文档库 最新最全的文档下载
当前位置:文档库 › dual cure epoxy

dual cure epoxy

双重固化环氧树脂的开发

Three Bond Co., Ltd.

安楽聡彦

Abstract:

A new kind of epoxy resin with both acryl group and epoxy group is developed. It can be dual-cured by UV and heat to give excellent shear and peel adhesion properties. This paper briefly reviewed the principle of dual-cure, composition of one-component, and potential application of this technology.

1.前言

环氧树脂固化时挥发少,流动性优良,固化收缩很少,可适用于多种用途。而且良好的机械性能,热性能,耐水及耐药性能,电性能,使得它可应用于广泛的领域,并且需求量有逐年增加的趋势。

可是近来由于各种严格的环境负荷物质规定,可使用的原材料越来越受限制,可供选择的配方设计范围也逐渐缩小,而另一方面,顾客对产品性能的要求在逐步增高,为了满足顾客的要求,我们必须更进一步开发具有附加价值的产品。

本次发表,将对我们正在开发的双重固化环氧树脂的基本原理,特性以及今后的方向做一介绍。

Keyword: dual-cure; low temperature cure; UV-cure acryl ester resin; one-component epoxy;

关键词:双重固化;低温固化;UV固化丙烯酸树脂;单组分环氧树脂;

2.关于低温快速固化单组分环氧树脂

一般的加热固化型单组分环氧树脂相对低廉,保存性好,作业性优良,但固化需要100~150℃的加热,对被粘接材料热影响很大,不适于耐热性低的树脂材料的粘接和灌封。

为了解决这一问题,我们可以运用具有高反应性的环氧树脂和具有低温固化性的潜伏型固化剂来设计混合树脂,但客户对固化温度的降低,固化时间的缩短等要求越来越高。

单组分环氧树脂在热固化时由于初期减粘而流入不必要的部位,或由于主剂和固化剂分离导致只有环氧树脂主剂渗入部件的缝隙之中从而产生分离未固化等不良现象,这些都需要急于解决。

为了根本解决上述问题,我们开发了具有UV和超低温快速固化的双重固化环氧树脂。

3.双重固化环氧树脂简介

由双酚A型或F型环氧树脂与丙烯酸酯化反应得到的丙烯酸环氧树脂化合物是众所周知的常用化工原材料。

本次发表使用的双重固化环氧树脂,是通过对双酚A型环氧树脂和丙烯酸部分酯化反应,选择性地只与环氧树脂的一个环氧基反应,使其一个分子中拥有丙烯酸酯和环氧基两个官能团的具有特别构造的双酚A型半环氧丙烯酸酯化合物。

4.双重固化环氧树脂的作用

为防止单组分环氧树脂特有的热固化初期减粘而流入其他部位,以前均采用加入触变剂,提高其粘度和触变性,或添加有预凝胶效果的充填剂,蜡等来抑制初期减粘,但不能完全根治。

但在具有丙烯酸酯基的双重固化环氧树脂固化体系中,添加自由基光引发剂和环氧树脂硬化剂,可使其拥有热固化性和光固化性,采用光照射的方法可以将树脂予凝胶化,从而防止了热固化时的初期减粘,还免去了使用治具,先光照予固定然后通过加热可使其完全固化。

另外,这种双重固化环氧树脂,跟通常的丙烯酸酯型光固化树脂相比,丙烯酸酯单体含量少,添加少量自由基光引发剂就显示出充分的光固化性,从而可以得到固化时挥发性气体少的信赖性高的固化物。另外我们探讨了超低温快速固化的技术难题。

5.双重固化环氧树脂的应用

环氧树脂和多硫醇在一般情况下不能显示出快速固化性,众所周知,将三级胺等作为固化催化剂使用,会明显降低固化温度。但硫醇类化合物有令人不愉快的特殊臭味,还有就是混合后可使时间极短,操作性不好。

但是,最近各种高纯度的多硫醇化合物已上市,作为臭气少而且有用的原材料受到瞩目。另外在保存稳定性方面,使用固体胺类化合物型潜伏性固化剂,可以做成单组分胶粘剂。

丙烯酸酯系低聚物,具有高反应性,固化物黄变少等优点,但存在固化收缩大,因空气中氧的阻聚作用,导致固化物表面不易聚合反应而发粘等缺陷。为解决这些问题,常使用双键/硫醇固化体系,不受空气中的氧的阻聚作用,得到良好的物性。

另外,丙烯酸酯型化合物和硫醇类的存在,虽然可呈显著的低温快速固化性能,但有保存稳定性不好的问题。

利用这些技术,在双重固化环氧树脂的固化剂成分中,使用光自由基引发剂以及高纯度多硫醇化合物,固体分散型胺类化合物潜伏型固化剂,为提高保存稳定性使用酸性物质作为稳定剂,使得同时拥有低温快速固化性和光固化性的双重固化方法成为可能,可得到不发生分离未固化的单组分组成物。

下表展示了开发品与传统低温固化型单组分环氧树脂的物性比较。

表-1.物性表

※固化条件:80℃×30min

双重固化环氧树脂与传统低温固化单组分环氧树脂相比,具有剪切粘接强度大,无分离未固化等显著优点。

图-1.80℃固化性比較

双重固化环氧树脂的固化速度非常快,如图-1所示,比较流变仪的80℃固化性,传统单组分环氧树脂达到最终粘度需要20min,双重固化环氧树脂大约10min既可达到最终粘度而固化。

6.双重固化环氧树脂的总结以及今后的展望

由双重固化环氧树脂/光自由基引发剂/高纯度多硫醇化合物/固体分散型胺潜伏型固化剂得到的单组分组成物,具有低温快速固化性,出色的保存稳定性,并且由于光固化具有假固定性,可避免分离未固化,固化过程挥发少,得到具有优良机械性能和高信赖性的固化物。

本组成物及其固化物,已经在日本国内申请了专利,预定于近期申请国际专利。

今后,我们期待使用这种双重固化环氧树脂的新固化体系做进一步应用探讨。

7.最后

在这次发表中,我们介绍了关于本公司技术之一的双重固化环氧树脂。

今后,我们将积累并开发利用双重固化环氧树脂应用技术。同时,继续探索其他新原材料,努力及时满足顾客们的需求。

[ 引用?参考文献]

