文档库 最新最全的文档下载
当前位置:文档库 › 结构有限元分析法

结构有限元分析法

ANSYS结构有限元分析流程

有限元法的基本思想是将连续的结构离散成有限个单元,并在每一个单元中设定有限个节点,将连续体看做是只在节点处相连接的一组单元的集合体;同时选定场函数的节点值作为基本未知量,并在每一个单元中假设一个近似插值函数表示单元中场函数的分布规律;然后利用力学中的变分原理建立求解节点未知量的有限元方程,这样就将一个连续域中的无限自由度的问题转化为离散域的自由度问题。求解后可以利用已知的节点值和插值函数确定单元以及整个集合体上场函数。 ANSYS结构有限元分析流程 1.前处理 前处理的目的是建立一个符合实际情况的结构有限元模型。在Preprocessor 处理器中进行。包括:分析环境设置(指定分析工作名称、分析标题)、定义单元类型、定义实常数、定义材料属性(如线弹性材料的弹性模量、泊松比、密度)、建立几何模型(一般用自底向上建模:先定义关键点,由这些点连成线,由线组成面,再由线形成体)、对几何模型进行网格划分(分为三个步骤:赋予单元属性、指定网格划分密度、网格划分) 2.施加载荷、设置求解选项并求解 这些工作通过SOLUTION 处理器实现。 指定分析类型(静力分析、模态分析、谐响应分析、瞬态动力分析、谱分析等)、设置分析选项(不同分析类型设置不同选项,有非线性选项设置、线性设置和求解器设置)、设置载荷步选项(包括时间、

子步数、载荷步、平衡迭代次数和输出控制)、加载(ANSYS结构分析的载荷包括位移约束、集中力、面载荷、体载荷、惯性力、耦合场载荷,将其施加于几何模型的关键点、线、面、体上)然后求解。3.后处理 当完成计算以后,通过后处理模块查看结果。ANSYS软件的后处理模块包括通用后处理模块(POST1)和时间历程后处理模块(POST26)。可以轻松获得求解计算结果,包括位移、温度、应变、热流等,还可以对结果进行数学运算,然后以图形或者数据列表的形式输出。结构的变形图、内力图(轴力图、弯矩图、剪力图),各节点的位移、应力、应变,还有位移应力应变云图都可以得出,为我们分析问题提供重要依据。 ANSYS软件提供了100种以上的单元类型,用来模拟工程中的各种材料和结构,各种不同单元组合在一起,成为具体物理问题的抽象模型。如在隧道工程中衬砌用beam3梁单元模拟,弹簧单元COMBIN14模拟围岩与结构的相互作用。边坡工程中边坡土体用平面单元来模拟。水利工程中对大坝进行三维模拟分析时用实体单元,二维分析时用平面单元;水库闸门用壳单元模拟。桥梁结构模拟分析中,用梁单元模拟不同截面的钢梁、混凝土梁,壳单元模拟桥面板箱梁等薄壁结构,杆单元可以模拟预应力钢筋和桁架。房屋建筑结构中,梁单元模拟框架柱,壳单元模拟屋面板,实体单元模拟大体积混凝土,杆单元模拟预应力钢筋等。 一般都要对结构进行静力分析,结果必须满足设计要求。当动荷

基于有限元法和极限平衡法的边坡稳定性分析

目录 摘要 (1) 1引言 (1) 2 简要介绍有限元和极限平衡方法 (1) 3影响边坡稳定性的因素 (2) 3.1水位下降速度的影响 (2) 3.2 不排水粘性土对边坡失稳的影响 (5) 3.3 裂缝位置的影响 (9) 4 总结和结论 (12)

