授课老师的精彩的讲课。我深深地被复变函数与积分变换这门课程给吸引住了。同时网络学习也带给我了一定的帮助。 关于这门课程,首先,它作为一门工科类各专业的重要基础理论课程,它与工程力学、电工技术、和自动控制等课程的联系十分密切,其理论方法应用广泛。同时,作为一门工程数学的课程,它主要是以工程背景为依托来展开讨论和研究的,其前提就是为了服务于实际工程。其次,复变函数与积分变换作为一门工程数学课程,概念晦涩难懂、计算繁琐和逻辑推理不易理解。它既具有传统数学的一些特点,又具有与实际工程相结合才能理解的特点。传统数学主要注重对于基本概念的理解和对理论的讲解,要求理论推导具有严密的逻辑性,而不太注重其实际应用。而工程数学在推导定理或概念的过程中就会出现一些不完全符合严密逻辑的推理,但在现实中又是实实在在存在的一些特殊情况。复变函数是在实变函数的基础上产生和发展起来的一个分支,复变函数与积分变换中的理论和方法不仅是数学的许多后续课程如数理方程泛函分析多复变函数调和分析等课程的基础,而且在其它自然科学和各种工程技术领域特别是信号处理以及流体力学电磁学热学等的研究方面有着广泛的应用,可以说复变函数与积分变换既是一门理论性较强的课程,又是解决实际问题的有力工具各高校普遍将复变函数与积分变换课程作为工科各专业的一门重要的必修科来开设,尤其作为电子、机电自动化等电力专业的学生而言,该课程更是一门必不可少的专业基础类必修课,它为电路分析信号与系统以及自动控制原理等后续专业课程的学习提供了必要的数学工具因此,学好这门课程非常必要然而,该课程一直是学生较难学的课程之一。 第一、学生普遍认为复变函数的应用性不强我们知道复变函数是建立在复数的基础上的,而复数中是一个虚数单位,从而大家对复数的真实性存在疑虑,所以很难想象它在现实生活和实践中的应用价值另外,在学习这门课程当中,复变函数这部分原理、规律多,内容枯燥、抽象,需要理解的概念和定义也多,学生普遍感觉到理论性偏强,有点抓不住重点;而积分变换这部分所涉及的背景较多,学生所面对的大多是一些抽象枯燥的变换公式这些会让学生们认为这是一门纯理论且没用的课程,也就没有兴趣可言。 第二、复变函数是实变函数在复数域的推广,它的许多概念性质和意义与实变函数有相同之处,同时又与实变函数有着诸多不同不少学生在学习当中往往只注意到相同点,而没有注意到它们的不同点,这让学生感觉可以直接把实变函数当中所学的知识和方法照搬过来即可,觉得这门课程与高等数学没什么区别,感觉是在重复学习,没多大意思。 第三、与后续专业课衔接不够紧密,复变函数与积分变换课程的讲授往往与后续专业课程的使用存在一定的时间差,在后续课程用到时,往往都要花一定得时间去复习,否则学生难于跟上,造成教学重复现象,课时利用率不高。所以网络学习给我们提供了一个后备平台。 们合理利用网络来学习其他课程。 第四、通过网络学习增强了我们对远程教育的了解,提高了我们对这门课程的认真度,同时鼓励同学

泛函分析复习提要

泛函分析复习提要 一、填空 1. 设X 是度量空间,E 和M 是X 中两个子集,如果 ,则称集M 在集E 中 稠密。如果X 有一个可数的稠密子集,则称X 是 空间。 2. 设X 是度量空间, M 是X 中子集,若 ,则称M 是第一纲集。 3. 设T 为复Hilbert 空间X 上的有界线性算子,若对任何x X ∈,有*Tx T x =, 则T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是正常算子的充要条件是 。) 4. 若复Hilbert 空间X 上有界线性算子T 满足对一切x X ∈,,Tx x <>是实数,则 T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是自伴算子的充要条件是 。) 5.设X 是赋范线性空间,X '是X 的共轭空间,泛函列(1,2,)n f X n '∈= ,如果 存在f X '∈,使得对任意的x X ∈,都有 ,则称{}n f 弱*收敛于f 。 6. 设,X Y 是赋范线性空间,(,)n T B X Y ∈,1,2,n = ,若存在(,)T B X Y ∈使得对任意的x X ∈,有 ,则称{}n T 强收敛于T 。 7. 完备的赋范线性空间称为 空间,完备的内积空间称为 空间 8. 赋范线性空间X 到赋范线性空间Y 上的有界线性算子T 的范数T = 9. 设X 是内积空间,则称 是由内积导出的范数。 10.设X 是赋范空间,X 的范数是由内积引出的充要条件是 。 11. 设Y 是Hilbert 空间的闭子空间,则Y 与Y ⊥⊥满足 。 12.设X 是赋范空间,:()T D T X X ?→的线性算子,当T 满足 时, 则T 是闭算子。 二、叙述下列定义及定理 1. 里斯(Riesz )定理; 2. 实空间上的汉恩-巴拿赫泛函延拓定理;