■??????????????????No.66「?????樹脂開発動向2006 ㈱????????発行■総説?????樹脂?????樹脂技術協会発行

■?????樹脂硬化剤の新展開㈱??????発行

酚醛环氧水性化

酚醛环氧树脂水性化改性的方法及其影响中国玻璃钢综合信息网日期: 2008-03-20 阅读: 1759 字体:大中小双击鼠标滚屏 前言 作为三大通用热固性树脂之一, 环氧树脂以其优良的工艺性能、机械性能和物理性能, 广泛应用于机械电子、航空航天、交通、建筑等领域[1] 。随着对环境保护的要求日益迫切和严格, 传统溶剂型环氧树脂的应用受到了很大的限制。为解决这一问题, 从20 世纪70 年代起, 人们开始研究具有环境友好特性的水性环氧树脂体系。 目前, 对环氧树脂水性化改性的方法可分为两大类, 即外加乳化剂法[3 ,4] 和化学 改性法[5] 。外加乳化剂法是在加入一定量乳化剂的作用下, 借助于超声波振荡、高速搅拌或均质机乳化等手段将环氧树脂以微粒状态分散于水中, 形成稳定的水乳液。这样得到的乳化体系一般难以达到理想的贮存稳定性。同时由于使用了较多的乳化剂, 这些乳化剂最终大部分会留在固化物中, 从而使固化物的机械性能、耐水性和耐溶剂性等比溶剂型的差。化学改性方法主要是通过打开环氧基引入极性基团[6] 和通过自由基引发接枝反应[7 ,8] 将极性基团引入环氧树脂分子链上, 使环氧树脂获得水溶性或水分散性。但开环反应会使改性树脂失去部分具有较大反应活性的环氧基, 因而仅适合多官能团(f >2) 环氧树脂的改性, 否则, 改性物难以形成高度交联结构, 固化物的性能差。接枝反应一般是将环氧树脂溶于溶剂中, 再投入丙烯酸类单体( 如甲基丙烯酸、丙烯酸等) 及引发剂[9] , 靠自由基的转移使环氧树脂分子中的亚甲基— CH 2 — ( 或— CH — ) 成为活性点而引发丙烯酸类单体聚合。这种方法虽然理论上不破坏环氧基, 但接枝反应与丙烯酸类单体的自聚是一对竞争反应, 接枝率难以控制, 而且, 丙烯酸的羧基在适当温度下也可以和环氧基反应, 可见, 接枝反应工艺复杂, 产物结构难以控制。 本文选用酚醛环氧树脂F-51, 用一定量的二乙醇胺与F-51 树脂分子中少部分环氧基发生加成反应引入亲水基团, 使每个树脂分子中保留尽可能多的环氧基, 这样, 一方面使树脂具备了水溶性或水分散性, 另一方面又保留了相当数量的环氧基, 使改性树脂的亲水性和反应活性达到合理的平衡, 从而克服了以往改性方法难以两者兼得的矛盾, 具有优良的应用价值。 图1 表示二乙醇胺与F-51 树脂加成后的改性树脂的基本结构。

(完整版)环氧树脂主要性能指标的检测方法

三、环氧树脂主要性能指标的检测方法 1、环氧树脂环氧值、环氧当量的测定 可用光谱分析法或化学分析法进行分析,光谱分析比化学分析容易操作,但是需要用标准试祥做成定量线。 ①光谱分析法 用红外光谱、拉曼光谱或核磁共振光谱等分析方法是很普及的,可用于环氧树脂的定性分析或环氧基的定量分析。红外光谱吸收法:首先用一系列已知环氧当量的环氧树脂的红外光谱做出A910cm-1/A1610 cm-1 (其中910cm-1是环氧基的吸收峰,1610 cm-1是苯环的吸收峰)基线,然后做出A910cm-1/A1610 cm-1与环氧当量标准曲线。这样在测定某一环氧树脂试样的环氧当量时,只需知道该环氧树脂A910/M1610的比值,即可确定其环氧当量。 ②化学分析法 常用的化学分析方法是在适当的溶剂中,使用过量的盐酸与环氧基作用,定量生成氯醇,将过且的盐酸用碱滴定法定量,。常用的溶剂有丙酮、无水醚、吡啶等。有时不用盐酸,而用溴化化氢酸、碘化钾与盐酸、过氯酸与季铵溴化物等为卤化剂,进行直接滴定。 方法多种多样,现今国际上通用的分析法是高氯酸法,适用于各种环氧树脂,但操作过程繁琐。另外还有盐酸/丙酮法、盐酸吡啶法以及盐酸二氧六环法。我国沿用的测定方法以盐酸一丙酮法和盐酸一吡啶法,其中盐酸一丙酮法较适用于分子量在1500以下的环氧树脂,而

盐酸一吡啶法较适用于分子量在1500以上的环氧树脂。相对来说,盐酸一丙酮法应用较多。 溴化季按盐直接滴定法 a)原理 原理是通过高氯酸(HClO4)与溴化四乙基铵(NEt4Br)反应生成的溴化氢与1,2-环氧基的定量反应。该程序包括用高氯酸-冰醋酸标准溶液滴定溶解在含溴化四乙基铵的环氧树脂的二氯甲烷溶液,以结晶紫为指标剂,当环氧基被消耗完,过量的溴化氢会引起过量的结晶紫指标剂变色。 b)溶液配制 结晶紫指标剂:取结晶紫0.5g,溶解于100ml冰醋酸中即得, 0.1 mol /L高氯酸-冰醋酸标准溶液 配制取无水冰醋酸550ml,加入高氯酸HClO4(W/W在70%左右,比重1.75)8.2ml摇匀,在烧杯中缓缓滴加24ml醋酐,用玻璃棒不断搅拌,放冷至室温后,转移到1000ml容量瓶中,加无水冰醋酸稀释至刻度线,摇均匀后,放置24小时使醋酐与溶液中的水充分反应完全。即得0.1N浓度的HClO4-HAc标准溶液。 标定准确称取在105℃干燥至恒重的邻苯二甲酸氢钾KHC8H4O4约0.4g(准确至0.0001 g)置于锥形瓶中,加无水冰醋酸20ml,使溶解,加0.5%结晶紫冰醋酸溶液1—2滴,用高氯酸冰醋酸标准溶液滴定至蓝色,并将滴定结果用空白试验(即不加邻苯二甲酸氢钾)校正。计算如下:

