文档库 最新最全的文档下载
当前位置:文档库 › 多智能体一致性预测控制算法及其仿真研究

多智能体一致性预测控制算法及其仿真研究

多智能体一致性预测控制算法及其仿真研究
多智能体一致性预测控制算法及其仿真研究

多智能体系统及其协同控制研究进展

多智能体系统及其协同控制研究进展 摘要::对多智能体系统及其协同控制理论研究和应用方面的发展现状进行了简要概述.首先给出Agent及多Agent 系统的概念和特性等,介绍了研究多Agent系统协同控制时通常用到的代数图论;然后综述了近年来多Agent系统群集运动和协同控制一致性方面的研究状况,并讨论了其在军事、交通运输、智能机器人等方面的成功应用;最后,对多Agent系统未来的发展方向进行了探讨和分析,提出几个具有理论和实践意义的研究方向,以促使多Agent系统及其协同控制理论和应用的深入研究. 关键词:多Agent系统(MAS);协同控制;代数图论;群集运动;一致性协议 Advances in Multi-Agent Systems and Cooperative Control Abstract: Progress in multi-Agent systems with cooperative controlwas reviewed in terms of theoretical research and its applications. Firs,t concepts and features used to define Agents and multi-Agents were analyzed. Then graph theory was introduced, since it is often used in research on cooperative control of multi-Agent systems. Then advances in swarming/flocking as well as the means used to derive a consensus among multi-Agents under cooperative control were summarized. The application of these abilitieswas discussed for the military, transportation systems,and robotics. Finally, future developments for multi-Agent systemswere considered and significant research problems proposed to help focus research on key questions formulti-Agent systemswith cooperative control. Key words:Multi-Agent system (MAS) ; Cooperative control; Graph theory; Swarming/ flocking; Consensus protocol 分布式人工智能是人工智能领域中一个重要的研究方向,而多Agent系统(multi-Agent systemMAS)则是其一个主要的分支. 20世纪90年代,随着计算机技术、网络技术、通信技术的飞速发展,Agent及MAS的相关研究已经成为控制领域的一个新兴的研究方向.由于Agent体现了人类的社会智能,具有很强的自治性和适应性,因此,越来越多的研究人员开始关注对其理论及应用方面的研究.目前,人们已经将MAS的相关技术应用到交通控制电子商务、多机器人系统、军事等诸多领域.而在MAS中,Agent之间如何在复杂环境中相互协调,共同完成任务则成为这些应用的重要前提.近年来,从控制的角度对MAS进行分析与研究已经成为国内外众多学术机构的关注热点,人们在MAS协同控制问题上做了大量的研究工作,特别是在MAS群集运动控制和协同控制一致性问题方面取得了很大的进展.目前对MAS的研究总体上来说还处于发展的初步阶段,离真正的实用化还有一定的距离;但其广泛的应用性预示着巨大的发展潜力,这必将吸引更多专家、学者投入到这一领域的研究工作中,对MAS的理论及应用做进一步探索.根据上述目的,本文主要概述了多智能体系统(MAS)在协同控制方面的研究现状及其新进展. 1Agent与MAS的相关概念 1.1Agent的概念 Agent一词最早可见于Minsky于1986年出版的《Social of Mind》一书中.国内文献中经常将Agent翻译为:智能体、主体、代理等,但最常见的仍是采用英文“Agent”;因为Agent的概念尚无统一标准,人们对于

多智能体系统一致性综述

多智能体系统一致性综述 一 引言 多智能体系统在20世纪80年代后期成为分布式人工智能研究中的主要研究对象。研究多智能体系统的主要目的就是期望功能相对简单的智能体系统之间进行分布式合作协调控制,最终完成复杂任务。多智能体系统由于其强健、可靠、高效、可扩展等特性,在科学计算、计算机网络、机器人、制造业、电力系统、交通控制、社会仿真、虚拟现实、计算机游戏、军事等方面广泛应用。多智能体的分布式协调合作能力是多智能体系统的基础,是发挥多智能体系统优势的关键,也是整个系统智能性的体现。 在多智能体分布式协调合作控制问题中,一致性问题作为智能体之间合作协调控制的基础,具有重要的现实意义和理论价值。所谓一致性是指随着时间的演化,一个多智能体系统中所有智能体的某一个状态趋于一致。一致性协议是智能体之间相互作用、传递信息的规则,它描述了每个智能体和其相邻的智能体的信息交互过程。当一组智能体要合作共同去完成一项任务,合作控制策略的有效性表现在多智能体必须能够应对各种不可预知的形式和突然变化的环境,必须对任务达成一致意见,这就要求智能体系统随着环境的变化能够达到一致。因此,智能体之间协调合作控制的一个首要条件是多智能体达到一致。 近年来,一致性问题的研究发展迅速,包括生物科学、物理科学、系统与控制科学、计算机科学等各个领域都对一致性问题从不同层面进行了深入分析,研究进展主要集中在群体集、蜂涌、聚集、传感器网络估计等问题。 目前,许多学科的研究人员都开展了多智能体系统的一致性问题的研究,比如多智能体分布式一致性协议、多智能体协作、蜂涌问题、聚集问题等等。下面,主要对现有文献中多智能体一致性协议进行了总结,并对相关应用进行简单的介绍。 1.1 图论基础 多智能体系统是指由多个具有独立自主能力的智能体通过一定的信息传递方式相互作用形成的系统;如果把系统中的每一个智能体看成是一个节点,任意两个节点传递的智能体之间用有向边来连接的话,智能体的拓扑结构就可以用相应的有向图来表示。 用)(A E,V,G =来表示一个有向加权图,其中}{n 21v ,,v ,v V =代表图的n 个顶