第二章平面问题的复变函数解法-2009分析

第二章 平面裂纹问题的复变函数解法 第1节 绪论 如果二元实变函数()y x U ,在区域D 内具有二阶连续偏导数并且满足拉普拉斯(Laplace )方程 02=?U ???? ????+??=?22222 y x 则称()y x U ,为区域D 内的调和函数。 弹性力学的分析表明, 平面问题可以归结为求解满足双调和方程022=??U 的应力函数U ,并使其在边界上满足全部边界条件。双调和方程022=??U 的解U 为双调和函数。 在数学中,复变解析函数的实部和虚部均为调和函数(满足02=?U )。而利用复变解析函数来讨论含孔、裂纹等结构的平面问题比较方便。 1.复变函数的基础知识 复数 a i b + 1-=i 为虚单位 复变数(量) iy x z += 实变数x 和y 分别称为复变数z 的实部和虚部, 记为:z x Re =,z y Im = 则有: z i z z Im Re += (2-1-1) z 的极坐标形式为

()θθsin cos i r z +=θi re = z 的共轭复数 ()θθθi re i r iy x z -=-=-=sin cos 复变函数 以复变量iy x z +=为自变量的函数, 称为复变函数。复变函数也可以看成是由它的实部f Re 和虚部f Im 所组成,有: ()Re Im f z f i f p iq =+=+ ()iq p f i f z f -=-=Im Re (2-1-2) 例如 ()()22222y ixy x iy x z z f -+=+== 则有 22Re y x f p -==,xy f q 2Im == 几何上,可以将函数()z f 看成复数平面z 上的点),(y x 到另一复数平面W 上的点),(q p 的变换, 变换关系如图2-1-1所示。 p (p,q) q W 0 0y z (x,y) 图2-1-1 复数平面变换图 复变函数的导数 设复变函数)(z f 在某一点的领域内有定义,取z ?为复值增量,若 ()()z z f z z f Lim z ?-?+→?0 (2-1-3) 极限存在,则)(z f 在点z 处可导,并记为()z f ',即()z f '为)(z f 在点z 处的导数。

