文档库 最新最全的文档下载
当前位置:文档库 › 空间平面法向量求法(新)

空间平面法向量求法(新)

空间平面法向量求法(新)
空间平面法向量求法(新)

空间平面法向量求法

一、法向量定义

定义:如果,那么向量叫做平面的法向量。平面的法向量共有两大类(从方向上分),无数条。

二、平面法向量的求法

1、内积法

在给定的空间直角坐标系中,设平面的法向量=(x,y,1)[或=(x,1,z)或=(1,y,z)],在平面内任找两个不共线的向量,。由,得·=0且·=0,由此得到关于x,y的方程组,解此方程组即可得到。

2、

任何一个x,y,z的一次方程的图形是平面;反之,任何一个平面的方程是x,y,z的一次方程。Ax+By+Cz+D=0(A,B,C不同时为0),称为平面的一般方程。其法向量=(A,B,C);若平面与3

个坐标轴的交点为P(a,0,0),P(0,b,0),P(0,0,c),则平面方程为:,称此方程为平面

的截距式方程,把它化为一般式即可求出它的法向量。

3、外积法

设,为空间中两个不平行的非零向量,其外积×为一长度等于||||sinθ,(θ为两者交角,且0<θ<π,而与,, 皆垂直的向量。通常我们采取“右手定则”,也就是右手四指由的方向转为的方向时,大拇指所指的方向规定为×的方向,×=-×。

设=(x1,y1,z1),=(x2,y2,z2),则×=

(注:1、二阶行列式:;2、适合右手定则。)

Code

public double[] GetTriangleFunction(ESRI.ArcGIS.Geometry.IPoint point1,

ESRI.ArcGIS.Geometry.IPoint point2, ESRI.ArcGIS.Geometry.IPoint point3)

{

try

{

double a = 0, b = 0,c=0; //方程参数

double x1 = 0, x2 = 0, x3 = 0, y1 = 0, y2 = 0, y3 = 0, z1 = 0, z2 = 0, z3 = 0; //各点坐标值

double[] returnValue = new double[3];

x1 = point1.X * 1000;

y1 = point1.Y * 1000;

z1 = point1.Z * 1000;

x2 = point2.X * 1000;

y2 = point2.Y * 1000;

z2 = point2.Z * 1000;

x3 = point3.X * 1000;

y3 = point3.Y * 1000;

z3 = point3.Z * 1000;

//向量I1

double[] I1 = new double[3];

I1[0] = x2 - x1;

I1[1] = y2 - y1;

I1[2] = z2 - z1;

//向量I2

double[] I2 = new double[3];

I2[0] = x3 - x1;

I2[1] = y3 - y1;

I2[2] = z3 - z1;

double X1 = I1[0];

double Y1 = I1[1];

double Z1 = I1[2];

double X2 = I2[0];

double Y2 = I2[1];

double Z2 = I2[2];

a = Y1 * Z2 - Y2 * Z1;

b = X2 * Z1 - X1 * Z2;

c = X1 * Y2 - X2 * Y1;

returnValue[0] = a;

returnValue[1] = b;

returnValue[2] = c;

return returnValue;

}

catch (Exception e)

{

throw e;

}

}

OPENGL里面就这样实现

void getNormal(GLfloat gx[3],GLfloat gy[3], GLfloat gz[3],GLfloat *ddnv) {

GLfloat w0,w1,w2,v0,v1,v2,nr,nx,ny,nz;

w0=gx[0]-gx[1]; w1=gy[0]-gy[1];w2=gz[0]-gz[1];

v0=gx[2]-gx[1]; v1=gy[2]-gy[1];v2=gz[2]-gz[1];

nx=(w1*v2-w2*v1);ny=(w2*v0-w0*v2);nz=(w0*v1-w1*v0);

nr=(GLfloat)sqrt(nx*nx+ny*ny+nz*nz); //向量单位化。

ddnv[0]=nx/nr; ddnv[1]=ny/nr;ddnv[2]=nz/nr;