仿人智能控制

仿人智能控制 仿人智能控制是仿效人的政行为而进行控制和决策,即在宏观结构上和功能上对人的控制进行模拟。 开展仿人智能控制的研究,是目前智能控制的一个重要研究方向。 1.仿人智能控制的原理 1.1 仿人智能控制的基本思想 传统的PID控制是一种反馈控制,存在着按偏差的比例、积分和微分三种控制作用。 比例:偏差一产生,控制器就有控制作用,使被控量想偏差减小的方向变化, 器控制作用的强弱取决于比例系数Kp 积分:它能对偏差进行记忆并积分,有利于消除静差,但作用太强,既Ti太大 会是控制的动态性能变差,以至使系统不稳定。 微分:能敏感出偏差的变化趋势, To大可加快系统响应(使超调减小),但又会 使系统抑制干扰的能力降低。 下面来分析一下PID控制中的三种控制作用的是指以及他们的功能与人的控制思维的某种智能差异,从而看出控制规律的智能化发展趋势。1)比例;PID中实质是一种线性放大或缩小的作用,它类似于人的想象能力,可以把一个量想得大一些或小一些,但人的想象力是非线性的是变的,可根据情况灵活变化。 2)积分作用:对偏差信号的记忆功能(积分),人脑的记忆功能是人类的一种基本智能,人脑的记忆是具有某种选择性的。可以记住有用的信息,而遗忘无用或长时间的信息,而PID中的积分是不加

选择的长期记忆,其中包括对控制不利的信息,同比PID中不加选择的积分作用缺乏智能性。 3)微分:体现了信号的变化趋势,这种作用类似于人的预见性,但PID中的微分的预见性缺乏人的远见卓识,且对变化快的信号敏感,对变化慢的信号预见性差 仿人智能控制的基本思想是指:在控制过程中利用计算机模拟人的控制行为能力,最大限度的识别和利用控制系统动态过程所提供的特征信息进行启发和直觉推理,从而实现对缺乏精确数学模型的对象进行有效的控制 1.2 仿人智能行为的特征变量 对系统动态特征的模式识别,主要是对动态模式的分类,根据系统偏差e及偏差变化△e以及由它们相应的组合的特征变量来划分动态特征模式,通过这些特征模式刻画动态系统的动态行为特征,以便作为智能控制决策的依据。 a b 图1 系统的典型阶跃响应曲线 图1给出了一个系统的典型阶跃响应曲线,曲线上a,b,F三处的系统输出是一样的,但他们的动态特征是不同的,a处偏差将继续偏离平衡

