文档库 最新最全的文档下载
当前位置:文档库 › 用导数研究函数的恒成立与存在性问答答案解析

用导数研究函数的恒成立与存在性问答答案解析

用导数研究函数的恒成立与存在性问答答案解析
用导数研究函数的恒成立与存在性问答答案解析

用导数研究函数的恒成立与存在问题

1.已知函数23()2ln x

f x x x a

=

-+,其中a 为常数. (1)若1a =,求函数()f x 的单调区间; (2)若函数()f x 在区间[1,2]上为单调函数,求a 的取值范围.

2.已知函数3

2

()4()f x x ax a R =-+-∈,'()f x 是()f x 的导函数。

(1)当2a =时,对于任意的[1,1]m ∈-,[1,1]n ∈-,求()()f m f n '+的最小值; (2)若存在0(0,)x ∈+∞,使0()f x >0,求a 的取值范围。

3.已知函数x ax x f ln )(+= )(R a ∈.

(1)若2=a ,求曲线)(x f y =在点1x =处的切线方程; (2)求)(x f 的单调区间;

(3)设22)(2

+-=x x x g ,若对任意1(0,)x ∈+∞,均存在[]1,02∈x ,使得)()(21x g x f <,

求实数a 的取值范围.

4.(2016届惠州二模)已知函数()2

2ln f x x x =-+.

(Ⅰ)求函数()f x 的最大值; (Ⅱ)若函数()f x 与()a

g x x x

=+

有相同极值点. ①求实数a 的值;

②对121,,3x x e ??

?∈????

(e 为自然对数的底数),不等式

()()1211f x g x k -≤-恒成立,求实数k 的取值范围.

5.已知函数2

12

()()ln ()f x a x x a R =-+∈.

(1)当1a =时,01[,]x e ?∈使不等式0()f x m ≤,求实数m 的取值范围;

(2)若在区间1(,)+∞,函数()f x 的图象恒在直线2y ax =的下方,求实数a 的取值范围.

.

用导数研究函数的恒成立与存在问题答案

1.解:(1)若a=1,则f(x)=3x-2x2+ln x,定义域为(0,+∞),

f ′(x )=1x -4x +3=-4x 2+3x +1x =

-4x +1x -1

x

(x >0).

当x ∈(0,1)时,f ′(x )>0,函数f (x )=3x -2x 2+ln x 单调递增. 当x ∈(1,+∞)时,f ′(x )<0,函数f (x )=3x -2x 2+ln x 单调递减, 即f (x )的单调增区间为(0,1),单调减区间为(1,+∞). (2)f ′(x )=3a -4x +1x

.

若函数f (x )在区间[1,2]上为单调函数,

即在[1,2]上,f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1

x

≤0,

即3a -4x +1x ≥0或3a -4x +1

x

≤0在[1,2]上恒成立.

即3a

≥4x -1x 或3a ≤4x -1x

.

令h (x )=4x -1

x

,因为函数h (x )在[1,2]上单调递增,

所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3

a ≤3,

解得a <0或0<a ≤2

5

或a ≥1.

故a 的取值范围是(-∞,0)∪(0,2

5

]∪[1,+∞).

2. 解:(1)由题意知.43)(',42)(2

2

3

x x x f x x x f +-=-+-=令.3

4

0,0)('或得==x x f

当x 在[-1,1]上变化时,)(),('x f x f 随x 的变化情况如下表:

x

-1 (-1,0)

0 (0,1)

1 )('x f -7 - 0 + 1 )(x f

-1

-4

-3

)(],1,1[m f m -∈∴对于的最小值为,4)0(-=f

x x x f 43)('2+-= 的对称轴为32

=

x ,

且抛物线开口向下, )('],1,1[n f n -∈∴对于的最小值为.7)1('-=-f

)(')(n f m f +∴的最小值为-11.

(2))32(3)('a x x x f -

-= .

①若0)(',0,0<>≤x f x a 时当, [)+∞∴,0)(在x f 上单调递减,又.4)(,0,4)0(-<>-=x f x f 时则当

.0)(,0,000>>≤∴x f x a 使不存在时当

②若,0)(',320,0><

<>x f a x a 时则当当.0)(',3

2<>x f a x 时 从而???