}

利用空间向量求空间角教案设计

利用空间向量求空间角 一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l ,m 的方向向量分别为a r ,b r ,异面直线l ,m

2、线面角公式:设直线l 为平面α的斜线,a r 为l 的方向向量,n r 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ==r r a n a n ?r r r r . 3、面面角公式:设1n r ,2n r 分别为平面α、β的法向量,二面角为θ,则12,n n θ=r r 或 12,n n θπ=-r r (需要根据具体情况判断相等或互补) ,其中121212 cos ,n n n n n n ?=r r r r r r . α θ O n r a

(二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=o ,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. 解:如图建立空间直角坐标系,则(0,0,0)O , (2,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)S , 于是我们有(2,0,1)SA =-u u r ,(1,1,0)AB =-u u u r ,(1,1,0)OB =u u u r ,(0,0,1)OS =u u u r , (1)cos ,5SA OB SA OB SA OB ?== =u u r u u u r u u r u u u r u u r u u u r , 所以异面直线SA 和OB 所成的角的余弦值为5 . (2)设平面SAB 的法向量(,,)n x y z =r , 则0,0, n AB n SA ??=???=??r u u u r r u u r ,即0,20.x y x z -+=??-=? 取1x =,则1y =,2z =,所以(1,1,2)n =r , sin cos ,3OS n OS n OS n α?∴=== =u u u r r u u u r r u u u r r . (3)由(2)知平面SAB 的法向量1(1,1,2)n =u r , 又OC ⊥Q 平面AOS ,OC ∴u u u r 是平面AOS 的法向量, 令2(0,1,0)n OC ==u u r u u u r ,则有121212 cos ,n n n n n n ?== =u r u u r u r u u r u r u u r . ∴二面角B AS O --O A B C S

探索空间平面法向量的求法与方向的判定

“ 量无论无论是 和具有规具有规律性。 时有时会显得特别探索空间平面法向量的求法与方向的判定 问题,都离不开平面的 成角 ” ” 距离 “ 问题,还是 杨玉春 (铜仁市第二中学,贵州铜仁 554300) 向量具有一套完整的运算体系,可以把几何图形的性质 转化为向量运算,变抽象的逻辑推理为具体的向量运算,实 现了“数”与“形”的结合。因此用量知识解决某些立体几 何问题,有时会显得特别简洁和具有规律性。但用向量无论 是解决“成角”问题,还是“距离”问题,都离不开平面的 法向量,可以说平面的法向量是用向量来解决立几问题的瓶 颈,平面法向量的正确求出是关键。而用向量来求二面角的 大小时,往往还需判断法向量的方向,是指向二面角内还是 指向二面角外。本文介绍空间平面法向量的求法与方向的判 定。 一、平面法向量的求法 1、几何法:如图(1),若λ⊥α,在λ上任取两点A、B, 则或即为平面α的一个法向量。 2、待定系数法(两种设法):

(1)设n=(1,λ,μ)或n=(λ,1,μ)或n=(λ, μ,1)是平面α的一个法向量。a ,b 是平面α内任一两个不共线向量,由 n ·a=0 n ·b=0求出λ,μ即可。 (2)或设n=(x ,y ,z )是平面a=0 ·b=0 得出关于x 、y 、z 的三元一次方程组的一个解即为平面α的一个法向量。 3、利用空间平面方程:Ax+By+Cz+D=0(其中:A 、B 、C 不同时为零),则n=(A ,B ,C )为平面的一个法向量。 4利用向量的向量积:如图(1),设a=(111,,x y z ),b=(223,,x y z ) 则a ×b= =( ,| |,|) =(122121121221,,y z y z x z x z x y x y ---) 取n=(a ×b )(λ∈R 且λ≠0)是平面α的法向量。 二、空间平面法向量方向的判定 1、由几何法求出的法向量,此时方向看图即可。 2、由向量的向量积求出的法向量,用“右手定则”可确定a ×b 的方向,取n=λ(a ×b),当>0时,则n 方向与向