高中物理变力做功问题

高中物理变力做功问题 摘要:在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。本文举例说明了在高中阶段求变力做功的常用方法,比如用动能定理、功率的表达式Pt W =、功能关系、平均值、s F -图像、微元累积法、转换参考系等来求变力做功。 关键词:功 変力 动能定理 功率 功能关系 平均值 图像 微元累积法 转换参考系 对于功的定义式W =αcos Fs ,其中的F 是恒力,适用于求恒力做功,其中的s 是力F 的作用点发生的位移,α是力F 与位移s 的夹角。在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。求变力做功的方法很多,比如用动能定理、功率的表达式Pt W =、功能关系、平均值、s F -图像、微 元累积法、转换参考系等来求变力做功。 一、运用功的公式求变力做功 求某个过程中的変力做功,可以通过等效法把求该変力做功转换成求与该変力做功相同的恒力的功,此时可用功定义式W =αcos Fs 求恒力的功,从而可知该変力的功。等效转换的关键是分析清楚该変力做功到底与哪个恒力的功是相同的。 例1:人在A 点拉着绳通过一定滑轮吊起质量m=50Kg 的物体,如图1所示,开始绳与水平方向夹角为ο60,当人匀速提起重物由A 点沿水平方向运动m s 2=而到达B 点,此时绳与水平方向成ο30角,求人对绳的拉力做了多少功? 【解析】人对绳的拉力大小虽然始终等于物体的重力,但方向却时刻在变,而已知的位移s 方向一直水平,所以无法利用W =αcos Fs 直接求拉力的功.若转换一下研究对象则不难发现,人对绳的拉力的功与绳对物体的拉 力的功是相同的,而绳对物体的拉力则是恒力,可利用W =αcos Fs 求了! 设滑轮距地面的高度为h ,则:( )s h =-ο ο60 cot 30cot 人由A 走到B 的过程中,重物上升的高度h ?等于滑轮右侧绳子增加的长度,即:ο ο60 sin 30sin h h h -= ?,人对绳子做的功为:( )( ) J J mgs h mg W 732131000 13≈-=-=??= 二、运用动能定理求变力做功 动能定理的表述:合外力对物体做功等于物体的动能的改变,或外力对物体做功的代数和等于物体动能的改变。对于一个物体在某个过程中的初动能和末动能可求,该过程其它力做功可求,那么该过程中変力做功可求。运用动能定理求变力做功关键是了解哪些外力做功以及确定物体运动的初动能和末动能。 例2:如图2所示,原来质量为m 的小球用长L 的细线悬挂而静止在竖直位置.用水平拉力F 将小球缓慢地拉到细线与竖直方向成θ角的位置的过程中,拉力F 做功为( ) A. θcos FL B. θsin FL C. ()θcos 1-FL D. ()θcos 1-mgL 【解析】很多同学会错选B ,原因是没有分析运动过程,对W=FLcosθ来求功的适用 范围搞错,恒力做功可以直接用这种方法求,但变力做功不能直接用此法正确的分析,小球的运动过程是缓慢的,因而任一时刻都可看作是平衡状态,因此F 的大小不断变大,F 做的功是变力功,小球上升过程中只有重力和拉力做功,而整个过程的动能改变为零,可用动能定理求解: 所以 ()θcos 1-=-=mgL W W G F ,故D 正确。 三、运用Pt W =求变力做功 涉及到机车的启动、吊车吊物体等问题,如果在某个过程中保持功率P 恒定,随着机车或物体速度的改变,牵引力也改变,要求该过程中牵引力的功,可以通过Pt W =求変力做功。 G ο 60ο 30图1 图2

变力做功的计算

变力做功的计算 Prepared on 22 November 2020

变力做功的计算 公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。 一、微元法 对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。这种处理问题的方法称为微元法,这种方法具有普遍的适用性。但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。 例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。求此过程中摩擦力所做的功。 图1 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。 图2

正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为, ,…,,摩擦力在一周内所做的功 。 误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。必须注意本题中的F是变力。 小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。 [发散演习] 如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。则转动半圆,这个力F做功多少 图3 答案:。 二、图象法

复变函数发展历程

复变函数发展历程 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。 校内发展的历史 《复变函数论》,又称《复分析》,是在《数学分析》的基础上,应用分析与积分方法研究复变量复值解析函数的一门分析数学,它是学习与研究《泛函分析》、《微分方程》等课程的重要基础。复变函数论是数学专业的一门专业必修课程,是数学分析的后续课程。它的理论和方法,对于其它数学学科,对于物理、力学及工程技术中某些二维问题,都有广泛的应用。通过本课程的教学,使学生掌握复变函数论的基本理论和方法,提高分析问题和解决问题的能力,培养学生独立地分析和解决某些有关的理论和实际问题的能力。 随着学校的升本成功,该门课程已在本科层面授课两届。 针对学生普遍基础薄弱的特点,在教学中,着力要求任课教师将基本概念讲解正确清楚,基本理论阐述系统简明,对学生的基本运算能力的训练也严格要求。教材选用了国内较成熟且讲解较为简单明了的钟玉泉的复变函数论(第2版),方便学生学习。 实际教学中注意本课程和其它课程的联系,特别是与数学分析的衔接,相应内容在处理方法上的异同。在基本运算方面,应通过适当的例题和习题,加强习题课和练习,使学