??32,0)(在x f 上单调递增,在??

?

???+∞,32a

上单调递减,

494278)32()(),0(33max

-+-==+∞∈∴a a a f x f x 时,当,则.3,27,0427

433

>>>-a a a 解得即

综上,a 的取值范围是).,3(+∞ (或由020

004

,0)(,0x x a x f x +>

>>得,用两种方法可解) 3. 解:

(1)由已知1

20()()f x x x

'=+>, 1213()f '=+=, 故曲线()y f x =在1x =处切线的斜率为3 而12()f =,所以切点为12(,),)(x f y =在点1x =处的切线方程为 31y x =-

(2)110()()ax f x a x x x

+'=+

=> ①当0a ≥时,由于0x >,故10ax +>,所以0()f x '>,()f x 的单调递增区间为0(,)+∞.

②当0a <时,由0()f x '=,得1x a =-

. 在区间10(,)a -上,0()f x '>,在区间1

(,)a

-+∞上0()f x '<, 所以,函数的单调递增区间为1

0(,)a -,单调递减区间为1

(,)a

-

+∞. (3)由已知,问题等价于为max max ()()f x g x <. 其中()2max g x =

由(2)知,当0a ≥时,()f x 在0(,)+∞上单调递增,值域为R ,故不符合题意.

(或者举出反例:存在33

32()f e ae =+>,故不符合题意.)

当0a <时,()f x 在10(,)a -上单调递增,在1

(,)a

-

+∞上单调递减,

故()f x 的极大值即为最大值,1111()ln()ln()f a a a

-=-+-=---,

所以21ln()a >---,解得31a e

<-

. 4. 解(Ⅰ)()()()()211220x x f x x x x x

+-'=-+

=->,…………………………1分 由()0,0f x x '?>?

>?得01x <<;由()0,0

f x x '??得1x >.

()f x ∴在()0,1上为增函数,在()1,+∞上为减函数. ……………………2分 ∴函数()f x 的最大值为()11f =-.…………………………………………3分 (Ⅱ)

()()2,1a a g x x g x x x

'=+∴=-.

①由(1)知,1x =是函数()f x 的极值点, 又

函数()f x 与()a

g x x x

=+

有相同极值点, ∴1x =是函数()g x 的极值点, ∴()110g a '=-=,解得1a =.……………………………………………4分

经验证,当1a =时,函数()g x 在1x =时取到极小值,符合题意. ……5分 ②

()()2112,11,392ln 3f f f e e ??

=--=-=-+ ???

易知2

192ln 321e -+<-

-<-,即()()131f f f e ??

<< ???

. ()()()()111min max 1,3,392ln 3,11x f x f f x f e ??

∴?∈==-+==-????

………7分

由①知()()211,1g x x g x x x '=+

∴=-,当1,1x e ??

∈????

时,()0g x '<;当(]1,3x ∈时,()0g x '>. 故()g x 在1,1e ??

????

上为减函数,在(]1,3上为增函数.

()()11110,12,3333g e g g e e ??=+==+= ???,而()()11012,133e g g g e e ??

<+<∴<< ???.

()()()()222min max 110,3,12,33x g x g g x g e ??

∴?∈====????

. …………………9分

1当10k ->,即1k >时,对于121,,3x x e ??

?∈????

不等式

()()

1211

f x

g x k -≤-恒成立()()12max 1k f x g x ?-≥-????()()12max 1k f x g x ?≥-+????. ()()()()1211123f x g x f g -≤-=--=-,

312,1,1k k k ∴≥-+=->∴>又. ……………………………………………10分 2当10k -<,即1k <时,对于121,,3x x e ??

?∈????

不等式

()()

1211

f x

g x k -≤-恒成立()()12min 1k f x g x ?-≤-????()()12min 1k f x g x ?≤-+????. ()()()()121037

3392ln 32ln 333

f x

g x f g -≥-=-+-=-+, 3434

2ln 3,1,2ln 333

k k k ∴≤-

+<∴≤-+又. ………………………………11分 综上,所求实数k 的取值范围为()34,2ln 31,3?