智能控制算法及其用于结构振动控制的实践

智能控制算法及其用于结构振动控制的实践 发表时间:2016-07-25T14:37:52.590Z 来源:《电力技术》2016年第4期作者:郝志伟[导读] 本文着重的概述智能控制领域中正在热门研究的模糊算法、人工智能算法和遗传算法等各个研究的方向。 新疆华隆油田科技股份有限公司新疆克拉玛依 834000 摘要:在智能控制的领域里有很多的研究方向可以供科研工作者们进行探索,而在土木工程的领域里结构振动的相关研究方向里,结构振动控制一直都是其中的热点。本篇文章主要是论述了智能控制算法的有关现状和发展的方向,并且还探讨了目前国内对于智能控制算法及其用于结构振动控制的实践上的发展前景。总的来说,在某种程度上智能控制算法的不断进化为土木工程的不断发展提供了充分的科学和技术支持,并且目前结构控制的热门研究方向就是结构智能控制【1】。本文着重的概述智能控制领域中正在热门研究的模糊算法、人工智能算法和遗传算法等各个研究的方向,也会对目前国内的智能控制算法在结构振动控制上的发展进行探讨。关键词:结构控制;智能算法;模糊推理;人工智能 国内的现代结构主动控制相关研究是在70年代的时候在国内刚刚兴起,目前已处于不断成熟的阶段,在国内的许多机械化的领域之内都十分的成功的应用了现代的控制理论,所以目前的结构控制的相关研究就是这样打下基础的。通过研究我们可以发现,在抗风和抗震程度上只有结构控制是能够得到的明显有效的效果。所以在国内的工程学一线领域里,结构控制是一个十分热门的研究方向。新兴的智能控制系统是一个十分新颖的理论技术,其具有十分强大的对整个局面的控制能力,即使面对复杂的系统操作也能进行有效的运算,容错能力显著,并且对于数学模型的处理能力很精通。 一、智能控制理论的起源 近百年以来各种新式技术不断的被发明发现,日新月异的更新着我们的生活和思想,而近十几年以来高新技术的迅速发展让越来越多的复杂数据需要更为精尖的科学技术理论和设备来进行操作处理,所以人工智能是顺应时代而生的产物。首次提出将人工智能和自动控制系统有效结合创新了这一领域的研究方向。从此以后,国内的相关领域便逐渐的转移到智能控制的高阶领域之中。除此之外,计算机领域的高速发展尤其是微计算机的研发和应用也为智能控制的研究提供了支持【2】。随着技术的不断进步和研究的逐渐深入,智能控制系统也在不断的完备。而智能控制算法和相关的智能控制结构也是以这个为基础得以被研究。 二、智能控制发展的相关方向 (一)模糊控制科研者通过制定一系列的控制策略和相关的数据规则总成一个控制规则并加给被操纵者和操作过程就是模糊控制的基本内容。模糊控制的鲁棒性较强,使用的时候不需要输入和建立具体的模型,在处理时滞或者时变等复杂程度较强的系统时易于给出专家的知识。然而模糊算法也有其短板,如果模糊处理的操作选择简单的处理时容易出现所控制的品质出现问题不易提高系统的精度,这种较大的局限性导致了模糊控制的系统性缺失。 (二)人工智能算法在某种程度上被称为机器智能的人工智能算法是一门较为边缘性的学科。通常被研发出来用于进行各种模拟替代人类行为,其研究前景极为广泛,在现阶段的发展范围之内,已经融入了多种学科并且涵盖了极为丰富的人文信息。并且根据现在科技的发展程度来看,其算法具有极强的可靠性和独立性。在进行运算的时候并不需要十分详细的具体参数数据和抗干扰能力十分了得。并且将人工智能算法用于产品的设计时,对于产品的设计整体性能都有更好的提升,其科学性设计理念和运算方式都对产品研发的效率大有裨益。 (三)优化算法优化算法是结合新式理论发展起来的应用前景十分广泛的热门研究,优化算法的出现成功的解决了神经网络应用中的短板和不足,对于神经网络的高效学习的有关算法和拓扑结构的优化设计的改善起到了十分关键的地步。而优化算法中的遗传算法是其中发展较为领先的方向。其通过模拟生物本身拥有的搜索功能和自身的优化算法,建立了一套独特的机制。现阶段的科研者们也在逐步的采用将遗传算法逐步的与神经网络控制和模糊控制相结合,通过将这三种各有优势和长处的智能控制算法相互取其长处的融在一起,在性能上既可以将模糊算法的推理规则和隶属的函数结构进行优化,还可以让神经控制算法的计算量得到有效的减少,对于实时控制的应用能够起到有效的实践作用【3】。 三、结构振动控制的实践 我国在早期就已经开始运用神经网络于智能控制的研究中,并且通过研究发现在非线性的建模中,神经网络算法的实际应用具有很强的作用。并且在近些年以来随着我国工业技术的不断革新,工业管理体系也在逐步的发展。在传统的研究方法之中,科研工作者们常常将神经网络和模糊算法的部分研究方向结合在一起,而在隶属函数的获取上应用更为广泛【4】。采用遗传算法来对隶属函数的参数进行操作节,可以较好的获得理想的实验数据。 到目前为止的国际上的结构振动控制相关的研究之中,智能控制一直是持续获得关注的研究热点。而目前,在无数科学家和相关科研人员们的努力之下,已经成功的将现代控制理论成功的转变为智能控制理论,该理论融合了大量的模糊识别和人工智能相关的理论知识,并且这一理论已经总结出了一系列成果例如结构智能控制等。近些年来由于智能控制系统的研发不断在进步,引起了我国许多社会部门和机械研究学科的相关领域的注意。例如在工业化生产中的油田开采就是极为重要的一项,所以现阶段国内的油田自动化技术与之前相比进步很大,尤其是油田自动化监控系统。在具体的生产运作中都是各个系统相互独立进行运作,但是彼此之间又是联系密切,共同组成一个完整综合的管理系统。基本上是可以实现从开采之前的数据采集研究到最后的生产管理都能在有效的自动体系之下进行运作【5】。除此之外还能实现数据的实时更新,方便企业对完成对数据库的完全掌握。而这些技术的革新,都会使油田的管理方式更加科学化和符合人工智能技术的要求,并且最终会带领着我国的油田工业在迈向更好更快发展的道路上,稳定前进。而现目前也有许多学者也对此提出了切实有效的研究策略和实验结果,例如以张顺宝为带头人的科研小组就实现了通过为结构的主动控制系统提供了时间差以便于能够缩短时迟的问题等。

多智能体系统分布式协同控制

2016年教育部自然科学奖推荐项目公示材料 1、项目名称:多智能体系统分布式协同控制 2、推荐奖种:自然科学奖 3、推荐单位:东南大学 4、项目简介: 多智能体系统是20世纪末至21世纪初分布式人工智能领域的国际前沿研究课题,其核心支撑理论是人工智能、分布式控制和分布式计算。进入21世纪,人们在解决大型、复杂的工程问题时,发现单个智能体的能力已经无法胜任,需要多个智能体在网络环境下以信息通讯的方式组成多智能体系统协同地解决工程问题。典型的多智能体系统包括多机器人系统,多无人机系统,智能电网和分布式卫星系统等。本项目系统深入研究了多智能体系统协同控制的共性问题、网络结构控制、通讯受限等关键科学问题,取得的重要科学发现如下: (1)通过引入一致性区域的概念,把二阶和高阶系统一致性问题转化为研究一致性区域的稳定性范围,给出了具有固定网络拓扑的多智能体线性系统二阶和高阶一致性的充分必要条件,解决了长期困惑研究者的多智能体系统协同控制器设计的本质问题;提出有向网络的广义代数连通度作为有向网络收敛判别的基本依据,推广了无向网络的代数连通度。 (2)给出了牵制控制无向网络实现同步的一般条件;克服非对称网络拓扑结构的本质困难,解决了有向网络同步牵制控制的挑战问题;采用图分解引入匹配割点和割集,完善了矩阵分解的谱理论,解决网络牵制控制一个结点的最优控制的关键难题。 (3)利用非奇异M矩阵理论和切换系统稳定性分析方法,突破了通过求解闭环系统的解曲线,然后再进行稳定分析的技术性瓶颈,发现了具有间歇信息通讯的二阶多智能体系统一致性的实现与降阶后的低维切换系统全局稳定性的内在本质联系,解决了切换有向拓扑下多智能体系统的协同一致性的难题。 项目组近年来在IEEE、Automatica、SIAM等本领域著名期刊上发表多智能体系统协同控制SCI论文110篇。10篇代表性论文SCI他引1159次,WOS 他引1433次,Google Scholar他引2165次,全部为ESI工程领域前1%高被引论文,9篇论文Google Scholar他引超过100次,6篇论文发表至今在所在期刊的SCI引用排名居于前2位,被38位院士和IEEE Fellow在Nature、Nature Physics、IEEE汇刊等正面评价,相关成果获亚洲控制会议最佳论文奖、IEEE 电路与系统协会神经系统与应用技术委员会最佳理论论文奖、全国复杂网络学术会议最佳学生论文奖、IEEE国际电路与系统会议最佳学生论文奖提名等。