复变函数疑难问题分析

复变函数疑难问题分析 1. 设z z z f 1sin )(2=,{}11|<-=z z D 。 1)函数)(z f 在区域D 中是否有无限个零点?2) 若上小题的答案是肯定的,是否与解析函数零点的孤立性相矛盾?为什么? 答: 有无限个零点。可以具体写出其所以零点; 不矛盾。因为这无限多个零点均为孤立零点;不可以展开为洛朗级数。因为0=z 为非孤立的奇点。 2. “函数sin z 在z 平面上是有界的”是否正确? sin z 在z 平面上无界。 这是因为sin 2iz iz e e z i --=,令(0)z iy y =<,则|sin |||()2iz iz e e z y i --=→∞→-∞ 3. “函数z e 为周期函数” 是否正确? z e 是以2k i π为周期的函数。因为z C ?∈,221z k i z k i z z e e e e e ππ+==?=,k 为整数 4. “()f z z =是解析函数” 是否正确? ()f z z =在z 平面上不解析。因为()f z z x iy ==-,所以(,)u x y x =,(,)v x y y =- 所以1u x ?=?,1v y ?=-?,0u y ?=?,0v x ?=? 但是 11u v x y ??=≠-=??,所以(,)u x y ,(,)v x y 在z 平面上处处不满足..C R -条件 所以()f z z =在z 平面上不解析。 5.根据教材中建立起球面上的点(不包括北极点N )复平面上的点间的一一对应,试求解下列问题。

(1 )复球面上与点1)对应的复数; (2)复数1+i 与复球面上的那个点; (3)简要说明如何定义扩充复平面。 解:(1)建立空间直角坐标系(以O 点为原点,SON 为z 轴正半轴),则过 点,,1)22P 与点(0,0,2)N 的直线方程 为21z -==-。当0z =时 ,x y == ,所以,,1)22 对应。 (2)复数1i +的空间坐标为(1,1,0)。则直线方程2112 x y z -==-与球面222(1)1x y z ++-=相交,其交点为222(,,)333 ,(0,0,2)N (3)z 平面上以个模为无穷大的假想点一北极N 相对应,复平面上加上∞后称为扩充复平面。 6.说明复变函数可微性与解析性的关系。 复变函数()w f z =在点0z 处可导,又称为可微,而()f z 在0z 处的某个邻域内任一点处均可导(可微),则称()f z 在0z 处是解析的。 所以(1)()w f z =在点0z 处可导(可微),但不一定在0z 处是解析的, (2)()f z 在0z 处解析是指在0z 处的某个邻域内任一点处均可导, (3)()f z 在区域D 内可微与在区域D 内解析是等价的。 7.()1sin f z z =在区域D :01z <<上解析且有无穷多个零点,但在区域D 上()f z 不恒等于零,这与解析函数零点孤立性定理相矛盾吗?为什么? 1()sin f z z =在区域D ,01z <<内有无穷多个零点1k z k π =,但lim 0k k z →∞=,但0D ?,而区域D 是去心邻域,()f z 在0z =点无意义,所以()f z 在0z =处是

新教材高中物理 科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况 新人教版必修第二册

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况 功的计算,在中学物理中占有十分重要的地位.功的计算公式W =Fl cos α只适用于恒力做功的情况,对于变力做功,则没有一个固定公式可用,但可以通过多种方法来求变力做功,如等效法、微元法、图象法等. 一、求解变力做功的几种方法 法1.用公式W =F - l cos α求变力做功 如果物体受到的力是均匀变化的,则可以利用物体受到的平均力的大小F -=F 1+F 2 2来计 算变力做功,其中F 1为物体初状态时受到的力,F 2为物体末状态时受到的力. 【典例1】 用铁锤把小铁钉钉入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比.已知铁锤第一次使铁钉进入木板的深度为d ,接着敲第二锤,如果铁锤第二次敲铁钉时对铁钉做的功与第一次相同,那么,第二次使铁钉进入木板的深度为( ) A .(3-1)d B .(2-1)d C. 5-1d 2 D. 22 d 【解析】 根据题意可得W =F -1d =kd 2d ,W =F - 2d ′=kd +k d +d ′2 d ′,联立解得d ′ =(2-1)d (d ′=-(2+1)d 不符合实际,舍去),故选项B 正确. 【答案】 B 法2.用图象法求变力做功 在F - x 图象中,图线与x 轴所围的“面积”的代数和表示F 做的功.“面积”有正负,在x 轴上方的“面积”为正,在x 轴下方的“面积”为负.如图甲、乙所示,这与运动学中由v - t 图象求位移的原理相同. 【典例2】 用质量为5 kg 的均匀铁索,