?-∞-

++∞ ??

?

.…………………12分

5.【解】:(1)当a =1时,f (x )=12x 2+ln x (x >0),f ′(x )=x +1

x

, 由x ∈[1,e],f ′(x )>0得函数f (x )在区间[1,e]为增函数,

则当x ∈[1,e]时,f (x )∈??????

12

,1+12e 2.

故要使?x 0∈[1,e]使不等式f (x 0)≤m 成立,只需m ≥1

2即可.

(2)在区间(1,+∞)上,函数f (x )的图象恒在直线y =2ax 的下方 等价于对?x ∈(1,+∞),f (x )<2ax , 即(a -1

2

)x 2+ln x -2ax <0恒成立.

设g (x )=(a -1

2

)x 2-2ax +ln x (x ∈[1,+∞)),

则g ′(x )=(2a -1)x -2a +1x =(x -1)(2a -1-1

x

).

当x ∈(1,+∞)时,x -1>0,0<1

x

<1.

①若2a -1≤0,即a ≤1

2

,g ′(x )<0,函数g (x )在区间[1,+∞)上为减函数,

则当?x ∈(1,+∞)时g (x )<g (1)=a -12-2a =-1

2

-a ,

只需-12-a ≤0,即当-12≤a ≤1

2

时,

g (x )=(a -1

2

)x 2+ln x -2ax <0恒成立.

②若0<2a -1<1,即1

2

<a <1时,

令g ′(x )=(x -1)·(2a -1-1x )=0得x =1

2a -1

>1,

函数g (x )在区间? ????

1,

12a -1为减函数,? ??

??12a -1,+∞为增函数, 则g (x )∈????

??

g ? ????12a -1,+∞,不合题意. ③若2a -1≥1,即当a ≥1时g ′(x )>0,函数g (x )在区间[1,+∞)为增函数, 则g (x )∈[g (1),+∞),不合题意.

综上可知:当-12≤a ≤12时g (x )=(a -1

2

)x 2+ln x -2ax <0恒成立,

即当-12≤a ≤1

2时,在区间(1,+∞)上函数f (x )的图象恒在直线y =2ax 的下方.

恒成立与存在性问题的基本解题策略

“恒成立问题”与“存在性问题”的基本解题策略 一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型 1、恒成立问题的转化:()a f x >恒成立?()max a f x >;()()min a f x a f x ≤?≤恒成立 2、能成立问题的转化:()a f x >能成立?()min a f x >;()()max a f x a f x ≤?≤能成立 3、恰成立问题的转化:()a f x >在M 上恰成立?()a f x >的解集为M ()()R a f x M a f x C M ?>???≤?? 在上恒成立 在上恒成立 另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥ 5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤ 6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ 7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤ 8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上 的值域为A ,g(x)在区间[c,d]上的值域为B,则A ?B. 9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方; 10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 恒成立问题的基本类型 在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题. 函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;?某表达式的值恒大于a 等等… 恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。因此也成为历年高考的一个热点。 恒成立问题在解题过程中大致可分为以下几种类型: ①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。 二、恒成立问题解决的基本策略 大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题。等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的。 (一)两个基本思想解决“恒成立问题” 思路1、max )]([)(x f m D x x f m ≥?∈≥上恒成立在 思路2、min )]([)(x f m D x x f m ≤?∈≤上恒成立在 如何在区间D 上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题, 也是高中数学非常重要的一个模块, 不管是小题,还 是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后, a f (x )恒成立,则有a f (X )max 2. 对于双变量的恒成立问题 f(x) min g(x)min 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的, (甚至我提出这样 一个观点,所有导数的题目95%3根结底就是带参数二次函数在已知定义域上根的讨论, 3%是 ax b 与ax 3 b 这种形式根的讨论,2%!观察法得到零点,零点通常是1,-,e 之类),所以如果 e 我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一?二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知f (x ) ■ 2x2 2ax a 1定义域为R ,求a 的取值围 思考:①引入定义域(非R ) ② 参数在二次项,就需考虑是否为0 1 ③ 引入高次(3次,4次,—,I nx , e x 等等) x ④ 引入a 2, a 3等项(导致不能分离变量) f (x )恒成立,则有a f ( x) min (若是存在性问题,那么最大变最小, 最小变最大) 如:化简后我们分析得到, a,b , f (x) 0恒成立,那么只需 f ( x) min a,b ,使得 f(x) 0,那么只需f (X )max 0 如:化简后我们分析得到, X i ,X 2 a,b , f(xj g(X 2),那么只需 f (X)min g ( X) max 如:化简后我们分析得到, X i a,b , x 2 c, d 使f (xj gg ),那么只需 如:化简后我们分析得到, X i a,b ,X 2 C,d 使 f (X i ) g(X 2),那么只需 f (X)max g(x)min 还有一些情况了,这里不一一列举, 一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题, 成立问题(2014.03锡常镇一模那题特别典型) 总之一句话 (双变量的存在性与恒成立问题,都是先处理 我们往往先根据函数的单调性,去掉绝对值,再转变成恒