仿人智能PID控制

仿人智能PID控制器设计 摘要:PID控制算法简单,参数调整方便,应用广泛。但是常规的PID控制器参数往往整定不良、性能欠佳,对运行工况的适应性很差。该文设计的仿人智能PID控制器用正态函数拟和模糊控制规则,辅以根据误差和误差变化率的调整,能根据实际情况调整和完善PID 参数,具有鲁棒性强,响应速度快,稳态精度高等优点。该方法在导弹自动驾驶仪的设计中有很好的应用效果。 关键词:控制器;模糊控制;自动驾驶仪;仿真 1 引言 据统计,工业控制的控制器中PID类控制器占90%上。PID控制器是最早出现的控制器类型,因其结构简单,各个控制器参数有着明显的物理意义,调整方便,所以这类控制器很受工程技术人员的欢迎。随着控制理论的发展,出现了各种分支,如专家系统、模糊逻辑、神经网络、灰色系统理论等,它们和传统的PID控制策略相结合又派生出各种新型的PID 控制器,大大改进了传统PID控制器的性能。本文设计的仿人智能PID 控制器把模糊控制规则函数化。能根据实际情况自动调整和完善PID参数的控制规则实现在线调整PID参数。 2 设计仿人智能PID控制器的参数 PID控制器的控制量的表达形式一般是: u = k p*error+k i*errori+k d*errord (1) 仿人智能 PID控制器的参数整定是找到PID控制的三个参数k p 、k i 、k d 与 误差e、误差变化率ē之间的关系,在运行中不断检测 e和ē;,根据控 制原理对k p 、k i 、k d 进行在线修改以满足不同 e和ē时对控制参数的不同 要求,而使得被控对象具有良好的动态、静态性能。 2.1 仿人智能 PID控制器参数的设计原则 从系统的稳定性、响应速度、超调量和稳态精度等方面考虑k p 、k i 、 k d 的作用如下: 1)比例系数k p的作用是加快系统的响应速度,提高系统的调节精度。k p越大,系统的响应速度越快,系统的调节精度越高,但易产生超调,甚至会

仿人与专家智能控制 (1)

第二章 仿人与专家智能控制 2.1 仿人智能控制的基本思想和概念 1.仿人智能控制(Simulating Human Intelligent Control,SHIC)的基本思想 “仿人, 仿智”, 强调对人脑的宏观结构模拟与对人控制器模拟的结合。 仿人智能控制器应具有的基本结构和功能: (1)分层的信息处理和决策的高阶产生式系统结构; (2)在线的特征辨识与特征记忆; (3)开、闭环控制,正、负反馈,定性决策与定量控制相结合的 多模态控制; (4)启发式和直觉推理逻辑的应用。 2.仿人智能控制基本特点: (1) 研究的主要目标不是控制对象,而是控制器自身如何对控制专家结构和行为的模仿; (2) 辨识和建模的目标不是对象的定量数学模型,而是系统的动态特征模型和控制器定性与定量描述相结合的知识模型; (3)基于特征辨识与特征记忆的多模态控制可实现系统动态特性变化与控制器输出的多值影射关系,因而能使系统实现多种性能指标的优化。 (4)启发式与直觉推理,分层递阶的信息处理和多CPU并行的计算机硬、软件系统为仿人智能控制提供了具有在线自整定、自学

习和自适应能力的快速实时运行条件。 2.2 仿人智能控制的基本概念 1. 特征变量(Characteristic Variable ) 用来描述控制系统的动态特征和行为的变量称为特征变量。 (1)e e Δ? 0<Δ?e e ,表明系统动态过程正向误差减小的方向变化, 0>Δ?e e ,表明系统动态过程正向误差增大的方向变化。 (2)1?Δ?Δn n e e 相邻两次误差变化之积: 01<Δ?Δ?n n e e 表示出现极值(误差反方向) ; 01>Δ?Δ?n n e e 表示无极值。 2.特征模型 (Characteristic Model ) 仿人智能控制的特征模型定义为系统动态特性的一种定性和定量相结合的描述,它是根据控制问题求解和控制指标的不同要求,对系统动态信息空间∑的一种划分。 Σ∈=i n φφφφφ}, ,...,,{21 例如: ]/0[211δδαφ>>>≥Δ?=e e e e e e ∩∩ ∩ 特征状态由一些特征基元组合而成: },......,,{21m q q q =φ q 1: 0≥?e e 或 0≤ 或 ; q 3: 1δ