电泳涂料用环氧树脂组成物

电泳涂料用环氧树脂组成物 日本专利公开:平6-271794 发明人:武田基幸 概述: 本发明关于耐冲击性和耐腐蚀性优秀的阴极电泳涂料用环氧树脂组成物,特别是关于在不降低阴极电泳涂膜的耐腐蚀性下能提高其耐冲击性的稳定的阴极电泳涂料用环氧树脂组成物。 阻极电泳涂装,作为泳透性或膜厚均匀性、优异的防腐蚀性和环境污染少的涂装方法,除作汽车底漆外,还可广泛地用作工厂机械或家庭器具、电器制品的底漆等。但是,特别是在汽车涂装体系这样的要求高耐腐蚀性和高冲击性等的领域中,期望有高物性的涂膜。作为一般电泳涂料用树脂,主链采用耐腐蚀性优秀的双酚A型环氧树脂,它与钢板的附着性好,但其缺点是硬而脆。为此,历来都采用聚醚多元醇、聚酯二醇、聚酯多元醇、末端羧基化的丁二烯丙烯腈、多胺等柔韧性扩链剂来改性环氧树脂。但是,尽管这些改性能提高耐冲击性,然而其他涂膜性能特别是耐腐蚀性却出现问题。后来又提出在电泳涂料中添加由内交联乙烯属不饱和单体的聚合物制成的微胶,例如,日本专利公开昭62-149761、昭62-273271、昭63-63760、昭63-63677、昭64 -17895、平4-165098、平4-226171等提出在阴极电泳涂料中添加微胶,以提高涂膜的平滑性、提高消光及端部防腐蚀性、但是这些方法提高耐腐蚀性和耐光冲击的效果还不如意,在涂料贮存中有微胶产生沉降,涂料稳定性差等缺点。 本发明者等对贮存中微胶不沉降、涂料稳定性好的电泳涂料进行了种种研究,其结果完成了本发明。本发明的目的在于提供在不降低阴极电泳涂膜耐腐蚀性下提高耐冲击性的电泳涂料用的稳定的环氧树脂组成物。 本发明的要点是,将分散了2~30重量份(甲基)丙烯酸聚合物微粒成分的环氧树脂和胺反应得的反应物特征的电泳涂料用环氧树脂组成物,其制法是,在预先液化的环氧树脂中,分散(甲基)丙烯酸酯系聚合物微粒子成分后为得到一定分子量,再在催化剂存在下与双酚类反应,把得到的环氧树脂和胺反应,制造电泳涂料用环氧树脂组成物。 本发明的电泳涂料用环氧树脂组成物是在预先液化的环氧树脂中分散(甲基) 丙烯酸酯系聚合物微粒子成分2~30重量份之后,为得到一定分子量再和双酚类在催化剂存在下物反应,得到的分散子(甲基)丙烯酸酯系聚合物的环氧树脂再和胺反应的反应物,聚合物微粒子自身被环氧·胺加成物包覆,由此而得到聚合物微粒稳定的树脂。 对于此点再进行说明,从前的技术是在环氧树脂分散体中添加混合聚俣物微粒子分散液,由于聚合物微粒子是在直接在水系中被稳定分散的,微粒子表面如-COOH、-NH 2、-OH等极性基必须和表面活性剂等作用。而本发明中,聚合物微粒子是被分攻体预先液化的环氧树脂中,其表面一旦用环氧树脂包覆之后,该粒子表面的环氧树脂就和胺发生发生反应,那么聚合物微粒子就被环氧·胺加成物包覆,根据需要,用酸中和并成为水性化树脂。由于聚合物微粒子不是直接与水接触的,推定能改善稳定性。这点是本发明与从前技术的主要不同点。 以下详细说明本发明,本发明用的均匀分散(甲基)丙烯酸酯聚合物微粒子的液态环氧树脂可按众所周知的方法制造。例如,用乳液聚合法,悬浮聚合法。溶液聚合法等历来各种聚合法制造的(甲

环氧树脂固化剂的概况

环氧树脂固化剂的概况 双酚A环氧树脂的结构稳定,能够加热到200℃不发生变化,其他环氧树脂具有无限使用期,通过固化剂使环氧树脂实现交联反应,由于固化过程中不放出H2O或其他低分子化合物,环氧树脂固化物避免了某些缩聚型高分子在热固化过程中所产生的气泡和界面上的多孔性缺陷。环氧树脂固化物性能在很大程度上取决于固化剂,其种类繁多。 一、环氧树脂固化剂分类 1. 按化学结构分为碱性和酸性两类 1.1碱性固化剂:脂肪二胺、多胺、芳香族多胺、双氰双胺、咪唑类、改性胺类。 1.2酸性固化剂:有机酸酐、三氟化硼及络合物。 2. 按固化机理分为加成型和催化型 2.1加成型固化剂:脂肪胺类、芳香族、脂肪环类、改性胺类、酸酐类、低分子聚酰胺和潜伏性胺。 2.2催化型固化剂:三级胺类和咪唑类。 二、环氧树脂固化剂的发展 我国1998年环氧树脂产量为万吨, 固化剂需求量约为2万吨, 实际的固化剂产量仅为万吨, 生产厂家分布在沿海城市, 如天津、上海、江苏和浙江等地。例如:脂肪多胺:常州石化厂650吨/年 间苯二胺:上海柒化八厂80吨/年 T—31改性胺:江苏昆山助剂厂60吨/年 低分子聚酰胺:天津延安化工厂200吨/年 590#改性胺和593#改性胺:上海树脂厂17吨/年 793#改性胺:天津合材所6吨/年 SK—302改性胺:江阴颐山电子化工材料厂5吨/年 另外:B—系列固化剂,N—苄基二甲胺,DMP—30,801#改性胺,HD—236改性胺,GY—051缩胺,CHT—251改性胺,105#缩胺,810#水下固化剂,NF—841固化剂,703#改性胺等。

三、胺类固化剂 1.胺类固化机理 1.1一级胺固化机理 若按氮原子上取代基(R)数目可分为一级胺、二级胺和三级胺;若按N数目可分为单胺、双胺和多胺;按结构可分为脂肪胺、脂环胺和芳香胺。 一级胺对环氧树脂固化作用按亲核加成机理进行,每一个活泼氢可以打开一个环氧基团,使之交联固化。芳香胺与脂环胺的固化机理与一级胺相似(伯胺、仲胺和叔胺) ①与环氧基反应生成二级胺 ②与另一环氧基反应生成三级胺 ③生成的羟基与环氧树脂反应 1.2固化促进机理: 在固化体系中加入含给质子基团的化合物如苯酚,就会促进胺类固化,这可能是一个双分子反应机理,即给质子体羟基上的固发氢首先与环氧基上的氧形成氢键,是环氧基进一步极化,有利于胺类的N对环氧基Cδ+的亲核进攻,同时完成氢原子的加成。 促进剂对环氧树脂和二乙烯二胺固化体系的凝胶化影响,例如乙二醇、甘油和苯酚使凝胶化时间缩短7min,12min和13min。 2. 脂肪胺(脂环胺)固化剂 在室温很快固化环氧树脂,固化反应为放热反应。热量能进一步促使环氧树脂与固化剂反应,其使用期较短。胺类固化剂与空气中的CO2反应生成不能与环氧基起反应的碳酸铵盐而引起气泡的发生。 脂肪胺对皮肤有一定刺激作用,其蒸汽毒性很强。 脂肪胺和脂环胺固化剂