导数中的恒成立和存在性问题

导数中的恒成立和存在性问题

技巧传播 1.恒成立问题的转化:()a f x >恒成立max ()a f x ?>;()a f x ≤恒成立min ()a f x ?≤; 2.能成立问题的转化:()a f x >能成立min ()a f x ?>;()a f x ≤能成立max ()a f x ?≤; 3.恰成立问题的转化:()a f x >在M 上恰成立()a f x ?>的解集为R ()()a f x M M a f x C M >???≤?在上恒成立在上恒成立 ; 另一转化方法:若x D ∈,()f x A ≥在D 上恰成立,等价于()f x 在D 上的最小值min ()f x A =, 若x D ∈,()f x B ≤在D 上恰成立,则等价于()f x 在D 上的最大值max ()f x B =; 4.设函数()f x 、()g x ,对任意的1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≥,则min min ()()f x g x ≥; 5.设函数()f x 、()g x ,对任意的1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≤,则max max ()()f x g x ≤; 6.设函数()f x 、()g x ,存在1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≥,则max min ()()f x g x ≥; 7.设函数()f x 、()g x ,存在1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≤,则min max ()()f x g x ≤; 8.若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图像在函数()y g x =图像上方; 9.若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图像在函数()y g x =图像下方;

高中数学恒成立与存在性问题

高中恒成立问题总结 解决高考数学中的恒成立问题常用以下几种方法: ①函数性质法; ②主参换位法; ③分离参数法; ④数形结合法。 XXX 核心思想: 1.恒成立问题的转化: 恒成立; 2.能成立问题的转化: 能成立; 3.恰成立问题的转化: 若在D 上恰成立在D 上的最小值; 若在D 上恰成立在D 上的最大值. 4.设函数,,对任意的,存在,使得,则 ; 设函数,,对任意的,存在,使得,则 ; 设函数,,存在,存在,使得,则 ; 设函数,,存在,存在,使得,则; 5.若不等式在区间D 上恒成立,则等价于在区间D 上函数和图象在函数图象上方; 若不等式在区间D 上恒成立,则等价于在区间D 上函数和图象在函数图象下方. 6.常见二次函数 ①.若二次函数(或)在R 上恒成立,则有(或); ②.若二次函数(或)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解. ()a f x >?()max a f x >()()min a f x a f x ≤?≤恒成立()a f x >?()min a f x >()()max a f x a f x ≤?≤能成立A x f D x ≥∈)(,?)(x f A x f =)(min ,D x ∈B x f ≤)(?)(x f B x f =)(max ()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≥()()x g x f min min ≥()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≤()()x g x f max max ≤()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≥()()x g x f min max ≥()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≤()()x g x f max min ≤()()f x g x >()y f x =()y g x =()()f x g x <()y f x =()y g x =2()(0)0f x ax bx c a =++≠>0<00a >???0<