多智能体系统一致性综述

多智能体系统一致性综述 引言 多智能体系统在20世纪80年代后期成为分布式人工智能研究中的主要研究对象。研究多智能体系统的主要目的就是期望功能相对简单的智能体系统之间进行分布式合作协调 控制,最终完成复杂任务。多智能体系统由于其强健、可靠、高效、可扩展等特性,在科 学计算、计算机网络、机器人、制造业、电力系统、交通控制、社会仿真、虚拟现实、计 算机游戏、军事等方面广泛应用。多智能体的分布式协调合作能力是多智能体系统的基 础,是发挥多智能体系统优势的关键,也是整个系统智能性的体现。 在多智能体分布式协调合作控制问题中,一致性问题作为智能体之间合作协调控制的基础,具有重要的现实意义和理论价值。所谓一致性是指随着时间的演化,一个多智能 体系统中所有智能体的某一个状态趋于一致。一致性协议是智能体之间相互作用、传递 信息的规则,它描述了每个智能体和其相邻的智能体的信息交互过程。当一组智能体要 合作共同去完成一项任务,合作控制策略的有效性表现在多智能体必须能够应对各种不可预知的形式和突然变化的环境,必须对任务达成一致意见,这就要求智能体系统随着环 境的变化能够达到一致。因此,智能体之间协调合作控制的一个首要条件是多智能体达到一致。 近年来,一致性问题的研究发展迅速,包括生物科学、物理科学、系统与控制科学、计算机科学等各个领域都对一致性问题从不同层面进行了深入分析,研究进展主要集中在群体集、蜂涌、聚集、传感器网络估计等问题。 目前,许多学科的研究人员都开展了多智能体系统的一致性问题的研究,比如多智能体分布式一致性协议、多智能体协作、蜂涌问题、聚集问题等等。下面,主要对现有文 献中多智能体一致性协议进行了总结,并对相关应用进行简单的介绍。 1.1 图论基础 多智能体系统是指由多个具有独立自主能力的智能体通过一定的信息传递方式相互作用形成的系统;如果把系统中的每一个智能体看成是一个节点,任意两个节点传递的智 能体之间用有向边来连接的话,智能体的拓扑结构就可以用相应的有向图来表示。 用G (V,E,A)来表示一个有向加权图,其中V { v1,v2 , ,v n} 代表图的n个顶点; E V V 是边集合,如果存在从第 i 个顶点到第 j 个顶点的信息流,则有e ij (v i,v j) E; A 是非负加权邻接矩阵e ij E a ij 0;节点v i的邻居集定义为N i {v j|(v i,v j) E} 。如果对所 有的e ij E意识着e ji E,则称 G是无向图。

智能车控制算法

智能车转角与速度控制算法 1.检测黑线中点Center:设黑、白点两个计数数组black、white,从第一个白点开始,检测到一个白点,白点计数器就加1,检测到第一个黑点,黑点计数器就加1,并且白点计数器停止,以此类推扫描每一行;黑线中点=白点个数+(黑点的个数/2) 2.判断弯直道: 找出黑线的平均位置avg (以每10行或者20…作为参照,行数待定) 算出相对位移之和(每一行黑线中点与黑线平均位置距离的绝对值之和) 然后用Curve的大小来确定是否弯直道(Curve的阀值待定)。 3.控制速度: 根据弯度的大小控制速度大小。 //*****************************弯度检测函数*******************************// Curvecontrol () { int black[N]; //黑点计数器 int white[N]; //白点计数器 int center[N]; //黑线中点位置 int avg; //黑线中点平均位置 int curve;//N行的相对位移之和 if(白点) ++white[N]; //判断黑白点的个数 else ++black[N]; center[N]=white[N]+black[N]/2; //每一行的黑线中点avg=(center[1]+center[2]+...+center[N])/N; //求出黑线中点的平均位置 curve=(|avg-center[1]|+|avg-center[2]|+...+|avg-center[N]|)/N //求出N行的相对位移之和 return curve; //返回弯度大小

锅炉炉膛负压仿人智能控制毕业论文

锅炉炉膛负压仿人智能控制毕业论文 目录 1 绪论........................................................ 错误!未定义书签。 1.1 课题背景及目的............................... 错误!未定义书签。 1.2 国外研究状况................................. 错误!未定义书签。 1.3 研究的容及要求............................... 错误!未定义书签。 1.4 设计难点及解决手段........................... 错误!未定义书签。 2 仿人智能控制系统的原理及特点........................... 错误!未定义书签。 2.1 仿人智能控制的原理........................... 错误!未定义书签。 2.1.1 仿人智能控制的基本思路.................. 错误!未定义书签。 2.1.2 仿人智能行为的特征变量.................. 错误!未定义书签。 2.2 仿人智能控制与PID控制相结合................. 错误!未定义书签。 2.2.1 PID控制的原理.......................... 错误!未定义书签。 2.4.2 仿人智能PlD控制器...................... 错误!未定义书签。 2.3 仿人智能控制系统的设计方法................... 错误!未定义书签。 2.3.1 被控对象的“类等效”简化模型............ 错误!未定义书签。 2.3.2 被控对象的模型处理...................... 错误!未定义书签。 2.4 仿人智能控制算法研究......................... 错误!未定义书签。 2.4.1 仿人比例控制算法........................ 错误!未定义书签。 2.4.2 仿人积分控制算法........................ 错误!未定义书签。 2.4.3 仿人智能控制器算法模型.................. 错误!未定义书签。 3 500t/h CFB锅炉炉膛负压仿人智能控制系统设计....... 错误!未定义书签。 3.1 500t/hCFB锅炉炉膛负压控制系统的简介.......... 错误!未定义书签。 3.1.1 炉膛压力控制系统简介.................... 错误!未定义书签。 3.1.2 炉膛压力的测量.......................... 错误!未定义书签。