环氧树脂固化剂概述

环氧树脂固化剂概述 环氧树脂本身为热塑性的线型结构,受热后固态树脂可以软化、熔融,变成粘稠态或液态;液态树脂受热黏度降低。只有加入固化剂后,环氧树脂才能得到实用。一个完整概念的环氧树脂组成物应该由四个方面的成分组成。但在实际应用时,不一定四个方面的成分都要具备,但树脂成分中的固化剂必不可少,可见固化剂的重要。 环氧树脂所以能取得广泛应用,就是因为这些成分多变配合的结果。尤其是固化剂,一旦环氧树脂确定之后,固化剂对环氧树脂组成物的工艺性和固化产物(产品)的最终性能起决定性作用。 固化剂定义及分类 1、定义 环氧树脂本身是热塑性的线型结构,不能直接拿来就应用,必须在向树脂中加入第二组分,在一定温度(或湿度)等条件下,与环氧树脂的环氧基进行加成聚合反应,或催化聚合反应,生成三维网络结构(体型网状结构)的固化物后才能使用。这个充当第二组分的化合物称作固化剂,分为加成型固化剂和触媒型固化剂。 2、固化剂的分类 固化剂按反应性和化学结构分类如下 1、伯胺与环氧基的反应 当用伯胺固化环氧树脂时,在第一阶段伯胺和环氧基反应生成仲胺;在第二阶段,生成的仲胺和环氧基反应生成叔胺,并且生成的羟基亦能和环氧基反应、具有加速反应进行的倾向。 胺的化学结构不同,它们与环氧基的反应速度也不相同,在初期反应速度比较快,环氧基消耗的比较多,到达一定的时间后,环氧基的消耗不像开始那么多。环

氧基的反应程度在3周的期间内非常低,聚酰胺只有40%,二亚乙基三胺也只不过65%,要进一步提高环氧基的反应程度,有必要在高温下进行固化反应。 当多胺固化环氧树脂时,醇或酚的存在会促进反应加快,但不能改变最后的反应程度。醇、酚的羟基和环氧基的氧原子形成氢键而促进开环,醇羟基容易开成这种键,因此显示更大的从促进作用。除了酚、醇之外,有机酸、硫酰胺等对反应也有促进作用。但邻苯二甲酸、顺丁烯二酸没有促进作用,这是由于它们和胺反应和成了酰亚胺之故。有些基团具有抑制作用。 如:,OR、,COOR、,SO3R、,CON2R、,SO2NR2、,CN、,NO2等。 2、叔胺与环氧基的反应 叔胺是强碱性化合物。叔胺固化环氧树脂按阴离子聚合反应进行。阴离子聚合固化剂首先作用环氧基,使其开环,生成氧阴离子,氧阴离子攻击环氧基,开环加成,这种开环加成连锁 反应进行下去固化环氧树脂。 3、咪唑化合物与环氧基反应 咪唑化合物为五元杂环化合物。结构式中含有两个氮原子,一个氮原子处于仲胺,另一个氮原子为叔胺。首先仲胺基的活泼氢和环氧基反应生成加成物,该加成物再和别的环氧基反应生成在分子内兼具?和?离子的离子络合物,生成的离子络合物的?和环氧基反应,以连锁反应的方式开环聚合固化环氧树脂。咪唑的阴离子聚合受加成物生成的制约,因此聚合速度比叔胺慢。 4、三氟化硼,胺络合物与环氧基的反应 BF3是环氧树脂的阳离子型催化剂,由于反应剧烈,无法应用,以与路易斯碱(胺类、醚类等)形成络合物的形式使用。BF3胺络合物是应用最早的潜伏型固化剂之一。它的阳离子聚合反应历程引发环氧基开环聚合,在和环氧基反应时,环氧基

环氧树脂的固化原理教学提纲

环氧树脂的固化原理

精品文档 环氧树脂的固化原理 环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物. (1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团的硬化剂反应而交联; (3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联; (4)环氧基或羟基与硬化剂所带基团发生反应而交联. 不同种类的硬化剂,在硬化过程中其作用也不同.有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物.具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂.多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物. 1、胺类硬化剂 胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华.胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等.胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺.即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N). 由于胺的种类不同,其硬化作用也不同: (1)伯胺和仲胺的作用 含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用.使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物. (2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子. 2、酸酐类硬化剂 酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物. 酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好.但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外.绝大多数是易升华的固体,而且一般要加热固化. 酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下: 酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构. 除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯.但这不是主要的反应. 3、树脂类硬化剂 含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂.如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等.它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用.常用的是低分子聚酰胺和酚醛树脂. (1)低分子聚酰胺不同于尼龙型的聚酰胺.它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂.由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大.它们的分子量在500~9000之间, 收集于网络,如有侵权请联系管理员删除

环氧树脂的环氧值的测定及固化实验

环氧树脂的环氧值的测定及固化实验 1. 实验目的 掌握低分子量环氧树脂的环氧值测定方法及计算,以及环氧树脂的固化。 2. 实验原理 2-3、2-4 以上多官能团体系单体进行缩聚时,先形成可溶可熔的线型或支链低分子树脂,反应如继续进行,形成体型结构,成为不溶不熔的热固性树脂。体型聚合物由交联将许多低分子以化学键连成一个整体,所以具有耐热性和尺寸稳定性能的优点。 体型缩聚也遵循缩聚反应的一般规律,具有“逐步”的特性。 以2-3,2-4官能度体系的缩聚反应如酚醛、醇酸树脂等在树脂合成阶段,反应程度应严格控制在凝胶点以下。 以 2-2官能度为原料的缩聚反应先形成低分子线型树脂(即结构预聚物),分子量约数百到数千,在成型或应用时,再加入固化剂或催化剂交联成体型结构。属于这类的有环氧树脂、聚氨脂泡沫塑料等。 环氧树脂是环氧氯丙烷和二羟基二苯基丙烷(双酚 A )在氢氧化钠( NaOH )的催化作用下不断地进行开环、闭环得到的线型树脂。如下式所示