利用导数研究函数的单调性

利用导数研究函数的单调性 一、选择题 1.函数f (x )=x ln x ,则( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在? ? ???0,1e 上递增 D.在? ? ???0,1e 上递减 解析 f (x )的定义域为(0,+∞),f ′(x )=ln x +1,令f ′(x )>0得x >1 e , 令f ′(x )<0得00. 答案 C 3.已知函数f (x )=1 2x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 f ′(x )=3 2x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x ) 在R 上单调递增”的充分不必要条件. 答案 A 4.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )

解析由y=f′(x)的图象知,y=f(x)在[-1,1]上为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢. 答案 B 5.设函数f(x)=1 2 x2-9ln x在区间[a-1,a+1]上单调递减,则实数a的取值 范围是( ) A.(1,2] B.(4,+∞] C.[-∞,2) D.(0,3] 解析∵f(x)=1 2 x2-9ln x,∴f′(x)=x- 9 x (x>0), 当x-9 x ≤0时,有00且a+1≤3,解得10得 x>1. 答案(1,+∞) 7.已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则实数a的取值范围是________.

(完整版)恒成立存在性问题

专题 恒成立存在性问题 知识点梳理 1、恒成立问题的转化:()a f x >恒成立?()max a f x >;()()min a f x a f x ≤?≤恒成立 2、能成立问题的转化:()a f x >能成立?()min a f x >;()()max a f x a f x ≤?≤能成立 3、恰成立问题的转化:()a f x >在M 上恰成立?()a f x >的解集为M ()()R a f x M a f x C M ?>???≤??在上恒成立 在上恒成立 另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥ 5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤ 6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ 7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤ 8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象 上方; 9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 题型一、常见方法 1、已知函数12)(2 +-=ax x x f ,x a x g = )(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围; 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围; 2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,4 1 [∈x 恒成立,求实数b 的取值范围. 3、已知两函数2 )(x x f =,m x g x -?? ? ??=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实 数m 的取值范围为

第18讲 导数的应用——利用导数研究不等式恒成立问题备战2021年新高考数学考点精讲与达标测试

《导数的应用——利用导数研究不等式恒成立(能成立)问题》 达标检测 [A 组]—应知应会 1.已知函数f (x )=x +4 x ,g (x )=2x +a ,若?x 1∈????12,1,?x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是( ) A .a ≤1 B .a ≥1 C .a ≤2 D .a ≥2 【解析】选A.由题意知f (x )min ??? ?x ∈????12,1≥g (x )min (x ∈[2,3]),因为f (x )min =5,g (x )min =4+a ,所以5≥4+a ,即a ≤1,故选A. 2.(2020·吉林白山联考)设函数f (x )=e x ????x +3x -3-a x ,若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【解析】原问题等价于存在x ∈(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min ,而g ′(x )=e x (x 2-x ).由g ′(x )>0可得x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1).据此可知,函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e. 3.(2020·西安质检)已知函数f (x )=ln x ,g (x )=x -1. (1)求函数y =f (x )的图象在x =1处的切线方程; (2)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围. 【解析】(1)因为f ′(x )=1 x , 所以f ′(1)=1. 又f (1)=0,所以切线的方程为y -f (1)=f ′(1)(x -1), 即所求切线的方程为y =x -1. (2)易知对任意的x ∈(1,+∞),f (x )>0,g (x )>0. ①当a ≥1时,f (x )≤g (x )≤ag (x ); ②当a ≤0时,f (x )>0,ag (x )≤0,所以不满足不等式f (x )≤ag (x ); ③当0<a <1时,设φ(x )=f (x )-ag (x )=ln x -a (x -1),则φ′(x )=1 x -a ,

《3.3.1函数的单调性与导数》教学案

3.3.1《函数的单调性与导数》教学案 教学目标: 1.了解可导函数的单调性与其导数的关系; 2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次; 教学重点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学过程: 一.创设情景 函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. 二.新课讲授 1.问题:图3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现: (1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>. (2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减 函数.相应地,'()()0v t h t =<. 2.函数的单调性与导数的关系 观察下面函数的图像,探讨函数的单调性与其导数正负的关系. 如图3.3-3,导数'0()f x 表示函数()f x 在 点00(,)x y 处的切线的斜率. 在0x x =处,'0()0f x >,切线是“左下右上”式的,