从10 m 深的井中吊起一质量为20 kg 的物体,此过程中人的拉力随物体上升的高度变化如图所示,在这个过程中人至少要做多少功?(g 取10 m/s 2 ) 【解析】 方法一 提升物体过程中拉力对位移的平均值: F -=250+2002 N =225 N 故该过程中拉力做功:W =F - h =2 250 J. 方法二 由F - h 图线与位移轴所围面积的物理意义,得拉力做功:W =250+200 2×10 J =2 250 J. 【答案】 2 250 J 法3.用微元法求变力做功 圆周运动中,若质点所受力F 的方向始终与速度的方向相同,要求F 做的功,可将圆周分成许多极短的小圆弧,每段小圆弧都可以看成一段极短的直线,力F 对质点做的功等于它在每一小段上做功的代数和,这样变力(方向时刻变化)做功的问题就转化为多段上的恒力做功的问题了. 【典例3】 如图所示,质量为m 的质点在力F 的作用下,沿水平面上半径为R 的光滑圆槽运动一周.若F 的大小不变,方向始终与圆槽相切(与速度的方向相同),求力F 对质点做的功. 【解析】 质点在运动的过程中,F 的方向始终与速度的方向相同,若将圆周分成许多极短的小圆弧Δl 1、Δl 2、Δl 3、…、Δl n ,则每段小圆弧都可以看成一段极短的直线,所以质点运动一周,力F 对质点做的功等于它在每一小段上做功的代数和,即W =W 1+W 2+…+W n =F (Δl 1+Δl 2+…+Δl n )=2πRF . 【答案】 2πRF . 变式训练1 如图所示,放在水平地面上的木块与一劲度系数k =200 N/m 的轻质弹簧相连,现用手水平拉弹簧,拉力的作用点移动x 1=0.2 m ,木块开始运动,继续拉弹簧,木块

泛函分析论文

泛函分析作业 数学系08级5班 08020170 赵英杰

泛函分析主要内容 泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 一、度量空间和赋范线性空间 1、度量空间 现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。 度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空

间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。 定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有 (I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当 x = y; (II)(对称性)d(x,y)=d(y,x); (III)(三角不等式)d(x,z)≤d(x,y)+d(y,z) 则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间。 (一)、希尔伯特空间 希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。 (二)、巴拿赫空间

复变函数与数学分析的比较

数学分析与复变函数的比较 姓名:*** 学号:*** 复变函数在数学分析中的教学中具有非常重要的意义,复变函数与数学分析具有很多共同点,但是也有较多的不同,虽有不同,但复变函数中的很多知识点都是数学分析的推广,是数学分析的加深. 数学分析与复变函数的相同点: 1.二者的定义相同,都是由一个对应法则从一个区域到另一个区域映射; 实数域上的函数与复变函数在进行加、减、乘、除及复合时具有相同的 性质;都具的基本初等函数,如指数函数,对数函数,幂函数等; 2.二者都具有极限和连续性,对数学分析中的一些比较重要的定理,如维 尔斯特拉斯定理,区间套定理,有限覆盖定理在复数集也成立; 3.二者都具有积分,并且积分定义形式类似,都可用类似黎曼积分定义的 形式来表述,在此就不详细说明了,实函数与复变函数中积分都有相同 的运算法则; 4.二者都有数项级数和函数项级数,并且结构类似,函数项级数的收敛性 都可用柯西一致收敛原理,魏尔斯特拉斯判别法来判断,函数都可以有 泰勒展式,并且形式一致。 数学分析与复变函数的不同点: 数学分析和复变函数研究的是定义在数域上的函数,数学分析研究实数上的函数,复变函数研究复数领域的函数。由于定义域的不同,而导致了数学分析和复变函数有很多的差异。 1. 极限 复变函数研究定义域上自变量趋近于其一个聚点的极限,数学分析中可研究自变量趋近于某一点的极限,也可研究趋近于无穷大的极限,也可以研究单侧极限,研究范围比复变函数要广。 2. 求导与微分 数学分析中求导与求微分是非常重要的一部分,可以算作是积分学的逆运算,在现实生活中有举足轻重的作用,而复变函数中虽提到导数与微分,但并未展开来讲。数学分析中的微分学提出了微分中值定理,函数的升降、凸性及极值理论,还提出了待定型求极限的方法。