上式中 n 一般在0 ~ 12之间,分子量相当于340~3800,n=0 时为淡黄色粘滞液体, n≥2时则为固体。n 值的大小由原料配比(环氧氯丙烷和双酚A 的摩尔比)、温度条件、氢氧化钠的浓度和加料次序来控制。 环氧树脂粘结力强,耐腐蚀、耐溶剂、抗冲性能和电性能良好,广泛用于粘结剂、涂料、复合材料等。环氧树脂分子中的环氧端基和羟基都可以成为进一步交联的基团,胺类和酸酐是使其交联的固化剂。乙二胺、二亚乙基三胺等伯胺类含有活泼氢原子,可使环氧基直接开环,属于室温固化剂。酐类(如邻苯二甲酸酐和马来酸酐)作固化剂时,因其活性较低,须在较高的温度(150~160℃)下固化。 3.环氧值的测定方法 环氧值是指每 100g 树脂中含环氧基的当量数,它是环氧树脂质量的重要指标之一。也是计算固化剂用量的依据。分子量愈高,环氧值就相应降低,一般低分子量环氧树脂的环氧值在0.48~0.57之间。 分子量小于 1500 的环氧树脂,其环氧值测定用盐酸 ── 丙酮法,反应式为:HC CH 2 +HCl actone H C CH 2Cl OH 称0.5g 树脂,称量准确到千分之一于三角瓶中,用移液管加入20毫升丙酮盐酸溶液,(盐酸-丙酮溶液配制:将2ml 浓盐酸溶于80ml 丙酮中,均匀混合即成 (现配现用) 。)微微用水浴加热,摇匀后放置暗处,静止30分钟冷却后用0.1N 氢氧化钠溶液滴定,以酚酞作指示剂(1滴),并作一空白试验。 环氧值 ( 当量 /100g 树脂 )E 按下式计算:

环氧树脂

环氧树脂

环氧树脂的命名 (1) 双酚A型环氧树脂 (2) 水性环氧树脂 (3) 柔韧性环氧树脂 (4) 环氧树脂的主要性能指标及测定方法 .......

一、环氧树脂的命名 1、国标GB/T1630-1989的命名法 按照GB/T1630-1989的规定,环氧树脂的名称由树脂缩写代号加牌号组成。按照GB/T1844-1995规定,环氧树脂缩写代号用“EP”表示。环氧树脂牌号由两个数字组组成。两组数字间用一字线连接:第Ⅰ数字组—第Ⅱ数字组。 (1)第1数字组。第1数字组由5位阿拉伯数字组成。每一数字(命名顺序号l、2、3、4、5)代表所指的特性,前两位数字表示树

脂的化学组分,后三位数字分别表示树脂黏度、环氧当量的范围值和对改性剂或溶剂的规定。按照表2—1列出的命名顺序号,依次标出各项性能的类别数或档数。如果某项性能末作规定,则在相应位置以“0”表示。 (2)第Ⅱ数字组。第Ⅱ数字组由3位阿拉伯数字组成。每一数字(命名顺序号6、7、8)代表所指的特性,分别表示树脂的密度范围值、添加剂类型和特征。按照表2—2列出的命名顺序号,依次标出各项性能的档数。如果某项性能未作规定,则在相应位置以“0”表示。 环氧树脂的主要性能

注:树脂化学组分用两位阿拉伯数字表示,如“1”类树脂写作“01”,“10”类树脂写作“10”。对由两类不同化学组分组成的树脂混合物,可用符号“00”表示。 环氧树脂的次要性能

注:①如果使用多种添加剂或规定有多种特征标示,应标出最主要的一种。②全面评定材料的燃烧性,至少需要测定燃烧性、引火性、放出热量、释放的有毒气体和烟密度等性能。 (3)命名举例。例1-某种环氧树脂(EP),化学组分为脂肪族缩水甘油醚(03),教度为l-5Pa·s(3),环氧当量为291-525g/mol(6),不含改性剂(1),密度为1.15-1.19g/cm3(3),未规定添加剂(0)和特征(o),其名称为EP0336l-300。例2- 某种环氧树脂(EP),系以两种不同化学组分(00)组成,树脂为半固体(5),环氧当量为2ll一290g/mol(5),含有活性剂(2),密度为1.20-1.29 g/cm3 (4),加有填料(2)和具有耐热注(5),其名称为EP 00552—425。 2、国标GB/T1630-1989的命名法 鉴于目前仍大量采用环氧树脂的老型号,故将老国标“GB/T1630-1989环氧树脂分类、型号、命名”中环氧树脂的命名摘录于下,以便查阅。 (1)分类和代号环氧树脂按其主要组成物质不同而分类,并分别给以代号如下。

环氧树脂的固化原理

环氧树脂的固化原理 环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物. (1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团的硬化剂反应而交联; (3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联; (4)环氧基或羟基与硬化剂所带基团发生反应而交联. 不同种类的硬化剂,在硬化过程中其作用也不同.有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物.具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂.多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物. 1、胺类硬化剂 胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华.胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等.胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺.即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N). 由于胺的种类不同,其硬化作用也不同: (1)伯胺和仲胺的作用 含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用.使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物. (2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子. 2、酸酐类硬化剂 酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物. 酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好.但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外.绝大多数是易升华的固体,而且一般要加热固化. 酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下: 酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构. 除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯.但这不是主要的反应. 3、树脂类硬化剂 含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂.如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等.它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用.常用的是低分子聚酰胺和酚醛树脂. (1)低分子聚酰胺不同于尼龙型的聚酰胺.它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂.由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大.它们的分子量在500~9000之间,有熔