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳 一、基础知识 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b | ? , 其中a ,b 分别是直线a ,b 的方向 向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量, φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | ? . 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ? ,如图(2)(3). 两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值. 直线与平面所成角的范围为????0,π 2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值. 利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互

补,需要结合图形进行判断. 二、常用结论 解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2. 如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角 [典例精析] 如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2. (1)求证:MN ∥平面BDE ; (2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为7 21 ,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→ 方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0). (1)证明:DE ―→=(0,2,0),DB ―→ =(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则????? n ·DE ―→=0,n ·DB ―→=0, 即????? 2y =0,2x -2z =0. 不妨取z =1,可得n =(1,0,1).

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

法向量的求法及其空间几何题的解答

状元堂一对一个性化辅导教案 教师张敏科目数学时间2013 年6 月4日 学生董洲年级高二学校德阳西校区授课内容空间法向量求法及其应用立体几何知识点与例题讲解 难度星级★★★★ 教学内容 上堂课知识回顾(教师安排): 1.平面向量的基本性质及计算方法 2.空间向量的基本性质及计算方法 本堂课教学重点: 1.掌握空间法向量的求法及其应用 2.掌握用空间向量求线线角,线面角,面面角及点面距 3.熟练灵活运用空间向量解决问题 得分:

平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或(1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 二、 平面法向量的应用 1、 求空间角 (1)、求线面角:如图2-1,设→ n 是平面α的法向量,AB 是平面α的一条斜线,α∈A ,则AB 与平面α所成的角为: 图2-1-1:.| |||arccos 2,2 →→→ →→ →??->= <-= AB n AB n AB n π π θ 图2-1-2:2| |||arccos 2,π π θ-??=->=<→ →→ → → → AB n AB n AB n (2)、求面面角:设向量→ m ,→ n 分别是平面α、β的法向量,则二面角βα--l 的平面角为: θ β α → m 图2-2 → n θ → m α 图2-3 → n β | ,cos |sin ><=→ →AB n θA B α 图2-1-2 θ C → n 图2-1-1 α θ B → n A C

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 平面的法向量 仁定义:如果a _ :,那么向量a 叫做平面二的法向量。平面.:> 的法向量共有两大类(从方向上分) ,无 数条。 2、平面法向量的求法 斗 ■ 4 方法一(内积法):在给定的空间直角坐标系中, 设平面「的法向量n =(x,y,1)[或n =(x,1,z),或n =(1yZ ], 在平面:内任找两个不共线的向量 a,b 。由n _ :?,得n a = 0且n b = 0,由此得到关于 x, y 的方程组,解此 i 方程组即可得到n 。 方法二:任何一个 x, y, z 的一次次方程的图形是平面;反之,任何一个平面的方程是 Ax By Cz ^0 (代B,C 不同时为0),称为平面的一般方程。其法向量 n -(A, B,C);若平面与3个坐 标轴的交点为R(a,0,0), P 2(0,b,0), P 3(0,0, c),如图所示,则平面方程为?上 ]--1,称此方程为平面的截距 a b c 式方程,把它化为一般式即可求出它的法向量。 方法三(外积法):设 ,.为空间中两个不平行的非零向量,其外积 a b 为一长度等于|a||b|sinr , ( 9为 ..,.两者交角,且Ou :::二),而与..,.皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 .. 例 1、 已知,al(2,1,0),b'(-1,2,1), T T —f —f 试求(1): a^b ; (2): b 汉a. T T T T Key: (1) a b =(1,-2,5);⑵ b a =(-1,2,5) 例2、如图1-1,在棱长为2的正方体 ABCD -A 1B 1C 1D 1中, 7 T T T 的方向转为 匸的方向时,大拇指所指的方向规定为a b 的方向 ^( x i ,y i ,z i ),^(x 2, r 「 T T 丫2二2),则:a b = Z 2 X 1乙 X 2 Z 2 X 1 X 2 y 1 y 2 (注:1、二阶行列式 =ad —cb ; d 2、适合右手定 则。 x, y, z 的一次方程。