泛函分析在数值分析中的应用

泛函分析在数值分析中 的应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

泛函分析在数值分析中的应用 刘肖廷工程力学 一、数学概述 数学是一门从集合概念角度去研究物质世界数量关系与空间形式的基础的自 然学科。它从应用的角度可以分为基础数学与应用数学两大范畴,而基础数学 又可以划分为纯数学和基础应用数学两大范畴。其中,纯数学是建立在基础应 用数学基础上进行的单纯的数学研究。可见基础应用数学是数学学科的基础。 基础应用数学以代数学,几何学,分析学与拓扑学为基础研究物质世界的数 学关系与空间形式。分而言之,代数学主要是从集合概念角度去研究物质世界 的数量关系;几何学主要是从集合概念的角度去研究物质世界的空间形式;分 析学则主要研究集合间的映射关系及其运算;而拓扑学则包含点集拓扑,代数 拓扑,微分拓扑,辛拓普等几个分支,融合与代数学与几何学之中。 应用数学则是以基础数学的基本方法(代数,几何,分析)为基础,去探讨 物质世界不同类型的数量关系与空间形式的。它主要包括三角学,概率论,数 理统计,随机过程,积分变换,运筹学,微分方程,积分方程,模糊数学,数 值分析,数值代数,矩阵论,测度论,李群与李代数等领域。当然,我们同样 不能忽视应用数学对基础数学在理论上的支持与贡献。 由此可见,集合概念是数学的核心概念,代数、几何与分析是是数学的三大 基本方法,代数学、几何学、分析学与拓扑学是支撑数学大厦的四根最紧要的 支柱,此四者同时又是相互联系,不可分割的。这一点印证了一句名言,数学 的魅力正在于其中各个分支之间的相互联系。 泛函分析的基本内容和基本特征 (一)度量空间和赋范线性空间 1、度量空间是现代数学中一种基本的、重要的、最接近于欧几里得空间的抽 象空间。19 世纪末,德国数学家G.康托尔创立了集合论,为各种抽象空间的 建立奠定了基础。20 世纪初期,法国数学家M. R. 弗雷歇发现许多分析学的 成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度盘空间的 d?→。若对于任何x, 概念。定义:设x 为一个集合,一个映射: X X R y,z属于x,有(1) (正定性)(x,y)0 d=。当且仅当x y d≥,且(x,y)0 =; (2)

变力做功的求解方法

变力做功的求解方法 物理与电子信息工程学院物理学 [摘要] 功是物理学中最常见的物理量,变力做功的求解方法也是贯穿大学物理的重点和难点之一,它在力学、理论力学中都占有十分重要的地位。本文分别用图像法、动能定理、功能原理、微元法、平均力法、等值法等不同方法对物理学中变力做功的求解方法进行了较全面、系统的研究,并附以实例说明这些方法的应用。通过对这些方法和实例的讨论,以使我能对变力做功的求解方法有更深刻的理解和巩固,进一步提高我灵活运用这些方法解决实际问题的能力。 [关键词] 变力功图像法等效代换法 1 前言 功是物理学中最常见的物理量,对于变力做功的求解,教材上通常采用极限的思想和微积分的方法将物体的运动轨迹分割成许多小段,因每小段很小,所以每小段可视为一方向不变的位移,而在这小位移上的力也可视为恒力。又因小位移为无穷小量,可认为它与轨迹重合,称之为元位移,而力在元位移上做的功称之为元功。这样就顺利的将求解变力做功的问题转化为了求无数多个元功之和。然而,求解变力做功的方法并不是唯一的,在很多实际问题中也可以根据实际寻找最为简便有效的方法。对此,本文将分别从图像法、微元法、等值法、平均力法、动能定理、功能原理等不同角度对变力做功的求解方法进行较全面、系统的研究,并以实例说明这些方法的应用。 2 用图像法求变力做功 功是描写力对空间的积累作用的,它的大小可以用作用力随位移变化的关系曲线,如图2.2.1力-位移图象下的一块图形面积的大小来表示。如图甲所示表示恒力的力-位移图像,横坐标表示力F在位移方向上的分量,功W的数值等于直线下方画有斜线部分的面积.如图乙所示表示变力的力-位移图像,曲线下方画有斜线部分的面积就表示变力所做的功,它近似地等于成阶梯形的小矩形面积的总和。