酚醛改性环氧树脂应用案例分析

酚醛改性环氧树脂应用案例分析 黄仁勇 (甘肃土木工程科学研究院,兰州730020) 关键词:树脂;改性;防腐蚀施工;处理 中图分类号:T G174.2+2 文献标识码:B 文章编号:10052748X(2008)0720421201 Application of Phenol Aldehyde Modif ied Epoxy R esin HUAN G Ren2yong (Gansu Province Civil Engineering Science Institute,Lanzhou730020,China) K ey w ords:resin;modification;anticorrosion construction;disposal 1 情况简介 用酚醛改性环氧树脂或用环氧树脂改性酚醛树脂,是防腐蚀方案选择中经常会遇到的方案,理论上来说是可行的;但如果不掌握一定的理论基础知识,施工现场又把握不好,不能临场应变,不严格按照规范施工,也是极容易出现问题的。 某防腐施工队在西南某镍冶炼厂技术改造施工中,选材中大量采用酚醛改性环氧树脂制作玻璃钢、胶泥和砂浆等防腐蚀层。在交工验收并在甲方使用30天后发现:玻璃钢、胶泥、整体砂浆地坪等多处出现未固化点,点直径大约0.5cm,从点内有浅棕色液体渗出,整体砂浆地坪个别地方出现直径5~10 cm、高约1cm的鼓包。 2 树脂改性原理方法 酚醛树脂带有能与环氧树脂中的环氧基、羟基起反应的基团,在一定条件下能相互交联产生固化,其过程较为复杂,可以发生以下反应: (1)酚醛树脂中的酚性羟基与环氧基起醚化反应见式(1)。 (2)生成的新羟基又能和环氧基反应见式(2)。 (3)酚醛树脂中的羟甲基和环氧树脂中的羟基反应见式(3)。 (4)酚醛树脂中的羟甲基和环氧树脂中的环氧基反应见式(4)。 收稿日期:2007205224;修订日期:20072072 19 最终可交联成复杂的整体型结构产物,该产物既有酚醛树脂优良的耐酸性,又有环氧树脂的耐碱性和粘结性,也能提高单纯环氧树脂的耐温性。但 (下转第423页) 第29卷第7期2008年7月 腐蚀与防护 CORROSION&PRO TECTION Vol.29 No.7 J uly2008

常用环氧树脂参数总结

常用环氧树脂参数总结 一、缩水甘油基型环氧树脂: 1.缩水甘油醚型环氧树脂 1.1双酚A型环氧树脂: 双酚A型环氧树脂是应用最广泛的树脂之一,占环氧树脂树脂总产量的90%。在分子结构中含有羟基和醚键,固化过程进一步生成新的—OH和—O—,使固化物具有很高的内聚力和粘附力。因此可以对金属、陶瓷、木材、水泥和塑料进行粘接。 另外,双酚A型环氧树脂属无毒树脂,其白鼠的最低口服致死量为LD50为11.4g/kg。 双酚A型环氧树脂的牌号与性质表 新牌号原牌号外观粘度(Pa.s)软化点(℃)环氧值 E—55 616# 浅黄粘稠液体6-8 ----0.55-0.56 E—51 618# 浅黄粘稠液体10-16 ----0.48-0.54 E—44 6101# 黄色高粘度液体20-40 ----0.41-0.47 E—42 634# 同上----21-27 0.38-0.45 E—35 637# 同上----20-35 0.30-0.40 E—31 638# 浅黄粘稠液体----40-55 0.23-0.38 E—20 601# 黄色透明固体----64-76 0.18-0.22 E—14 603# 同上----78-85 0.10-0.18 E—12 604# 同上----85-95 0.10-0.18 E—06 607# 同上----110-135 0.04-0.07 E—03 609# 同上----135-155 0.02-0.04 E—01 665# 液体30-40 ----0.01-0.03 1.2双酚S型环氧树脂 双酚S型环氧树脂是由双酚S和过量环氧氯丙烷在碱性条件下缩聚得到的耐高温环氧树脂。 双酚S为浅黄色固体,由东北石化研究所研制,全名为“4,4‘—二羟基二苯双缩水甘油醚环氧树脂”,胺类、酸酐、咪唑均能固化双酚S,其固化物具有热变形温度高、热稳定性能好的特点。这是因为分子中极性强的砜基—SO2—取代双酚A中的异丙基,提高了热稳定性;砜基改善了粘附力,增强了环氧基的开环活性。 1.3双酚F型环氧树脂 双酚F型环氧树脂是由双酚F和过量环氧氯丙烷(1:10),在四甲基氯化铵和NaOH条件下,经醚化和闭环反应,缩聚而成的。 双酚F型环氧树脂的粘度低,可用于碳纤维复合材料、玻纤增强塑料以及地下油井的灌封材料。 1.4环氧化线型酚醛树脂 环氧酚醛是由低分子量酚醛树脂与环氧氯丙烷在酸催化剂下缩合而成,兼有酚醛和双酚A型环氧树脂的优点。按线型酚醛树脂分子量和发羟基含量不同,可以合成不同分子量和官能度的环氧酚醛,如甲酚线型酚醛树脂。 环氧酚醛高粘度半固体,平均官能度为2.5-6.0,软化点≤28℃,环氧值0.53-0.57,在上海树脂厂和无锡树脂厂生产。为改善工艺,添加低粘度的稀释剂,或与双酚A混合使用。 胺类、酸酐类和咪唑均能固化环氧酚醛。在150℃以下固化环氧酚醛和双酚A型环氧树脂的热变形温度相近。例如: 固化剂固化条件用量% 热变形温度(℃) 环氧酚醛双酚A 4,4‘一二氨基二苯甲烷93℃,2h204℃,25h 28 206 167 间苯二胺同上16 205 160 三乙烯四胺166℃,4h 14 150 127

低粘度环氧树脂固化体系研究.

低粘度环氧树脂固化体系研究 段华军王钧杨小利 (武汉理工大学430070 摘要:将低粘度交联剂加入到酸酐固化的环氧树脂体系中,能有效降低树脂体系的粘度,得到室温下仅为0.08Pa?s的酸酐-环氧树脂体系。利用正交实验优选了树脂配方,获得了优异的力学及物理性能;通过DSC确定了树脂的固化工艺制度,并利用TG对该树脂的热稳定性进行了评价。该树脂体系适合于RTM工艺及湿法制造高性能复合材料。 关键词:环氧树脂酸酐低粘度RTM 环氧树脂是制备高性能复合材料重要的基体材料之一,能够赋予复合材料良好的力学性能和物理性能。随着复合材料行业的飞速发展,新的成型加工方法不断涌现,对所使用的树脂基体提出了较高的要求。如R TM(Resin Transfer Molding 工艺,由于R TM工艺是低压成型工艺,不仅要求树脂具有较高的力学性能和物理性能,而且树脂对纤维只有一步浸润过程,还要求树脂具有很低的粘度,以满足树脂对纤维的充分浸润及流动充模[1~3]。目前使用的环氧树脂由于粘度较高,限制了其在R TM成型工艺中的应用。针对这一问题,研究满足R TM工艺要求的低粘度、高性能环氧树脂体系不仅能拓宽R TM工艺的应用领域,同时能极大的提高复合材料的性能。本文通过自制的一类交联剂、改性酸酐与E244环氧树脂组成一个共混树脂体系,该树脂体系在保持环氧树脂优异性能的前提下,同时具有很低的粘度。利用差示扫描量热法(DSC对该共混体系的固化特性进行了研究,利用正交实验确定了较为合理的固化制度;同时测试了该共混树脂体系的粘度、温度对粘度的影响以及浇铸体的力学性能和物理性能;并利用TG对该树脂的热稳定性进行了评价。 1实验部分 1.1原材料及仪器设备