基于有限元法和极限平衡法的边坡稳定性分析 摘要:相较于有限元分析法,极限平衡法是一种常用的更为简单的边坡稳定性分析方法。这两种方法都可用于分析均质和不均质的边坡,同时考虑了水位骤降,饱和粘土和存在张力裂缝的条件。使用PLAXIS8.0(有限元法)和SAS-MCT4.0(极限平衡方法)进行了分析,并对两种方法获得的临界滑动面的安全系数和位置进行了比较。 关键词:边坡稳定;极限平衡法;有限元法;PLAXIS;SAS-MCT 1.引言 近年来,计算方法,软件设计和高速低耗硬件领域都得到快速发展,特别是相关的边坡稳定性分析的极限平衡法和有限元方法。但是,使用极限平衡方法来分析边坡,可能会在定位临界滑动面(取决于地质)时出现几个计算困难和前后数值不一致,因此要建立一个安全系数。尽管极限平衡法存在这些固有的局限性,但由于其简单,它仍然是最常用的方法。然而,由于个人电脑变得更容易获得,有限元方法已越来越多地应用于边坡稳定性分析。有限元法的优势之一是,不需要假设临界破坏面的形状或位置。此外,该方法可以很容易地用于计算压力,位移,路堤空隙压力,渗水引起的故障,以及监测渐进破坏。 邓肯(1996年)介绍了一个综合观点,用极限平衡和有限元两种方法对边坡进行分析。他比较了实地测量和有限元分析的结果,并且发现一种倾向,即计算变形大于实测变形。Yu 等人(1998年)比较了极限平衡法和严格的上、下界限法对于简单土质边坡的稳定性分析的结果,同时,他们也将采用毕肖普法和利用塑性力学上、下限原理的界限法得到的结果进行了比较。Kim等人(1999年)同时使用极限平衡法和极限分析法对边坡进行分析,发现对于均质土边坡,得自两种方法的结果大体是一致的,但是对于非均质土边坡还需要进行进一步分析工作。Zaki(1999年)认为有限元相对于极限平衡法更显优势。Lane和Griffiths (2000年) 提出一个看法,用有限元方法在水位骤降条件下评价边坡的稳定性,应绘制出适用于实际结构的操作图表。Rocscience有限公司(2001年)提出了一个文件,概述了有限元分析方法的能力,并通过与各种极限平衡方法的结果比较,提出了有限元方法更为实用。Kim等人(2002年)用上、下界限法和极限平衡法分析了几处非均质土体且几何不规则边坡的剖面。这两种方法给出了类似有限元分析法产生的安全系数,临界滑动面位置。 2.简要介绍有限元和极限平衡方法 有限元法(FEM)是一个应用于科学和工程中,求解微分方程和边值问题的数值方法。进一步的细节,读者可参考Clough和Woodward(1967年),Strang和Fix(1973年),Hughes(1987年),Zienkiewicz和Taylor(1989年)所做的研究工作。 PLAXIS 8版(Brinkgreve 2002年)是一个有限元软件包,应用于岩土工程二维的变形和 折稳定性分析。该程序可以分析自然成型或人为制造的斜坡问题。安全系数的确定使用c

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

对称结构有限元分析

对称结构有限元分析 ----3节点三角形单元的分析 一问题分析(对称框架线弹性实体的静力平衡问题) 图是一个方形弹性实体,单位边长、单位厚度、承受等效竖向压力2 1m,其中边界条 KN 件暗示着存在两组相对称的平面,因此现考虑的仅是问题的。每个节点上的自由度号码代表了各自在x和y方向上可能的位移。 结构和单元信息NELS NCE NN NIP 8 2 9 1 AA BB E V

.5 .55 1.E6 .3 约束节点自由度信息NR 5 K , NF(:,K), I=1,NR 10 1 4 0 1 7 0 0 8 1 9 1 0 载荷信息LOADED_NODES 3 (K, LOADS(NF(:,K)), I=1 , LOADED_NODES) 1 .0 -.25 2 .0 -.5 3 .0 -.25 333 3节点三角形单元网络的总体节点和单元编号 3节三角形单元局部坐标系中节点和自由度编号

二理论基础(有限元方法原理) 通过弹性力学变分原理建立弹性力学问题有限元方法表达格式的基本步骤。最小位能原理的未知场变量是位移,以结点位移为基本未知量,并以最小位能原理为基础建立的有限元为位移元。它是有限元方法中应用最为普遍的单元,也是本书主要讨论的单元。 对于一个力学或无力问题,在建立其数学模型以后,用有限元方法对它进行分析的首要步骤是选择单元形式。平面问题3结点三角形单元是有限元方法最早采用,而且至今仍经常采用的单元形式。我们将以它作为典型,讨论如何应用广义坐标建立单元位移模式与位移插值函数,以及如何根据最小位能原理建立有限元求解方程的原理、方法与步骤,并进而引出弹性力学问题有限元方法的一般表达格式。对于前一问题,着重讨论选择广义坐标和有限元位移模式的一般原则和建立其位移插值函数的一般步骤。对于后一问题,着重讨论单元刚度矩阵和单元载荷向量的形式,总体刚度矩阵和总体载荷向量集成的原理和方法,以及它们各自的特性。 作为一种数值方法,有限元解的收敛性无疑是十分重要的问题,以后将讨论解的收敛准则及其物理意义,所阐明的原则在以后还将得到进一步的应用和具体化。 在建立了有限元的一般表达格式以后,原则上可以将它推广到平面问题以外的其他弹性力学问题和采用任何形式的单元。轴对称问题具有很广泛的应用领域,轴对称问题3结点三角形 单元的表达格式可以看作是平面问题此种单元表达格式的直接推广。 一)弹性力学平面问题的有限元格式 结点三角形单元是有限元方法中最早提出,并且至今仍广泛应用的单元,由于三角形单元对复杂边界有较强的适应能力,因此很容易将一个二维离散成有限个三角形单元,如图1所示。在边界上以若干段直线近似原来的曲线边界,随着单元增多,这种拟合将趋于精确。我们在讨论如何应用有限元方法分析各类具体问题的开始,将以平面问题3结点三角形单元 为例来阐明弹性力学问题有限元分析的表达格式和一般步 1.1)单元位移模式及插值函数的构造 典型的3节点三角形单元节点编码i,j,m ,以逆时针方向编码为正向。每个节点有位移分量如图所示。 ?? ? ???=i i v u i a (i,j,m) 每个单元有6个节点位移即6个节点自由度,亦即 [ ] T m m j j i i m j i e v u v u v u a a a =??? ? ??????=a 1.2) 单元的位移模式和广义坐标 在有限元方法中单元的位移模式或称位移函数一般采用多项式作为近似函数,因为 多项式运算简便,并且随着项数的增多,可以逼近任何一段光滑的函数曲线。多项式的选取由低次到高次。