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6. (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111AB C A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

利用空间向量求空间角和距离

利用空间向量求空间角和距离 A 级——夯基保分练 1.如图所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A.30 30 B .3015 C. 3010 D. 1515 解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→ =(-1,-1,-2),D 1N ―→ =(1,0,-2), ∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→ | |B 1M ―→|·|D 1N ―→|= |-1+4|1+1+4×1+4=30 10 . 2.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =1 3AB ,则DC 1与平面D 1EC 所成角的 正弦值为( ) A.33535 B .277 C.33 D.24 解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→ =(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则????? n ·D 1E ―→=0,n · D 1C ―→=0,即????? x +y -z =0,3y -z =0,取y =1,得n =(2,1,3). ∴cos DC 1―→,n =DC 1―→·n |DC 1―→|·|n| =33535, ∴DC 1与平面D 1EC 所成的角的正弦值为335 35 .

向量法求空间点到平面的距离教案

学习必备 欢迎下载 向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

学习必备欢迎下载

学习必备 欢迎下载 若AB 是平面α的任一条斜线段,则在BOA Rt ? ABO COS ∠? ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z = 则n AB n AC ⊥⊥,.∵(3,4,0)AB =-,(3,0,2)AC =- ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z ?-=???-=?即340320x y x z -+=??-+=? ∴3432y x z x ?=????=?? 取4x =,则(4,3,6)n = ∴(4,3,6)n =是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E =-=--=设平面EFG 的一个法向量 为(,,)n x y z = 2202420 11(,,1)33 n EF n EG x y x y n ⊥⊥-=?∴?--+=?∴=,

利用向量法求空间角经典教案

利用空间向量求空间角 目标:会用向量求异面直线所成的角、直线与平面所成的角、二面角的方法; 一、复习回顾向量的有关知识: (1)两向量数量积的定义:><=?,cos ||||(2)两向量夹角公式:| |||,cos b a b a >= < 二、知识讲解与典例分析 知识点1:两直线所成的角(范围:]2 , 0(π θ∈) (1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a′与b′,那么直线a′与b′ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角,设两异面直线a 、b 的方向向量分别为a 和b , 问题1: 当与的夹角不大于90°时,异面直线 的角θ与 和 的夹角的关系? 问题 2:与的夹角大于90°时,,异面直线a 、θ与a 和b 的夹角的关系? 结论:异面直线a 、b 所成的角的余弦值为| ||||,cos |cos n m = ><=θ 例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。 2.利用空间两个向量的夹角公式求出夹角。 解:如图建立空间直角坐标系xyz A -,则)2,,0(),0,2 1 ,23(),2,21,23(),0,0,0(11a a B a a C a a a C A -- ∴ )2,21,23(1a a a AC - =,)2,2 1 ,23(1a a a CB = 即21323,cos 22 111111==>= <11,cos BE DF 与>

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或( 1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3个坐 标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于θsin ||||→ → b a ,(θ 为 ,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→?b a 的方向,→ →→→?-=?a b b a 。 :),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,2 1z z 21x x - ,21z z 21x x ???? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n 。 )2,2,1(:=?=→ →→AE AF n key 法向量

第43讲 利用空间向量求空间角和距离(讲)(解析版)

第43讲 利用空间向量求空间角和距离 思维导图 知识梳理 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b |, 其中a ,b 分别是直线a ,b 的方向向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ,如图(2)(3). 4.利用空间向量求距离 (1)两点间的距离