环氧树脂及相关产品标准

环氧树脂及相关产品标准(一) 2004-4-26 ——环氧树脂产品标准概述 一、关于环氧树脂产品标准 本栏目发布我国环氧树脂产品的国家标准、部颁标准、行业标准,也将适当介绍一些国外的标准,热诚希望广大关注我国环氧树脂产业发展的人士提供信息。关于行业标准,以前由行业协会就国家有关部门委托制订,并成为国家标准。但近15年来此项工作基本中断,这对行业发展是不利的。为此,中国环氧树脂行业协会将启动“行标”计划,对存在落后、缺失因素的产品,逐步制订行业标准,加以规范,并在可能的情况下按有关要求进行规范完善,使之成为国家标准。 二、有关环氧树脂的国家标准目标 1、基础标准 GB/T1630—1989 环氧树脂命名 GB/T2035—1996 塑料术语及其定义 2、产品标准 GB/T13657—1992 双酚A型环氧树脂 3、方法标准 GB/T4612—1984 环氧化合物环氧当量的测定 GB/T4613—1984 环氧树脂和缩水甘油醚无机氯的测定 4、皂机氯的测定 GB/T4618—1984 环氧树脂和有关材料易皂化氯的测定 5、加德纳色度法 GB/T12007.1—1989 环氧树脂颜色测定方法加德纳色度法 GB/T12007.2—1989 环氧树脂钠离子测定方法 GB/T12007.3—1989 环氧树脂总氯含量测定方法 GB/T12007.4—1989 环氧树脂粘度测定方法 GB/T12007.5—1989 环氧树脂密度的测定方法、比重瓶法 GB/T12007.6—1989 环氧树脂软化点的测定方法 GB/T12007.7—1989 环氧树脂凝胶时间测定方法 Q/5S69—94 环氧化合物环氧当量的测定—溴化氢-冰乙酸非水滴定法 (中国航空总公司第014中心标准) 6、物理性能的确定 GB/T1732—1993 涂料黏度测定法 GB/T2794—1995 胶粘剂黏度测定方法(旋转黏度计法) GB/T2567—1995 树脂浇铸体力学性能试验方法总则 GB/T2568—1995 树脂浇铸体拉伸试验方法 GB/T2569—1995 树脂浇铸体压缩试验方法 GB/T2570—1995 树脂浇铸体弯曲试验方法 GB/T2571—1995 树脂浇铸体冲击试验方法 GB/T4726—1984 树脂浇铸体扭转试验方法

环氧树脂的阻燃方法

环氧树脂的阻燃方法 环氧树脂的阻燃方法一般可分为填料型与结构型2种。填料型阻燃通常是指在环氧树脂中加入各种不参与固化反应的阻燃添加剂,使之获得阻燃性能的方法,又称为非反应型阻燃方法;结构型阻燃是指在环氧树脂中引入阻燃结构、达到阻燃目的的方法,又称为反应型阻燃法。 1.1填料型阻燃 在环氧树脂阻燃技术中,最常用的方法是使用填料型阻燃剂。它与结构阻燃法相比,具有工艺简便、成本低廉、原料来源较为广泛、操作方便和阻燃效果较为明显等特点。 环氧树脂常用的填料型阻燃剂有卤化物、磷化物、水合氧化铝、铝酸钙和多磷酸铵等。这些阻燃剂单独使用时就可达到较好的阻燃效果,若经过预处理或与其他阻燃剂配合使用则阻燃效果更佳。如环氧树脂中加入的红磷,先用硅烷偶联剂或钛酸配包覆表面,然后再与A1(OH)3 并用,则阻燃效果更好。全氯联苯和一氧化镍也是较好的复合阻燃剂。表1、表2列出了几种加入具有协同阻燃作用的阻燃剂环氧树脂体系配方[1] 结构型阻燃 由结构型阻燃方法制备的环氧树脂体系的特点是环氧树脂分子结构中所含的阻燃元素不易迁移,不易渗出,具有优异和永久的阻燃性、良好的尺寸稳定性、热稳定性、氧化稳定性、水解稳定性以及很高的成炭率。结构型阻燃方法一般可以分为4种:〔1〕用含阻燃结构的单体直接制备环氧树脂;(2)加入阻燃性固化剂;(3)用活性阻燃稀释剂与环氧树脂混合;〔4〕添加反应型阻燃剂 制备阻燃环氧树脂 用于直接制备阻燃环氧树脂的单体通常都是含卤元素的单体,如在环氧树脂缩聚反应中加入含卤的双酚A,然后与环氧氯丙烷进行反应,生成卤代环氧树脂。表3是用双酚A和环氧氯丙烷制备阻燃环氧树脂体系的配方。将表中原料在80℃下反应4h后,真空除去过量环氧氯丙烷,水洗后除去生成的氯化钠,即制得溴含量为24%的环氧树脂。然后加入双氰胺和苄基二甲胺,经三辊机混炼,制成阻燃性环氧树脂体系 加入阻燃性固化剂 加入阻燃性固化剂,固化后的环氧树脂大分子中即含有阻燃结构,因此具有阻燃性。环氧树脂的阻燃性固化剂主要有:二氯代顺酐、六氯内次甲基四氢苯酐、四溴苯酐、四氯苯酐、80酸酐、含有胺基的磷酸及磷酸的酰胺等。80酸酐作环氧树脂固化剂的特点是可在室温下与环氧树脂混合,工艺简便,毒性低,阻燃性能佳(氧指数可达32),持久性长,而且可以在中温条件(100~110℃)下迅速固化。 加入活性阻燃稀释剂 常用的环氧树脂活性阻燃稀释剂有二澳甲酚缩水甘油醚、二溴苯基缩水甘油醚等c二溴联苯基缩水甘油醚对环氧树脂的阻燃效果见表