仿人智能控制课题论文报告(重庆大学)

目录 1、引言 (2) 2、PID控制原理与设计 (2) (1)开环控制系统 (2) (2)闭环控制系统 (3) (3)阶跃响应 (3) (4)PID控制的原理和特点 (3) 3、仿人智能控制原理与设计 (5) 4、系统仿真设计与分析 (6) (1)伺服控制系统仿真 (6) (2)定值控制系统仿真 (7) (3)伺服控制下系统仿真结果 (8) (4)定值控制下系统仿真结果 (10) (5)系统仿真心得体会 (11)

1、引言 工业生产对象大多在不同程度上存在着纯滞后,例如流量控制系统因传输管道引起的纯滞后、流体成分在线分析引起的纯滞后等等。在这些过程中,纯τ滞后使得被调量不能及时反映控制信号的动作,控制信号的作用只有在延迟τ以后才能反映到被调量;另一方面,当对象受到干扰而引起被调量改变时,控制器产生的控制作用不能立即对干扰产生抑制作用。因此,含有纯滞后环节的闭环控制系统必然存在较大的超调量和较长的调节时间。纯滞后对象也因此而成为难控的对象,而且,纯滞后τ占整个动态过程的时间越长,难控的程度越大。纯滞后系统的控制一直受到许多学者的关注,成为重要的研究课题之一。最初,Ziegle—Nichols对纯滞后系统提出了常规PID控制器参数的整定方法,解决了τ/T = 0.15—0.6的纯滞后对象的控制问题,然而对于具有更大纯滞后的系统,该方法显得力不从心。1959年,O.J.Smith发表了题为“A Controller to Overcome Dead Time”的论文,提出了著名的Smith预估器来控制含有纯滞后环节的对象,从理论上解决了纯滞后系统的控制问题。之后,许多学者对Smith预估器进行了改进,得到了更好的结果。但由于不可能获得实际系统的精确数学模型,使得该方法很难得到实际应用。因此,研究一种适合于大纯滞后、特大纯滞后对象的实用控制方法就显得相当重要。 本文首先简要介绍了常规PID控制器控制纯滞后对象的方法,然后介绍了作者提出的仿人智能控制器在超大纯滞后对象中的应用,最后给出了τ=10,τ=20,τ=30的超大纯滞后对象的仿真结果,及作出相应对比。结果表明该方法对于超大纯滞后系统具有较好的控制性能。 2、PID控制原理与设计 自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。不同的控制系统,其传感器、变送器、执行机构是不一样的,其中PID控制,其参数的自动调整是通过智能化调整或自校正、自适应算法得以实现。 (1)开环控制系统 开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

一个多智能体机器人协作装配系统

一个多智能体机器人协作装配系统① (1997年11月3日收到,1998年1月9日修回) 王越超② 谈大龙 黄 闪 栾 天 赵忆文 (中国科学院沈阳自动化研究所机器人学开放实验室 沈阳110015) 摘 要 介绍了一个基于多智能体概念实现的多机器人协作装配系统——M RCA S(M u lti2 Robo t Coop erative A ss m b ly System)。该系统由组织级计算机、三台工业机器人和一台 全方位移动小车(ODV)组成,采用分层递阶体系结构。利用M RCA S系统进行了多机 器人协作装配的实验:在ODV装配平台上,四台机器人合作装配一个大型桁架式工件。 该工件具有多种装配构型,但任何一台机器人不能独立完成装配。 关键词:智能体、多机器人系统、装配 一、引 言 近年来,人们对机器人学领域中多机器人系统的研究极为关注,对这种系统所具有的适应性、柔性、可扩展性、可靠性等产生了浓厚的兴趣。多机器人系统在自动装配作业、危险环境下材料处理以及外层空间作业等有着广泛应用前景。多机器人系统研究主要有两个问题:多机器人协调和多机器人合作。协调是研究如何控制多个机器人的运动和谐一致;而合作是研究如何组织多个机器人共同完成一个任务,即给定处于某一环境中的一组机器人一个任务时,合作行为将如何产生。 目前,基于分布式人工智能(DA I)中多智能体系统概念研究机器人协作问题十分活跃。DA I 主要包括两个研究领域:分布式问题求解(D PS)和多智能体系统(M A S)。DA I理论与协作机器人学密切相关,许多研究者将M A S概念应用于多机器人系统,对多智能体机器人系统进行了研究[1-3]。多智能体机器人系统(M A R S)中的每个机器人具有自治和协作能力,自治是指每个智能体机器人具有自我控制与决策的能力,协作则是指能与其它机器人一起完成某个任务。为促进多机器人系统和机器人智能的研究,国际机器人界还组织了微机器人足球比赛[4],这对协作机器人学及相关技术的研究提出了新的挑战。 基于多智能体思想,我们在多年从事多机器人协调研究的基础上[5,6]实现了一个多机器人协作装配系统——M RCA S。这项研究的主要目的是实现一个能适应使命变化、可重构的多智能体机器人实验系统。本文介绍了M RCA S系统的体系结构,以及利用M RCA S系统的四台机器人合作装配大型桁架工件的实验。 二、M RCA S系统的体系结构 为实现多机器人协作系统,必须建立合适的体系结构。群体结构不仅提供了合作行为的基础, ① 863计划资助项目(8632512222203)。 ②男,1960年生,研究生,研究员;研究方向:机器人控制;联系人。