钢结构的有限元分析报告

2 受料仓与给料机的钢结构有限元分析 2.1建立有限元模型 如图2.1破碎站主视图和图2.2破碎机布置图,它的工作过程是:卸料卡车间歇把最大入料粒度为1500mm的煤块倒入受料仓,受料仓存储大粒度煤块。刮板给料机把受料仓的大粒度的煤块连续的刮给破碎平台的破碎机。破碎机把最大入料粒度为1500mm的煤块破碎成最大排料粒度为300mm的煤块,煤块由底部的传送带传出。 图2.1 破碎站主视图

图2.2 破碎机布置图 破碎站钢结构的弹性模量E=200000MPa,泊松比,质量密度 ×10-3kg/cm3。破碎站由支撑件型钢和斜支撑角钢组成。在结构离散化时,由于角钢和其它部位铰接,铰接是具有相同的线位移,而其角位移不同。承受轴向力,不承受在其它方向的弯矩,相当于二力杆,所以型钢用梁单元模拟,角钢用杆单元模拟。破碎站是由受料仓与给料机和破碎平台与控制室两部分组成,故计算时是分别对这两部分进行的。离散后,受料仓和给料机共个单元,其中梁单元个,杆单元个,节点总数为个,有限元模型如图和图所示。

图2.3 受料仓与给料机有限元模型 图2.4 受料仓与给料机有限元模型俯视图 2.2载荷等效计算 2.2.1主要结构截面几何参数 破碎站主要结构采用H型钢梁,截面尺寸如图2.5所示,各截面横截面积A,截面惯性矩I y,I z和极惯性矩I如下。

图2.5 截面尺寸 料仓及给料机支撑结构 料仓及给料机六根支撑立柱(H500×400×12×20) A= 215.2mm2,I y=101947×104mm4,I z=21340×104mm4,I=240×104mm4料仓B-B面横梁和给料机E-E、F-F面横梁(H400×300×12×20) A=16320mm2,I y=48026×104mm4,I z=9005×104mm4,I=181×104mm4料仓C-C面和D-D面横梁(H400×400×12×20) A=20320mm2,I y=62479×104mm4,I z=21339×104mm4,I=234×104mm4给料机两根纵梁(H550×400×12×20) A=22120mm2,I y=125678×104mm4,I z=21341×104mm4,I=243×104mm4给料机六根横梁(H400×400×12×20) A=20320mm2,I y=62479×104mm4,I z=21339×104mm4,I=234×104mm4其它横梁(H400×300×12×20) A=16320mm2,I y=48026×104mm4,I z=9005×104mm4,I=181×104mm4 斜支撑的横截面积 ∠125×12:A=2856mm2 ∠75×6:A=864mm2 2.2.1实际载荷情况

机械结构有限元分析

机械结构有限元分析 有限元分析软件ANSYS在机械设计中的应用 摘要:在机械设计中运用ANSYS软件进行有限元分析是今后机械设计发展的必然趋势,将有限元方法引入到机械设计课程教学中,让学生参与如何用有限元法来求解一些典型零件的应力,并将有限元结果与教材上的理论结果进行对照。这种新的教学方法可以大大提高学生的学习兴趣,增强学生对专业知识的理解和掌握,同时还可以培养学生的动手能力。在机械设计课程教学中具有很强的实用价值。 关键词:机械设计有限元 Ansys 前言:机械设计课程是一门专业基础课,其中很多教学内容都涉及到如何求取零件的应力问题,比如齿轮、v带、螺栓等零件。在传统的教学过程中,都是根据零件的具体受力情况按材料力学中相应的计算公式来求解。比如,在求解齿轮的接触应力时,是把齿轮啮合转化为两圆柱体的接触,再用公式求解。这些公式本身就比较复杂,还要引入各种修正参数,因此我们在学习这些内容时普遍反映公式难记,学习起来枯燥乏味,而且很吃力。 近年来有限元法在结构分析中应用越来越广泛,因此如果能将这种方法运用到机械设计课程中,求解一些典型零件的应力应变,并将分析结果和教材上的理论结果进行对比,那么无论是对于提高学生学习的热情和积极性,增强对重点、难点知识的理解程度,还是加强学生的计算机水平都是一件非常有益的事情。 由于直齿圆柱齿轮的接触强度计算是机械设计课程中的一个重要内容,齿轮强度的计算也是课程中工作量最繁琐的部分。下面就以渐开线直齿圆柱齿轮的齿根弯曲疲劳强度的计算为例,探讨在机械设计课程中用ANSYS软件进行计算机辅助教学的步骤和方法,简述如何将有限元方法应用到这门课程的教学中。 1.传统的直齿圆柱齿轮齿根弯曲疲劳强度的计算 传统方法把轮齿看作宽度为b的矩形截面的悬臂梁。因此齿根处为危险剖面,它可用30。切线法确定。如图l所示。 作与轮齿对称中心线成30。角并与齿根过渡曲线相切的切线,通过两切点作平行与齿轮轴线 的剖面,即齿根危险剖面。理论上载荷应由同时啮合的多对齿分担,但为简化计算,通常假设全部载荷作用于齿顶来进行分析,另用重合度系数E对齿根弯曲应力予以修正。 由材料力学弯曲应力计算方法求得齿根最大弯曲应力为:

有限元极限载荷分析法在压力容器分析设计中的应用2010

有限元极限载荷分析法在压力容器分析设计中的应用2010-07-15 10:39:54| 分类:分析设计| 标签:极限分析分析设计asme规范先进设计方法经验分享|字号大 中 小订阅 在某炼化一体化项目中,几个加氢反应器均采用分析法设计。详细设计时,国内计算后,反应器的主要受压元件厚度均要比专利商建议的厚度多出10~30mm不等。这其中有国内设计出于保守的考虑,另一个原因:同是采用分析设计,ASME的非线性分析相对先进一点。参与国际竞争时,先进的设计方法值得我们研究。 1.背景 随着中国加入WTO,国内各工程公司正积极走向海外。随之进入国际市场的压力容器产品也面临着严峻的挑战,为了在国际舞台上获得竞争优势,各工程公司必须采用先进的技术设计出更安全和更低成本的产品。压力容器分析设计是力学与工程紧密结合产物,解决了常规设计无法解决的问题,代表了近代设计的先进水平[1]。过去,国内分析设计通常采用弹性应力分析法,通过路径分析,应力线性化处理获得路径上的一次应力和二次应力,进而进行强度评定。该方法主要存在以下问题:⑴对大多数情况是安全可靠的,但对某些结果可能出现安全裕度不足的情况(如球壳开打孔);⑵如何对有限元法求解获得的总应力分解并正确分类遇到了困难。假如把一次应力误判为二次,则设计的结果将非常危险,反之,把二次应力误判为一次,则又非常保守。文[2]5.2.1.2节明确提到:应力分类需特殊的知识和识别力,应力分类方法可能产生模棱两可的结果。国内专家亦也认为对应力进行正确的分类存在一定困难[3-6]。 以弹性分析代替塑性分析,是一种工程近似方法。实际结构的破坏往往是一个渐进过程,随着载荷的增加,高应力区首先进入屈服,载荷继续增加时塑性区不断夸大,同时出现应力重新分布。当载荷增大到某一值时,结构变为几何可变机构,此时即使载荷不在增加,变形也会无限增大,发生总体塑性变形(overall plastic deformation),此时的载荷称为“极限载荷(limit load)”。 极限载荷分析法(下文简称极限分析)的目的是求出结构的极限载荷。在防止塑性垮塌失效时,极限分析相比弹性应力分析更接近工程实际,同时避免了应力分类,对防止塑性垮塌有比较精确的评定。 2.极限载荷的求解方法 塑性力学提出极限分析法由来已久。经典的极限分析方法有如下3种[8]:(1)广义内力与广义变形法;(2)上限定理与下限定理法;(3)静力法和机动法。经典解法的分析与计算均很复杂,只能应用于少数结构简单的压力容器元件,从而使极限分析的工程应用受到了限制。 上世纪七十年代出现三维有限元计算后,有限元的应用大大扩展。为了适应工程需要,有限元极限分析应运而生,形成了分析设计中的一个重要分支,它使得复杂的塑性极限分析可以通过计算机数值计算得以解决。在不久的将来,极限分析必与弹性应力分析法、弹-塑性应力分析法一同形成三足鼎立之势。极限分析的模型精度和计算成本居后两者之间。

结构有限元及其应用软件

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述(中英文): 本课程是一门重要的结构计算分析课程,通过多媒体教学和上机练习,系统学习结构有限元FEM的基本原理和方法,熟悉掌握通用有限元应用软件ANSYS进行结构静力和动力分析的方法和步骤,并初步掌握使用ANSYS进行海工典型结构强度计算的方法。 Structural finite element method and its application software is an important course of structural calculation and analysis. Through multimedia teaching and computer practice, the basic principles and methods of Finite Element Method (FEM) are learned systematically. The general finite element application software ANSYS for the methods and procedures of structural static and dynamic analysis are mastered.At the same time, the strength calculation method of typical ocean engineering structures using ANSYS is preliminarily mastered. 2.设计思路: 有限元方法是一种现代设计方法,应用于结构设计中,是一种具有重要经济意义和巨大潜力的先进结构设计技术。因此选择该课程作为结构设计方面的一门必修课程,主要介绍结构有限元的基本原理和方法,还选择了通用的有限元软件ANSYS进行示例分析。包括要求掌握有限元法的基本思想和基本原理、平面刚架结构的有限元法、弹