泛函分析论文

浅谈泛函分析 数学科学学院 张健 20111101710 2011级数学与应用数学汉班 摘 要 泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。它在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 关键词 泛函分析、空间、度量、算子 泛函分析是20世纪30年代形成的数学分科,是从变分问题、积分方程和理论物理的研究中发展起来的。它综合运用函数论、几何学、现代数学的观点来研究无限维向量空间上的函数、算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程、概率论、计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 .1度量空间和赋范线性空间 1.1度量空间 现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家.G 康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家..R M -弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。 度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。 定义:设X 为一个集合,一个映射d :R X X →?。若对于任何z y x ,,属于X ,有 ()1(正定性)(),0,≥y x d 且(),0,=y x d 当且仅当y x = ()2(对称性)()()x y d y x d ,,= ()3(三角不等式)()()()z y d y x d z x d ,,,+≤ 则称d 为集合X 的一个度量(或距离)。称偶对()X d ,为一个度量空间,或者称X 为一个对于度量d 而言的度量空间。 2.1赋范线性空间

华中科技大学复变函数与积分变换练习册问题详解

练 习 一 1.求下列各复数的实部、虚部、模与幅角。 (1) i i i i 524321----; 解: i i i i 524321---- =i 258 2516+ z k k Argz z z z ∈+== = = π 22 1 arctan 25 5825 8Im 25 16Re (2)3 ) 231(i + 解: 3) 231(i + z k k Argz z z z e i i ∈+===-=-==+=π ππ ππ 210Im 1Re 1][)3 sin 3(cos 333 2.将下列复数写成三角表示式。 1)i 31- 解:i 31- )35sin 35(cos 2ππi += (2)i i +12 解:i i +12 )4sin 4(cos 21π π i i +=+= 3.利用复数的三角表示计算下列各式。 (1)i i 2332++- 解:i i 2332++- 2sin 2 cos π π i i +== (2) 4 22i +- 解:4 22i +-4 1 )]43sin 43(cos 22[ππi +=

3,2,1,0] 1683sin 1683[cos 2]424/3sin ]424/3[cos 283 8 3 =+++=+++=k k i k k i k ππππππ 4..设 321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆 z =1的一个正三角形的项点。 证:因,1321===z z z 所以321,,z z z 都在圆周,11==z z 又因321z z z ++=0 则 , 321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又 ,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量2 11z z z +与之间的张角是3π,同理212z z z +与之间的张角也是3π,于是21z z 与之间的张角是32π ,同理1 z 与3z ,2z 与3z 之间的张角都是32π ,所以321,,z z z 是一个正三角形的三个顶点。 5.解方程013 =+z i i z i z i i z k k i k z z 2 32135sin 35cos 1sin cos 2 3 213sin 3cos 2 ,1,03 2sin 32cos 1:3213-=+=-=+=+=+==+++=?-=πππππππ πππ解 6.试证:当1,1<=βα时,则1 1=--βαβ α。

五种方法搞定变力做功问题

五种方法搞定变力做功 .微元法思想。 当物体在变力作用下做曲线运动时,我们无法直接使用w F ?scos来求解,但是可以 将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。 例1.用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的 质量为m,物块与轨道间的动摩擦因数为。求此过程中摩擦力所做的功。 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小 不变,方向时刻变化,是变 力,不能直接用求解;但是我们可以把圆周分 成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果图1

把圆轨道分成无穷多个微元段每一段上可认为是恒力,则每一段上摩擦力做的功分别为,摩擦力在

摩擦力在一周内所做的功

、平均值法 当力的大小随位移成线性关系时,可先求出力对位移的平均值 L F 1 F 2 — F ------------- ,再由W FLcos 计算变力做功。如:弹簧的弹力做功 2 问题。 例2静置于光滑水平面上坐标原点处的小物块, 在水平拉力F 作 用下,沿x 轴方向运动(如图 2甲所示),拉力F 随物块所在位置坐标 x 面积表示功,由图象知半圆形的面积为 F m X 。. C 答案 4 正确. 三.功能关系法。 功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。 例3如图所示,用竖直向下的恒力 F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体, 物体沿水平面移动过程中经过 A 、 B 、 C 三点,设AB=BC ,物体经 过A 、B 、C 三点时的动能分别为 E KA , E KB , E KC ,则它们间的关系 _. r 曰 定是: A . E K B -E KA =E K C -E KB B . E KB -E KA V E K C -E KB 到X 0处时的动能为 ( ) A . 0 B . -F m X o 2 C . F m X o D . 2 X o 4 4 【精析】由于 W = F X ,所以F-x 图象与X 轴所夹的 的变化关系(如图乙所示),图线为半圆?则小物块运动 o n ~~F ? 图2乙

相关文档
相关文档 最新文档