用导数研究函数的恒成立与存在性问题-答案

用导数研究函数的恒成立与存在问题 1.已知函数23()2ln x f x x x a = -+,其中a 为常数. (1)若1a =,求函数()f x 的单调区间; (2)若函数()f x 在区间[1,2]上为单调函数,求a 的取值范围. 2.已知函数3 2 ()4()f x x ax a R =-+-∈,'()f x 是()f x 的导函数。 (1)当2a =时,对于任意的[1,1]m ∈-,[1,1]n ∈-,求()()f m f n '+的最小值; (2)若存在0(0,)x ∈+∞,使0()f x >0,求a 的取值范围。

3.已知函数x ax x f ln )(+= )(R a ∈. (1)若2=a ,求曲线)(x f y =在点1x =处的切线方程; (2)求)(x f 的单调区间; (3)设22)(2 +-=x x x g ,若对任意1(0,)x ∈+∞,均存在[]1,02∈x ,使得)()(21x g x f <, 求实数a 的取值范围.

4.(2016届惠州二模)已知函数()22ln f x x x =-+. (Ⅰ)求函数()f x 的最大值; (Ⅱ)若函数()f x 与()a g x x x =+ 有相同极值点. ①求实数a 的值; ②对121,,3x x e ???∈???? (e 为自然对数的底数),不等式 ()() 1211 f x g x k -≤-恒成立,求实数k 的取值范围.

5.已知函数2 12 ()()ln ()f x a x x a R =-+∈. (1)当1a =时,01[,]x e ?∈使不等式0()f x m ≤,求实数m 的取值范围; (2)若在区间1(,)+∞,函数()f x 的图象恒在直线2y ax =的下方,求实数a 的取值范围.

恒成立问题与存在性问题(最新精华)

恒成立问题与存在性问题 思路一: (1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,则 不等式a x f >)(在区间D 上恒成立a x f >?min )(; 不等式a x f ≥)(在区间D 上恒成立a x f ≥?min )(; 不等式a x f <)(在区间D 上恒成立a x f )(或))((a x f ≥在区间D 上恒成立a m ≥?; 不等式a x f <)(或a x f ≤)(在区间D 上恒成立a n ≤?。 例题1: 已知函数.ln )(x x x f = (1)求函数.ln )(x x x f =的最小值; (2)若对所有的1≥x 都有1)(-≥ax x f ,求实数a 的取值范围。 答案:(1)11min )()(---==e e f x f ;(2)]1,(-∞ 变式:设函数)1ln(2)1()(2x x x f +-+= (1)求函数)(x f 的单调区间; (2)若当]1,1[1--∈-e e x 时,不等式m x f <)(恒成立,求实数m 的取值范围; (3)若关于x 的方程a x x x f ++=2)(在区间]2,0[上恰有两个相异实根,求实数a 的取 值范围。 答案:(1)递增区间是),0(+∞;递减区间是)0,1(- (2)22 ->e m (3))3ln 23,2ln 22(--

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题 如:化简后我们分析得到,对[],x a b ?∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ?∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题 如:化简后我们分析得到,对[]12,,x x a b ?∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ?∈,[]2,x c d ?∈使12()()f x g x ≥,那么只需 min min ()()f x g x ≥ 如:化简后我们分析得到,[]1,x a b ?∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(201 4.03苏锡常镇一模那题特别典型) 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是 ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是1 1,,e e 之类) ,所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一.二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知()f x =R ,求a 的取值范围 思考:① 引入定义域(非R ) ②参数在二次项,就需考虑是否为0 ③引入高次(3次,4次,1 x ,ln x ,x e 等等) ④引入2a ,3a 等项(导致不能分离变量)