设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB ―→ |=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离 如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO ―→|=|AB ―→ ·n | |n | . 题型归纳 题型1 异面直线所成的角 【例1-1】(2020?济南模拟)已知直角梯形ABCD 中,//AD BC ,AB BC ⊥,1 2 AB AD BC == ,将直角梯形ABCD (及其内部)以AB 所在直线为轴顺时针旋转90?,形成如图所示的几何体,其中M 为CE 的中点. (1)求证:BM DF ⊥; (2)求异面直线BM 与EF 所成角的大小. 【分析】(1)建立空间坐标系,得出BM ,DF 的坐标,根据向量的数量积为0得出直线垂直; (2)计算BM 和EF 的夹角,从而得出异面直线所成角的大小. 【解答】(1)证明: AB BC ⊥,AB BE ⊥,BC BE B =, AB ∴⊥平面BCE , 以B 为原点,以BE ,BC ,BA 为坐标轴建立空间坐标系B xyz -,如图所示: 设1AB AD ==,则(0D ,1,1),(1F ,0,1),(0B ,0,0),M 0), ∴(2BM =,0),(1DF =,1-,0),

第8讲立体几何中的向量方法求空间角 (1)

第8讲立体几何中的向量方法(二)——求空间角 一、选择题 1.(2016·长沙模拟)在正方体A1B1C1D1-ABCD中,AC与B1D所成的角的大小为() A.π 6 B. π 4 C. π 3 D. π 2 解析建立如图所示的空间直角坐标系,设正方体边长为1,则A(0,0,0),C(1,1,0),B1(1,0,1),D(0,1,0). ∴AC→=(1,1,0),B1D →=(-1,1,-1), ∵AC→·B1D →=1×(-1)+1×1+0×(-1)=0, ∴AC→⊥B1D →, ∴AC与B1D所成的角为π2. 答案 D 2.(2017·郑州调研)在正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的正弦值为() A. 3 2 B. 3 3 C. 3 5 D. 2 5 解析设正方体的棱长为1,以D为坐标原点,DA,DC,DD1 所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,如 图所示.则B(1,1,0),B1(1,1,1),A(1,0,0),C(0,1, 0),D1(0,0,1), 所以BB1→=(0,0,1),AC→=(-1,1,0),AD1 →=(-1,0,1). 令平面ACD1的法向量为n=(x,y,z),则n·AC→=-x+y=0,n·AD1 →=-x+z =0,令x=1,可得n=(1,1,1),

所以sin θ=|cos 〈n ,BB 1→ 〉|=13×1=3 3 . 答案 B 3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22 解析 以A 为原点建立如图所示的空间直角坐标系 A -xyz ,设棱长为1, 则A 1(0,0,1), E ? ????1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1), A 1E →=? ????1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有???A 1D →·n 1=0,A 1E →·n 1=0,即???y -z =0,1-12z =0,解得????? y =2,z =2. ∴n 1=(1,2,2). ∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23. 即所成的锐二面角的余弦值为2 3. 答案 B 4.(2017·西安调研)已知六面体ABC -A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,则直线CC 1与平面AB 1D 所成

空间平面法向量求法

空间平面法向量求法 一、法向量定义 定义:如果,那么向量叫做平面的法向量。平面的法向量共有两大类(从方向上分),无数条。 二、平面法向量的求法 1、内积法 在给定的空间直角坐标系中,设平面的法向量=(x,y,1)[或=(x,1,z)或=(1,y,z)], 在平面内任找两个不共线的向量,。由,得·=0且·=0,由此得到关于x,y的 方程组,解此方程组即可得到。 2、 任何一个x,y,z的一次方程的图形是平面;反之,任何一个平面的方程是x,y,z的一次方程。 Ax+By+Cz+D=0(A,B,C不同时为0),称为平面的一般方程。其法向量=(A,B,C);若平面与3 个坐标轴的交点为P(a,0,0),P(0,b,0),P(0,0,c),则平面方程为:,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 3、外积法 设,为空间中两个不平行的非零向量,其外积×为一长度等于||||sinθ,(θ为两 者交角,且0<θ<π,而与,, 皆垂直的向量。通常我们采取“右手定则”,也就是右手四指 由的方向转为的方向时,大拇指所指的方向规定为×的方向,×=-×。 设=(x1,y1,z1),=(x2,y2,z2),则×= (注:1、二阶行列式:;2、适合右手定则。) Code public double[] GetTriangleFunction(ESRI.ArcGIS.Geometry.IPoint point1, ESRI.ArcGIS.Geometry.IPoint point2, ESRI.ArcGIS.Geometry.IPoint point3) { try { double a = 0, b = 0,c=0; //方程参数