环氧树脂的固化

实验五 环氧树脂的固化 化工系 毕啸天 2010011811 一、实验目的 1.了解高分子化学反应的基本原理及特点 2.了解环氧树脂的制备及固化反应的原理、特点 二、实验原理 热固性树脂是一类重要的树脂材料,环氧树脂(epoxy resins )就是其中的一大品种。含有环氧基团的低聚物,与固化剂反应形成三维网状的固化物,是这类树脂的总称,其中以双酚A 型环氧树脂产量最大,用途最广。它是由环氧氯丙烷与双酚A 在氢氧化钠作用下聚合而成。根据不同的原料配比,不同反应条件,可以制备不同软化点、不同分子量的环氧树脂。其通式如下: CH 2 CH CH 2 O C CH 3 CH 3 OCH 2CHCH 2 OH n C CH 3CH 3 OCH 2 CH CH 2 O 环氧树脂通常用下面几个参数表征: 1.树脂粘度 2.环氧当量或环氧值 3.平均分子量和分子量分布 4.熔点或软化点 环氧值是表征环氧树脂质量的重要指标。它表示每100g 环氧树脂中含环氧基的摩尔数。我国环氧树脂部颁牌号中的两位数字是该牌号树脂的平均环氧值×100,所以部颁牌号可以很简明的表示出该环氧树脂的主要特征。 环氧树脂的结构中末端的活泼的环氧基和侧羟基赋予树脂反应活性,双酚A 骨架提供强韧性和耐热性;亚甲基链赋予树脂柔韧性;羟基和醚键的高度极性,使环氧树脂分子与相邻界面产生了较强的分子间作用力。双酚A 型环氧树脂综合性能好,因而用途广泛,商业上称作“万能胶”。 环氧树脂在未固化前呈热塑性的线性结构,通过与固化剂发生化学反应,形成网状结构的大分子,才具有使用价值。环氧树脂固化物的性能除了取决于自身的结构特性以外,还取决于固化剂的种类。此外固化物性能还受固化反应程度的影响。采用的固化条件不同,交联密度也会不同,所得固化物的性能也各异。环氧树脂的固化剂种类很多,不同的固化剂,其交联反应也不同。 未固化的环氧树脂是粘性液体或脆性固体,没有实用价值,只有与固化剂进行固化生成交联网络结构才能实现最终用途。环氧树脂与固化剂的反应,除了一般的脂肪胺和部分脂环胺类固化剂可以在常温固化外,其它大部分脂环族胺和芳香胺类以及全部的酸酐类固化剂都需要在较高的温度下经过较长的时间才能发生固化交联反应。为了降低固化温度,使用促进剂是必要的,适用于胺类和酸酐类固化环氧树脂的促进剂可分为亲核型、亲电型和金属羧酸(或乙酰丙酮)盐三类。环氧树脂的固化反应是通过环氧基的开环反应完成的,末端基为环氧基的树脂可以和多种含活泼氢的化合物反应。活泼氢对环氧化合物的作用先是在环氧基的 氧原子上引起质子的亲电附加,生成H 3O +离子,此反应非常迅速,在此H 3O + 离子的作用下进行亲核进攻,使环氧基开环。含有活泼氢的化合物有醇、酚、羧酸、硫醇、酰胺、脲类和异氰酸酯等,上述反应并不需要消除小分子就能使链增长或交联,因此环氧树脂比其它类型

环氧树脂固化剂

环氧树脂固化剂

固化剂 1.脂肪族多元胺 1.1 乙二胺(EDA) 由1,2-二氯乙烷(EDC)和氨反应制备。还可由一乙醇胺(MEA)和氨反应制备乙二胺。 对于脂肪胺,伯胺基与环氧的反应速度约为仲胺的2倍。但环氧基与伯胺的反应与生成的仲胺基和环氧基的反应几乎是同时进行的。伯胺易与空气中的二氧化碳反应生成白色的固体碳酸铵盐,不能与环氧基发生反应,但加热可以放出二氧化碳,可继续反应。 1.2 二亚乙基三胺(DETA) 在25℃下24小时内就能充分固化,7d可以达到最高值,加热进行后固化,其性能可以得到进一步改善。 二亚乙基三胺的粘度非常低,与空气接触生产白烟,环氧当量为185的双酚A型环氧树脂其计算用量为11%。在其化学计算量的当量点附近有最大的交联密度。而实际用量为化学计算量的75%即可,有助于减少固化放热。 以二亚乙基三胺固化的环氧树脂有良好的耐化学药品性。 二亚乙基三胺的变性物: 二亚乙基三胺与环氧乙烷(EO)、环氧丙烷(PO)的加成物。生成N,N’-二羟乙基二亚乙基三胺,由于加成物中含有羟基,加速了环氧树脂的固化速度,其适用期比二亚乙基三胺要短。固化放热温度随羟乙基化程度提高而降低。且改善了固化剂对树脂的溶解性,降低

了固化剂的挥发性和毒性。但其吸湿性变强。 二亚乙基三胺与丙烯晴的加成反应成为氰乙基化反应,加成后反应活性降低,适用期增长,受湿度的影响也变难。随着氰乙基化程度的增加,最高放热温度降低,树脂固化物的耐溶剂性得到改善,特别是耐氯化溶剂性能,但固化物电性能有所下降。 二亚乙基三胺与甲醛或多聚甲醛的反应称作羟甲基化反应,可制成一种低毒性的固化剂,适用期较短,适用于快速固化的要求。 二亚乙基三胺与环氧树脂及单环氧化物反应,生成具有羟基和氨基的胺加成物,由于加成物的分子量较大,挥发性小,没有胺臭味,毒性亦低,与树脂的配合量较多,称量不严格,生成的羟基具有促进其固化的作用,由于胺加成物的粘度高,使适用期变短。 二乙胺基三胺与酚、醛的反应成为曼尼期反应,三元反应生成物成为曼尼期碱。由于反应生成物的分子结构里含有酚羟基、氨基、仲胺基使得该类固化剂固化速度快,可在低温、潮湿或水下固化。 二亚乙基三胺与有机酸、有机酸酯的反应加成物 二亚乙基三胺与桐油、丙烯酸酯、水杨酸甲酯、癸二酸、二元羧酸酯、环氧油酸乙酯、环氧树脂、二酮丙烯酰胺的加成物。 三亚乙基四胺和四亚乙基五胺及其变性物,二者的蒸汽压比二亚

相关文档