智能车控制算法

智能车转角与速度控制算法 1. 检测黑线中点Center :设黑、白点两个计数数组 black 、white ,从第一个白点开始,检 测到一个白点,白点计数器就加 1,检测到第一个黑点,黑点计数器就加 1,并且白点计数 器停止,以此类推扫描每一行;黑线中点 =白点个数+ (黑点的个数/2) 2. 判断弯直道: 找出黑线的平均位置 avg (以每10行或者20…作为参照,行数待定) 算出相对位移之和(每一行黑线中点与黑线平均位置距离的绝对值之和 ) Curve = |Center[N]- avg| 然后用Curve 的大小来确定是否弯直道(Curve 的阀值待定) 3. 控制速度: 根据弯度的大小控制速度大小。 Curvec on trol () { int black[N]; //* **************************** 弯度检测函数 ****************************** *// //黑点计数器

int white[N]; int cen ter[N]; int avg; int curve ; if(白点)++white[N]; else ++black[N]; cen ter[N]=white[N]+black[N]/2; 占 八、、//白点计数器 //黑线中点位置 //黑线中点平均位置 //N行的相对位移之和//判断黑白点的个数 //每一行的黑线中 avg=(ce nter[1]+ce nter[2]+...+ce nter[N])/N; //求出黑线中点的平均位置 curve=(|avg _cen ter[1]|+|avg-ce nter[2]|+...+|avg _cen ter[N]|)/N 的相对位移之和 //求出N行 return curve; } //返回弯度大小

优化算法、智能算法、智能控制技术的特点和应用

优化算法、智能算法、智能控制技术的特点和应用 在建立了以频域法为主的经典控制理论的基础上,智能控制技术逐步发展。随着信息技术的进步新方法和新技术进入工程化、产品化阶段。这对自动控制理论技术提出了新的挑战,促进了智能理论在控制技术中的应用。下面介绍了优化算法、智能算法、智能控制技术的特点及应用。 优化算法特点及应用 什么是优化?就是从各种方案中选取一个最好的。从数学角度看,优化理论就是研究如何在状态空间中寻找到全局最优点。优化算法通常用来处理问题最优解的求解,这个问题有多个变量共同决定的优化算法的一个特点往往给出的是一个局部最优解,不是绝对的最优解,或者说全局最优解。一种优化算法是否有用很大程度取决问题本身,如果问题本身就是比较无序的,或许随机搜索是最有效的。常用有3种优化算法:遗传算法、蚁群算法、免疫算法等。 遗传算法是一种基于模拟遗传机制和进化论的并行随机搜索优化算法。遗传算法在控制领域中,已被用于研究离散时问最优控制、方程的求解和控制系统的鲁棒稳定问题等。遗传算法用来训练神经网络权值,对控制规则和隶属度函数进行优化,也可用来优化网络结构。 蚁群算法是群体智能的典型实现,是一种基于种群寻优的启发式搜索算法。蚁群算法小仅能够智能搜索、全局优化,而具有鲁棒性、正反馈、分布式计算、易与其它算法结合等特点。等人将蚁群算法先后应用于旅行商问题、资源二次分配问题等经典优化问题,得到了较好的效果。在动态环境下,蚁群算法也表现出高度的灵活性和健壮性,如在集成电路布线设计、电信路山控制、交通建模及规划、电力系统优化及故障分析等方面都被认为是目前较好的算法之一。 智能算法的特点及应用 智能计算也有人称之为“软计算”。是人们受生物界的启迪,根据其原理,模仿求解的算法。智能计算的思想:利用仿生原理进行设计(包括设计算法)。常用的智能算法:1)人工神经网络算法、2)遗传算法、3)模拟退火算法、4)群集智能算法。其应用领域有:神经元和局