《用向量法求直线与平面所成的角》教案

第二讲:立体几何中的向量方法——利用空间向量求直线与平面所成的 角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合 推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般 规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对线面角的求法进行总结。 教学目标 1. 使学生学会求平面的法向量及直线与平面所成的角的向量方法; 2. 使学生能够应用向量方法解决一些简单的立体几何问题; 3. 使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量; 求解直线与平面所成的角的向量法. 教学难点 求解直线与平面所成的角的向量法. 教学过程 I、复习回顾 一、回顾有关知识: 1

1、直线与平面所成的角:(范围:二? [0,—]) 2 思考:设平面:的法向量为n,则::n,BA .与二的关系? JT ■■二日=----- < n, BA > 2 (图 ) 2

高中数学第三章空间向量与立体几何3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定(一)学案苏

3.2.1 直线的方向向量与平面的法向量 3.2.2 空间线面关系的判定(一) 学习目标 1.掌握空间点、线、面的向量表示.2.理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.3.能用向量法证明直线与直线、直线与平面、平面与平面的平行问题. 知识点一直线的方向向量与平面的法向量 思考怎样用向量来表示点、直线、平面在空间中的位置? 梳理(1)用向量表示直线的位置 条件 直线l上一点A 表示直线l方向的向量a(即直线的________) 形式在直线l上取AB → =a,那么对于直线l上任意一点P,一定存在实数t,使得AP → =________ 作用定位置点A和向量a可以确定直线的________ 定点可以具体表示出l上的任意________ (2)用向量表示平面的位置 ①通过平面α上的一个定点O和两个向量a和b来确定: 条件平面α内两条相交直线的方向向量a,b和交点O 形式对于平面α上任意一点P,存在有序实数对(x,y)使得OP→=x a+y b

②通过平面α上的一个定点A和法向量来确定: 平面的法向量直线l⊥α,直线l的________________叫做平面α的法向 量 确定平 面位置 过点A,以向量a为法向量的平面是完全确定的(3)直线的方向向量和平面的法向量 直线的方向向量能平移到直线上的________向量a,叫做直线l 的一个方向向量 平面的法向量直线l⊥α,取直线l的______,n叫做平面α的法向量 (4)空间中平行关系的向量表示 设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,v,则 线线平行l∥m?________?a=k b(k∈R) 线面平行l∥α?a⊥μ?________ 面面平行α∥β?μ∥v?________ 知识点二利用空间向量处理平行问题 思考(1)设v1=(a1,b1,c1),v2=(a2,b2,c2)分别是直线l1,l2的方向向量.若直线l1∥l2,则向量v1,v2应满足什么关系. (2)若已知平面外一直线的方向向量和平面的法向量,则这两向量满足哪些条件可说明直线与平面平行? (3)用向量法处理空间中两平面平行的关键是什么? 梳理利用空间向量解决平行问题时,第一,建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;第二,通过向量的运算,研究平行问题;第三,把向量问题再转化成相应的立体几何问题,从而得出结论.