有限元分析

摘要:本文中要利用有限元分析进行结构优化设计的零件是联轴部件中的连接杆。连杆始终与轴中间不规则截面部分保持接触,连接杆和轴之间是过盈配合,使得连接杆上承受外力,从而连接杆发生形变、进行结构应力分析。Abstract:In this paper to use finite element analysis for structure optimization design of the parts are coupling parts of the connecting rod. Connecting rod always and shaft intermediate irregular section keep contact, connecting rod and shaft are interference fit, making the connecting rod under forces, thus connecting rod occur deformation and structure stress analysis. 关键字:连接杆、有限元分析、结构应力分析 Keywords:connecting rod,finite element analysis,the structural stress analysis 前言连接杆为联接轴部件中传递外力的主要零件,材料为钢,这是本文利用有限元分析进行连接杆的结构优化设计的重要部分,准确地说,能否肯定新的结构,有限元分析在零件的优化设计中起到了至关重要的作用。 有限元法的基本概念 有限元法(Finite Element Method,简称FEM)是一种数值离散化方法,根据变分原理求其数值解。因此适合于求解结构形状及边界条件比较复杂、材料特性不均匀等力学问题能够解决几乎所有工程领域中各种边值问题。 有限元法的基本思想是:在对整体结构进行结构分析和受力分析的基础上,对结构加以简化,利用离散化方法把简化后的边界结构看成是由许多有限大小、彼此只在有限个节点处相连接的有限单元的组合体。然后,从单元分析人手,先建立每个单元的刚度方程,再用计算机对平衡方程组求解,便可得到问题的数值近似解。用有限元法进行结构分析步骤是:结构和受力分析一离散化处理一单元分析一整体分析一引人边界条件求解。 有限元分析的前置处理 建立有限分析模型的过程,即前置处理是有限元分析的关键环节。前置处理的功能主要包括:离散化网格模型的自动生成、网格的修改、拼接和节点编号的优化、载荷及材料数据的建立、边界条件的定义(零位移、已知位移、接触、磨擦等约束条件的处理)、模型数据检查与编辑修改、模型的图形显示等。在对机械结构

岩土工程极限分析有限元法及其应用

岩土工程极限分析有限元法及其应用 摘要:通过研究分析发现,将工程结构离散化是极限分析有限元法的核心内容,简单地说实际的工程结构是通过想象进行离散一定数量的规则单元组合体,然后 分析这些组合,结果应用于实际的结构中,通过这种实践在一定程度上解决了工 程建设过程中的问题。因此,本文笔者将详细对极限分析有限元法进行分析阐述。关键字:岩土工程;极限分析有限元法;应用 引言 自上世纪初,岩土工程的极限分析方法(包括极限平衡法、滑移线场法、上下限分析法)取得了较好进展,在实际工程得到了广泛的应用。其中一些方法需要一些人工架设,一些方 法的解决方案非常有限,这限制了该方法的开发和应用。其中有限元法数值方法适应力较强 且应用广泛,但在工程设计中,不能求出稳定安全系数 F 和极限承载力,从而限制了岩土工 程中有限元数值分析方法的运用。 一、经典岩土极限分析法的发展及问题 基于力学的极限分析方法,土体处于理想的弹塑性或者刚塑性状态,处于极限平衡状态,即土体滑动面上各点的剪应力与土体的抗剪强度相等或者滑动面上的作用力与抗剪力相等。 极限平衡状态下的土体有两个力学性质:第一是土体处于不稳定的状态,所以它可以作为一 个岩土工程破坏失稳的判据;第二是岩土材料强度充分发挥,达到最大经济效益,因此,在 岩土工程中常把土体极限平衡作为设计依据。有两种方法可以将地基或土坡引入极限状态: 一是增量加载,如地基的极限承载力;二是强度折减,如土坡的稳定安全系数。 经典极限分析方法普遍应用于均质材料。极限状态的设计计算仅参考破坏条件及屈服条件,不需要参考岩土复杂的本构关系,从而大大简化了岩土工程的设计计算。极限状态计算 应满足以下条件: (1)屈服条件或者破坏条件。 (2)静力平衡条件和力的边界条件。 (3)应变、位移协调条件和位移边界条件。 目前主要采用以下4种经典极限分析法:上、下限分析法、滑移线场法、变分法与极限 平衡法。每种都具有各自的特点,但还有一些需作假定,如上限法、滑移线场法、极限平衡 法等都需对临界滑动面作假定,不适用于非均质材料,特别是岩石工程强度的不均性,从而 限制了极限分析法的应用,这正是极限分析法在经典岩土工程的缺陷。 二、极限分析有限元法的基本原理 2.1 安全系数的定义 有两种方法可以将地基或者土坡引入极限状态:一是增量加载,如求地基的极限承载。 力二是强度折减,如求土坡的稳定安全系数。 极限平衡方法是先假定滑动面,再使用传统边坡稳定分析,按照力(矩)的平衡计算安全系 数并将其定义为滑动面的抗滑力(矩)与下滑力(矩)之比。 目前,不平衡推力法(传递系数法)在我国滑坡稳定分析中得到广泛应用,该方法是我国 独立开创的滑坡稳定分析方法。有关推力安全系数,一般将增加下滑力的分项系数作为安全 贮备,但严格意义上不是荷载增加系数,因为边(滑)坡工程中荷载增加,不但会导致下滑力 增加,还会导致抗滑力增加,但目前的传递系数法中不考虑抗滑力增加,这与力学规律相符。一般,滑坡推力的标准值为:

西工大结构有限元习题库

有限元法基础及应用 习题集 一、填空 1.有限元法是求解连续场力学和物理问题的一种方法。用有限元法求解连续体或结构的力学问题的三个主要步骤是:①;②; ③。 2.离散化就是把连续体或结构分割成若干个在处相互连接,尺寸有限的结合体来代替原来的连续结构。 3.单元分析阶段导出的单元刚度方程建立了和之间的关系。单元刚度方程的核心是矩阵。该矩阵具有性和性,且主对角元 素。 4.建立实体单元(一维杆单元、三节点三角形平面单元等)的刚度方程时,须应用作为平衡条件。 5.弹性力学几何方程反映弹性体变形时和之间的关系。u??????e???N?义含程的矩阵。该中方称为 6.单元位移模式N??v?? 是。 7.单元某节点i的形函数N在该点的值为,在其它节点的值均为。一个单元所有节点i形函数之和等于。 8.作用在单元上的载荷须按的原则移置到节点上,因 为。

9.单元刚度矩阵奇异性的力学意义 是:。 ???????Q?K建立了有限元离散结构中节点的和结构有限元平衡方程之间的关10.系。该方程的力学意义是有限元离散结构中节点的和之间的平衡。 11.整体刚度矩阵具有如下性质:①②③ ④。 12.对一定的有限元网格,整体刚度矩阵的半带宽与有关。半带宽越小,求解时占用计算机资源。 13.为保证有限元解的收敛性,单元位移模式应满足和。 14.建立任意形状和方位平面四边形单元和空间六面体单元时,需要采用与单元位移模式中相同的用局部坐标表示的节点形函数对节点坐标进行插值以获得一种坐标变换,这种变换称 为,采用等参变换的单元称为。 15.节点数越多的单元,其位移模式多项式,单元的能力越强,所以精度。 16.弹性力学几何方程反映弹性体变形时和之间的关系。 17.弹性力学边界条件包括和。 18.弹性体的虚位移是假想在弹性体上发生的满足条件的微小位移场。弹性体的虚功原理可以概括为等于。 19.弹性力学物理方程反映弹性体变形时和之间的关系。 20.平面应力问题的典型例子是、平面应变问题的典型例子 是。 21.建立平面问题或空间问题的单元特性方程(单元分析)阶段,需要用到弹性力学的方程和 方程。 二、简答题 1.简述弹性力学平面问题有限元法中单元特性分析的过程。 2.简述建立整体有限元平衡方程的过程。 3.平面三节点三角形单元中位移、应变和应力具有什么特征?有何优缺点? 4.四节点矩形单元中位移、应变和应力具有什么特征?有何优缺点? 5.简单三角形单元刚度矩阵元素的大小与哪些因素有关?与哪些因素无关? 6.画出三节点三角形单元形函数的图形,并分析其在边界上的分布特点。 7.对一个给定的弹性力学问题,有那些途径可以提高有限元法求解精度? 8.按位移求解的有限元法中:(1)应用了哪些弹性力学的基本方程?(2)应力边界条件及位移边界条件是如何反映的?(3)力的平衡条件是如何满足的?(4)变形协调条件是如何满足的?9.有限元的收敛条件是什么?证明三节点三角形单元满足收敛条件。 10.平面应力三角形单元和空间轴对称三角形单元分别代表物理空间中什么样的物体?