函数恒成立与存在性问题

恒成立与存在性问题 基本方法: 恒成立问题: 1. 对于(),x a b ?∈,()f x k ≥恒成立等价于min ()f x k ≥. 2. 对于(),x a b ?∈,()f x k ≤恒成立等价于max ()f x k ≤. 3. 对于[]12,,x x a b ?∈,12()()f x g x ≥等价于min max ()()f x g x ≥. 4. 对于[]12,,x x a b ?∈,12()()f x g x ≤等价于max min ()()f x g x ≤. 5. 对于[],x a b ?∈,()()f x g x ≥,等价于构造函数()()()h x f x g x =-,()h x 在区间[],a b 上的最小值min ()0h x ≥. 6. 对于[],x a b ?∈,()()f x g x ≤,等价于构造函数()()()h x f x g x =-,()h x 在区间[],a b 上的最大值max ()0h x ≤. 7. ()f x 在区间[],a b 上单调递增,等价于[]min ()0,,f x x a b '≥∈. 8. ()f x 在区间[],a b 上单调递减,等价于[]max ()0,,f x x a b '≤∈. 存在性问题: 1. ()0,x a b ?∈,使得()f x k ≥成立,等价于max ()f x k ≥. 2. ()0,x a b ?∈,使得()f x k ≤成立,等价于min ()f x k ≤. 3. []12,,x x a b ?∈,使得12()()f x g x ≥成立,等价于max min ()()f x g x ≥. 4. []12,,x x a b ?∈,使得12()()f x g x ≤,等价于min max ()()f x g x ≤. 5. [],x a b ?∈,使得()()f x g x ≥,等价于构造函数()()()h x f x g x =-,()h x 在区间[],a b 上的最大值max ()0h x ≥. 6. [],x a b ?∈,使得()()f x g x ≤,等价于构造函数()()()h x f x g x =-,()h x 在区间[],a b 上的最小值min ()0h x ≤. 参变分离: 解决有关参数的恒成立问题或存在性问题时经常会用到参变分离的方法:就是在

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

利用导数研究函数的单调性和极值(答案)

小题快练 1.(2013全国Ⅰ卷理)设曲线1 1 x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .1 2 - D .2- 2.(2013全国Ⅰ卷改编)设函数2 )1()(x e x x f x --=,则函数()f x 的单调递增区间 为 ,单调递减区间为 . 【解析】(Ⅰ) 当1k =时, ()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=- 令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表: 右表可知,函数f x 的递减区间为0,ln 2,递增区间为,0-∞,ln 2,+∞. 3.(2013湖北理)若f(x)=2 1ln(2)2 x b x - ++∞在(-1,+)上是减函数,则b 的取值范围是(C ) A.[-1,+∞] B.(-1,+∞) C.(-∞,-1) D.(-∞,-1) 4.已知函数x bx ax x f 3)(2 3 -+=在1±=x 处取得极值. (1)讨论)1(f 和)1(-f 是函数f (x )的极大值还是极小值; (2)过点)16,0(A 作曲线y= f (x )的切线,求此切线方程. (1)解:323)(2-+='bx ax x f ,依题意,0)1()1(=-'='f f ,即 ?? ?=--=-+. 0323, 0323b a b a 解得0,1==b a . ∴)1)(1(333)(,3)(2 3 -+=-='-=x x x x f x x x f . 令0)(='x f ,得1,1=-=x x . 若),1()1,(∞+--∞∈Y x ,则0)(>'x f ,故 f (x )在)1,(--∞上是增函数, f (x )在),1(∞+上是增函数. 若)1,1(-∈x ,则0)(<'x f ,故f (x )在)1,1(-上是减函数. 所以,2)1(=-f 是极大值;2)1(-=f 是极小值. (2)解:曲线方程为x x y 33 -=,点)16,0(A 不在曲线上. 设切点为),(00y x M ,则点M 的坐标满足03 003x x y -=. 因)1(3)(2 00-='x x f ,故切线的方程为))(1(3020 0x x x y y --=- 注意到点A (0,16)在切线上,有 )0)(1(3)3(16020030x x x x --=-- 化简得83 0-=x ,解得20-=x . 所以,切点为)2,2(--M ,切线方程为0169=+-y x .