多智能体的一致性问题报告

多智能体的一致性问题的研究报多智能体的一致性问题的研究报告 指导老师:唐斌 报告人:黄建安 多智能体技术应用综述多智能体系统是由多个可计算的智能体组成的集合,其中每一个智能体是一个物理或抽象的实体,并能通过感应器感知周围的环境和效应器作用于自身,并能与其他智能体进行通讯的实体。作用于自身,并能与其他智能体进行通讯的实体。多智能体技术是通过采用各智能体间的通讯、合作、协调、调度、管理以及控制来表述实际系统的结构、功能及行为特性。近年来,随着应用的需要和技术的发展,多智能体的协调控制在世界范围内掀起了研究的热潮。智能体的分布式协调控制能力是多智能体系统的基础,是发挥多智能体系统优势的关键,也是整个系础,是发挥多智能体系统优势的关键,也是整个系统智能性的体现。作为多智能体协调控制的问题的基础,一致性问题主要是研究如何基于多智能体系统中个体之间有限的信息交换,来设计的算法,使得所有的智能体的状态达到某同一状态的问题。一致性协议问题作为智能体之间相互作用、传递信息的规则,它描述了每个智能体和与其相邻的智能体的信息交换过程。 多智能体的一致性问题的发展:1995年,Vicsek等人提出了一个经典的模型来模拟粒子涌现出的一致性行为的现象,并且通过仿真得到了一些很实用的结果。之后,Jadbabaie等人首先应用矩阵方法对该模型进行了理论分析,发现只要再网络保持连通时,系统最终会趋于一致。然后,有理论最早提出了一致性问题的理论框架,设计了最一般的一致性算法,发现网络的代数连通度表征了系统收敛的速度,给出了算法达到平均一致性的条件,并将结果扩展到时滞的对称一致性算法。进一步,Ren与Beard等提出了一致性搜索问题并给出了理论分析。Moreeau应用凸性收敛进行了理论分析并给出了存在时滞的不对称一致性算法收敛结果。经过以上大量的研究分析表明,当网络为固定拓扑结构时,只要网络保持连通,连续一致性算法最终会趋于一致;当网络为切换拓扑结构时,如果在有限时间内,存在有网络拓扑结构的并组成的序列,并且所有这些图的并都保持连通,则一致性算法最终也会收敛到一致。对于离散一致性算法,当步长小于网络最大度的逆时,系统趋于一致的条件类似于连续系统。2005年Iain Couzin在《Nature》杂志上发表的文章指出,鱼群再排列成规则形状迁徙的过程中,一部分鱼扮演了“领导者”的角色。最近,Cortes提出了并分析了基于一般化连续一致性函数的任意分布式算法,并给出了趋于一致性充分必要条件,将一致性算法扩展到更为一般化的函数设计。 研究情况:在一致性问题的分析研究中,一致性协议是研究的重点。研究重点主要集中在对一致性协议模型的设计分析,一致性协议的收敛、平衡状态、应用分析。目前有向/无向通信网络、固定/动态拓扑、时滞系统、信息不确定以及异步通信中的相关问题,以形成相对完善的系统理论。一致性问题的分析:(1)基于连续时间的一致性问题(2)基于离散时间的一致性问题(3)基于切换拓扑结构的一致性问题(4)带时滞一致性问题a.对称时滞一致性问题(智能体本身接收和发送信息都有固定时滞)b.不对称时滞一致性问题(智能体本身接收信息有固定时滞,发送信息没有固定时滞)c.时变时滞一致性问题(时滞是随时间动态变化,不是固定常数)(5)一致性滤波问题未来几个重点关注的理论问题: (1)弱连通条件下的多智能体一致性理论。 目前的一致性理论大部分需要假设在动态变化过目前的一致性理论大部分需要假设在动态变化过程中拓扑结图是强连通或含有生成树结构,某种程度上限制了一致性理论的应用范围。联合联通和连通性概念的提出拓宽了人们对一致性理论的收敛条件的研究思路,一致性理论的应用需求使得弱连通条件下,特别是动态拓扑网络中的一致性问题必将成为未来的重点关注的理论问题之一。 (2)具有不对称时变时延的多智能体系统一致性算法。

多智能体系统一致性综述

多智能体系统一致性综述 一引言 多智能体系统在20世纪80年代后期成为分布式人工智能研究中的主要研究对象。研究多智能体系统的主要目的就是期望功能相对简单的智能体系统之间进行分布式合作协调控制,最终完成复杂任务。多智能体系统由于其强健、可靠、高效、可扩展等特性,在科学计算、计算机网络、机器人、制造业、电力系统、交通控制、社会仿真、虚拟现实、计算机游戏、军事等方面广泛应用。多智能体的分布式协调合作能力是多智能体系统的基础,是发挥多智能体系统优势的关键,也是整个系统智能性的体现。 在多智能体分布式协调合作控制问题中,一致性问题作为智能体之间合作协调控制的基础,具有重要的现实意义和理论价值。所谓一致性是指随着时间的演化,一个多智能体系统中所有智能体的某一个状态趋于一致。一致性协议是智能体之间相互作用、传递信息的规则,它描述了每个智能体和其相邻的智能体的信息交互过程。当一组智能体要合作共同去完成一项任务,合作控制策略的有效性表现在多智能体必须能够应对各种不可预知的形式和突然变化的环境,必须对任务达成一致意见,这就要求智能体系统随着环境的变化能够达到一致。因此,智能体之间协调合作控制的一个首要条件是多智能体达到一致。 近年来,一致性问题的研究发展迅速,包括生物科学、物理科学、系统与控制科学、计算机科学等各个领域都对一致性问题从不同层面进行了深入分析,研究进展主要集中在群体集、蜂涌、聚集、传感器网络估计等问题。 目前,许多学科的研究人员都开展了多智能体系统的一致性问题的研究,比如多智能体分布式一致性协议、多智能体协作、蜂涌问题、聚集问题等等。下面,主要对现有文献中多智能体一致性协议进行了总结,并对相关应用进行简单的介绍。 1.1图论基础 多智能体系统是指由多个具有独立自主能力的智能体通过一定的信息传递方式相互作用形成的系统;如果把系统中的每一个智能体看成是一个节点,任意两个节点传递的智能体之间用有向边来连接的话,智能体的拓扑结构就可以用相应的有向图来表示。 用)(A E,V ,G =来表示一个有向加权图,其中}{n 21v ,,v ,v V =代表图的n 个顶

相关文档
相关文档 最新文档