有限元极限分析发展及其在岩土工程中的应用

科技论坛 有限元极限分析发展及其在岩土工程中的应用 何小红 (长春科技学院,吉林长春130000) 有限元极限分析法实际应用于岩土工程中,能够对岩土工程的安全系统、失稳数据等做出判断,但是在应用的过程中,需要做出假设,并且求解范围相对有限,在应用上有一定的限制。尽管如此,有限元极限分析法的适应性能也比较强,尽管它在使用的过程中不能对稳定安全系数F做出明确计算,受到了限制,但是在实际应用中依然能够发挥出其自身价值,为工作人员提供有用的数据信息,让岩土工程的发展也得到促进性作用。 1有限元极限分析法发展历程 有限元极限法最初的提出者是英国科学家,时间在20世纪70年代中期,这也是首次将有限元极限分析法应用于岩土工程中,计算出岩土工程额极限荷载及其安全系数。在20世纪90年代,该方法又应用于边坡和地基的稳定性分析中,但当时收到技术限制,并没有较强大和可靠的元程序支持,计算的精度也不够,在岩土工程中的推广使用收到了限制。 在20世纪末,国际又对有限元极限分析法做出了新的研究,主要以有限元强度折减法的求解上比较集中,计算结果和之前的结果仍然很相似,慢慢也就被学术界接受到,从此有限元极限分析法也就进入了一个新的发展时期。直到20世纪末,有限元分析法才在我国开始应用,主要是应用于土坡分析上。在21世纪初,我国学者分析边坡稳定性上,有效应用了有限元折减法,这也是我国最早对有限元强度折减法的应用,并在基本理论以及计算精度上做出了细致研究。在这两方面,我国也得到了较好的应用,并向着长远发展目标推进。 在研究方面,有限元强度折减法主要集中在安全系数与滑面系数方面,而有限元增量超载法主要是在地基极限车承载力方面。这方面的研究文献虽然不多,但是却取得了可观的研究成果。这两种方法,统称为有限元极限分析法,从根本上来说,均为采用数值分析方法求解的一种极限分析法。在国际上,有限元极限分析法大都采用编数值分析程序比较多,而该方法的应用范围仅局限于二维平面土基与土坡分析中。而在国内方面,大都采用大型通用程序,在计算、程序可靠性、功能等方面,均有很大的优势。近年来,国内在有限元极限分析法方面,取得了很大的进展。但是从整体情况来看,仍然研究的起步阶段,距离革新设计方法,尚有一段很长的距离。 2有限元极限分析法原理 2.1安全系数概念。对于有限元极限分析法安全系数有很多种定义,这些定义都是和岩土工程受破坏状态有直接关系。安全系数定义主要非两种,即有限元强度折减法以及有限元增量超载法;有限元强度折减法主要指受到环境影响,让岩土强度较低,边坡失去稳定性,通过岩土强度的降低计算出最终破坏的状态;有限元增量超载法主要指岩土地基上的荷载持续性增加,让地基稳定性受到破坏,导致超载安全系数呈现倍数递增上涨趋势;这两种方式计算的安全系数是有所不同的。 2.2有限元极限分析法原理。(1)有限元强度折减法原理。在岩土工程中,主要采用莫尔-库仑材料,安全系数w的计算式为:T= c'=c/ω,tanφ'=(tanφ)/ω(2) 有限元增量超载法。在工程中,岩土的破坏,不是朝夕之事,而是一个循序渐进的过程,由线弹性状态,逐步过渡到塑性流动,最终达到 极限破坏状态。因此,这就给增量超载方法求解地基的极限承载力,提供了有利的条件。 3有限元极限分析法基本理论 3.1判断岩土工程整体失稳的依据。所谓岩土工程整体失稳破坏,主要是指岩土沿滑面出现滑落或者是坍塌情况,导致岩土不能达到极限的平衡状态,不能继续承载,滑面的岩土也会有位移现象发生。在滑面节点上位移导致的塑形或者是突变性就是对边坡整体失稳的判断标志。所以,可以利用有限元静力计算来确定边坡是否失稳,判断出边坡失稳特征。 3.2提高计算精度的条件。在有限元极限分析法中,要想将计算的精度提高上来,就要满足一定的条件。首先是成熟可靠、程序的功能足够强大,尤其是通用于国际的程序;其次是强度准则以及结构模型有较高的实用性;最后是满足计算的需要,即计算的范围、网络划分以及边界条件等。只有满足这些条件,有限元极限分析法的计算精度才能够提高上来,降低计算的误差。 4有限元极限分析法的应用 4.1在二维边坡中的应用。结合下面的算例,探讨该方法的应用。通过大型有限元ANSYS5.62软件建立有限元模型,根据平面建立有限元模型,左右两侧为边界约束条件。按照边坡破坏的特点,在边坡遭到破坏时,滑面上的塑性应变和节点上的位移,将发生突变、塑性应变突变和滑动面水平位移。所以,这就能够按照塑性应变值云图方法来确定滑动面,并与之前的滑面方法相比。 4.2有限元超载法在土基上的应用。光滑刚性条形地基的极限承载力,均承受为垂直半无限、无重量地基,计算的方法如下:qu=ccosφ[exp(πtanφ)tan2(π/4+φ/2)-1 根据上述公式,当地基处于极限状态下,基础附近局部位移矢量将随着基础附近局部的等效塑性应变等发生变化。通过计算结果可看出,计算的结果与实际相符合。而对于有重地基极限承载力的计算,已经存在各种公式,但是相比较而言,魏锡克经验公式计算的记过比较准确。此外,有限元极限分析法在隧道工程、滑坡支档结构等均有着实际的应用,而且该方法的应用范围还在不断扩大。 结束语 从有限元极限分析法的自身应用方法来看,主要有有限元强度折减法以及有限元超载法这两种,这两种方法在当前的应用上都处于快速发展阶段,对其的研究也一直在进行,应用于岩土工程中也有着较好的效果。本文中,主要是从岩土工程的实际工作中应用有限元极限分析法做出简单分析,从其发展历程,再到安全系数定义,最后到岩土工程中的应用,这些都能够有效促进有限元极限分析法的进一步发展,以期有着借鉴价值。 参考文献 [1]赵尚毅,郑颖人.基于Drucker-Prager 准则的边坡安全系数转换[J].岩石力学与工程学报,2013(11). [2]张鲁渝,郑颖人,赵尚毅.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2013(21). [3]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2014(23). [4]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程 学院学报,2011(21). [5]宋亚坤,赵尚义,郑颖人.有限元强度折减法在三维边坡中的应用 与研究[J].地下空间与工程学报,2010(12). 摘要:从有限元极限分析法的优点上来看,该方法特别适合在岩土工程中应用,也得到了较好的发展。在实际应用过程中,是需要做 出假设并求解的,而且应用的范围有一定的局限性,这是有限元极限分析法应该创新的地方,在科技进步之下,对方法进行完善,让其适用的范围有所扩大,同时也推动在岩土工程中应用的价值。本文主要从有限元极限分析法做出了介绍,进而分析其在岩土工程中实际的应用。 关键词:有限元极限分析法;应用;岩土工程92··