存在性与恒成立

专题训练 恒成立存在性问题 知识点梳理 1、恒成立问题的转化:()a f x >恒成立?()max a f x >;()()min a f x a f x ≤?≤恒成立 2、能成立问题的转化:()a f x >能成立?()min a f x >;()()max a f x a f x ≤?≤能成立 3、恰成立问题的转化:()a f x >在M 上恰成立?()a f x >的解集为M ()()R a f x M a f x C M ?>??? ≤??在上恒成立 在上恒成立 另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若, D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则 ()()x g x f min min ≥ 5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则 ()()x g x f max max ≤。 6、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()12=f x g x ,则()f x 在 []b a x ,1∈上的值域M 是()x g 在[]d c x ,2∈上的值域N 的子集。即:M ?N 。 7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ 8、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤ 9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数 ()y g x =图象上方; 10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数 ()y g x =图象下方; 题型一、常见方法 1、已知函数12)(2 +-=ax x x f ,x a x g = )(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围; 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围; 【分析:】 1)思路、等价转化为函数0)()(>-x g x f 恒成立,在通过分离变量,创设新函数求最值解决. 2)思路、对在不同区间内的两个函数)(x f 和)(x g 分别求最值,即只需满足)()(max min x g x f >即可. 简解:(1)由1 20122 32 ++-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ?的最小值大于a 即可.对1 2)(2 3++=x x x x ?求导,0)12(12)(2224>+++='x x x x ?,故)(x ?在]2,1[∈x 是增函数,3 2)1()(min = =??x ,所以a 的取值范围是32 0<

利用导数研究函数的单调性问题

利用导数研究函数的单调性问题 浙江省湖州中学 李连方 一.学情分析 本人任教的两个班级均侧文,数学基础较薄弱.学生已基本掌握利用导数对常系数的单调区间求解,但是对含参数单调性问题常常一筹莫展,找不到分类的标准或者分类不合理、不完整. 二.教学目标 用导数讨论函数的单调性,是运用导数解决函数的极值、函数的最值的基础,所以本节复习课首先要让学生理解函数单调性和导数的关系,会用导数讨论含参函数的单调性,让学生理解含参函数单调性问题实质是解不等式问题,而解不等式问题实质是根的问题.其次,逐步使学生意识到要合理准确地分类讨论问题,体会到分类讨论思想就是当问题所给的对象不能进行统一研究时,就需要地对研究对象按某个标准分类,然后对每一类分别研究得出结论,然后综合各类结果得到整个问题的解答,其实质是“化整为零,各个击破,再积零为整”.在分类讨论时,时刻注意:一要分类对象确定,标准统一;二要不重复,不遗漏;三要分层次,不越级讨论. 三.教学重点和难点 本节课的教学重点是能使学生明确产生分类讨论的标准,能合理、准确和完整地进行分类讨论.本节课的教学难点是分类标准难以把握,本节课试图从方程的根的角度来突破难点. 四.教学设计 【例1】(《创计新设》第42页)已知函数2()ax f x x e -=?,a R ∈. (Ⅰ)当=1a 时,求函数()y f x =的图象在点()()1,1f --处的切线方程; (Ⅱ)讨论函数()y f x =的单调性. 分析:(Ⅰ)略;(Ⅱ)由题意得() 2()2ax f x x ax e -'=-?, 其中22=0x ax -根为0x =或2x a = ()0a ≠. ①当=0a 时,若0x <,则()0f x '<;若0x >,则()0f x '>. 所以当=0a 时,函数f (x )在区间()0-∞,上为减函数,在区间()0+∞,上为增函数. ②当0a >时,当0x <或2x a >时,()f x ';当20x a <<时,()f x '. 所以函数()y f x =在区间()0-∞,与2 +a ??∞ ???,上为减函数,在20a ?? ???,上为增函数. 【设计意图】1.让学会认识到函数的单调性、函数的单调区间和极值等问题,最终归结到判断()f x '的符号问题上,而()0f x '>或()0f x '<,最终可转化为解不等式问题.若含参数,则含参数的不等式的解法常常涉及到参数的讨论问题; 2.让学生体会解不等式实质在解不等式对应的方程的根. 【例2】(2008年浙江省高考试题改编)已知a 是实数,函数())f x x a = -. (Ⅰ)讨论函数()f x 的单调区间; 分析:函数的定义域为[0)+∞,,

相关文档
相关文档 最新文档