利用空间向量求空间角检测题

利用空间向量求空间角检测题 (试卷满分100分,考试时间90分钟) 一、选择题(每小题5分,共40分) 1.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B.135° C .45°或135° D .90° 解析:选C ∵cos m ,n =m ·n |m ||n |=12=22,∴m ,n =45°. ∴二面角为45°或135°.故选C. 2.已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =1 3AB ,则DC 1与平面D 1EC 所成角的正弦值为 ( ) A.33535 B.277 C.3 3 D.24 解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→ =(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则????? n ·D 1E ―→=0,n · D 1C ―→=0,即????? x +y -z =0,3y -z =0,取y =1,得n =(2,1,3). ∴cos DC 1―→ ,n =DC 1―→·n | DC 1―→ |·|n |=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为335 35 . 3.把边长为2的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AD ,BC 所成的角为( ) A .120° B.30° C .90° D .60° 解析:选D 建立如图所示的空间直角坐标系,则A (2,0,0),B (0,2,0),C (0,0,

8-6利用空间向量求空间角

第六节 利用空间向量求空间角 突破点(一) 利用空间向量求空间角 1.两条异面直线所成角的求法 设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b | |a||b |(其中φ 为异面直线a ,b 所成的角). 2.直线和平面所成角的求法 如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n ·e | |n ||e | . 3.求二面角的大小 (1)如图①,AB ,CD 是二面角α -l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉. (2)如图②和图③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉或π-〈n 1,n 2〉 . [例1] 是菱形,AB =2,∠BAD =60°. (1)求证:BD ⊥平面PAC ; (2)若PA =AB ,求PB 与AC 所成角的余弦值. 本节主要包括2个知识点: 1.利用空间向量求空间角; 2.与空间角有关的综合问题.

[方法技巧] 111111的中点,BD与AB1交于点O,且CO⊥平面ABB1A1. =22,D是AA (1)证明:BC⊥AB1; (2)若OC=OA,求直线CD与平面ABC所成角的正弦值.

[易错提醒] 腰梯形,且平面BCEF⊥平面ABCD,AB∥DC,CE∥BF,AB=2CD,∠ABC=60°,G 为线段AB的中点. (1)求证:AC⊥BF;(2)求二面角D-FG-B(钝角)的余弦值. [方法技巧] 利用向量法计算二面角大小的常用方法 (1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.

用向量法求空间角与距离

用向量法求空间角与距离 1.1. 向量的数量积和坐标运算 b a ,是两个非零向量,它们的夹角为 ,则数 cos |||| b 叫做与的数量积(或内积),记作b a ,即.cos |||| 其几何意义是a 的长度与b 在a 的方向上的投影的乘积. 其坐标运算是: 若),,(),,,(222111z y x b z y x a ,则 ①212121z z y y x x b a ; ②2 22222212121||,||z y x b z y x a ; ③212121z z y y x x b a ④2 2 2 22 22 12 12 12 12121,cos z y x z y x z z y y x x b a 1.2. 异面直线n m ,所成的角 分别在直线n m ,上取定向量,,b a 则异面直线n m ,所成的角 等于向量b a ,所成的角或其补角(如图1所示),则 .||||| |cos b a b a (例如2004年高考数学广东卷第18题第(2)问) 1.3. 异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的 向量,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于在 上的射影长,即| |n d . 图1

证明:设CD 为公垂线段,取b a ,(如图1所示),则 | |||)( | |||n d 设直线n m ,所成的角为 ,显然.||||| |cos b a b a 1.4. 直线L 与平面 所成的角 在L 上取定,求平面 的法向量2所示), 再求 | |||cos n AB 2 为所求的角. 1.5. 二面角 方法一:构造二面角 l 的两个半平面 、的法向量 21n n 、(都取向上的方向,如图3所示),则 ① 若二面角 l 是“钝角型”的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即| |||cos 2121n n (例如2004年高考数学广 东卷第18题第(1)问). ② 若二面角 l 是“锐角型”的如图3乙所示, 那么其大 小等于两法向量21n n 、的夹角, 即| |||cos 2121n n (例如 2004年高考数学广东卷第18题第(1)问). 方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面 、内求出与l 垂直的向量21n n 、(如图4所示) ,则二面角 l 的大小等于向量21n n 、的夹角,即 图3乙 图3 图4 图2

相关文档
相关文档 最新文档