极限分析有限元法讲座_岩土工程极限分析有限元法

第26卷第1期 岩 土 力 学 V ol.26 No.1 2005年1月 Rock and Soil Mechanics Jan. 2005 收稿日期:2004-08-02 修改稿收到日期:2004-10-25 作者简介:郑颖人,男,1933年生,中国工程院院士,教授,博士生导师,从事岩土本构关系理论与数值分析及岩土工程稳定性研究。E-mail:zhaoshangyi@https://www.wendangku.net/doc/fa14969762.html, 文章编号:1000-7598-(2005) 01―0163―06 极限分析有限元法讲座—— Ⅰ岩土工程极限分析有限元法 郑颖人,赵尚毅,孔位学,邓楚键 (后勤工程学院 土木工程系,重庆 400041) 摘 要:经典岩土工程极限分析方法一般采用解析方法,有些还要对滑动面作假设,且不适用于非均质材料,尤其是强度不均的岩石工程,从而使极限分析法的应用受到限制。随着计算技术的发展,极限分析有限元法应运而生,它能通过强度降低或者荷载增加直接算得岩土工程的安全系数和滑动面,十分贴近工程设计。为此,探讨了极限分析有限元法及其在边坡、地基、隧道稳定性计算中的应用,算例表明了此法的可行性,拓宽了该方法的应用范围。随着计算机技术与计算力学的发展,岩土工程极限分析有限元法正在成为一门新的学问,而且有着良好的发展前景。 关 键 词:极限分析有限元法;边坡稳定分析; 地基极限承载力;隧道稳定性 中图分类号:O 241 文献标识码:A Geotechnical engineering limit analysis using finite element method ZHENG Ying-ren ,ZHAO Shang-yi, KONG Wei-xue, DENG Chu-jian (Department of civil Engineering, Logistical Engineering University, ChongQing, 400041,China) Abstract: The analytical method is adopted in classical geotechnical engineering limit analysis method. It cannot involve the stress-strain behavior of soil and sometimes assumptions needs to be made in advance about the shade or location of the failure surface. It is not suitable for heterogeneous materials, especially the rock engineering. So its application still remains limited. With the development of computer and computing technology, the limit analysis finite element method was put forward. With the strength reduction or load increase, the stability safety factor and failure surface can be obtained directly at limit state. It is very practical for geotechnical engineering design. This paper studies the limit analysis finite element method and its application in the slope 、tunnel 、ultimate bearing capacity of foundations. Through a series of case studies, the applicability of the proposed method is clearly exhibited. Keywords: limit analysis finite element method, slope stability analysis, ultimate bearing capacity of foundations, tunnel stability. 1 经典岩土极限分析法的发展及问题 极限分析法的力学基础是土体处于理想弹塑性或者刚塑性状态,并处于极限平衡状态,即土体滑动面上每点的剪应力与土体的抗剪强度相等或者滑动面上的作用力与抗剪力相等。土体处于极限平衡状态有两个力学特征:一是土体已处于濒临破坏失稳状态,因而它可作为岩土工程破坏失稳的判据;二是岩土材料强度得到充分发挥,达到了最经济的效果,因而土体极限平衡状态常被作为岩土工程设计的依据,它是安全可靠、经济合理的最佳结合状 态。 将地基或者土坡引入极限状态有两种方法:一是增量加载,例如求地基的极限承载力;二是强度折减,例如求土坡的稳定安全系数。 经典极限分析方法一般采用解析方法,适用于均质材料。极限状态的设计计算只引用屈服条件或破坏条件,不必引用复杂的岩土本构关系,从而使岩土工程的设计计算大为简化。极限状态计算应满足如下条件: (1) 静力平衡条件和力的边界条件; (2) 应变、位移协调条件和位移边界条件;

相关文档
相关文档 最新文档