文档库 最新最全的文档下载
当前位置:文档库 › ArcGIS地形分析TIN及DEM的生成及应用实验报告

ArcGIS地形分析TIN及DEM的生成及应用实验报告

ArcGIS地形分析TIN及DEM的生成及应用实验报告
ArcGIS地形分析TIN及DEM的生成及应用实验报告

实验四、地形分析-----TIN及DEM的生成及应用

一、实验目的

DEM是对地形地貌的一种离散的数字表达,是对地面特性进行空间描述的一种数字方法、途径,它的应用可遍及整个地学领域。通过对本次实习的学习,我们应:

a)加深对TIN建立过程的原理、方法的认识;

b)熟练掌握ArcGIS中建立DEM、TIN的技术方法。

c)掌握根据DEM或TIN 计算坡度、坡向的方法。

d)结合实际,掌握应用DEM解决地学空间分析问题的能力。

二、实验准备

软件准备:ArcGIS Desktop 9.x ---ArcMap(3D分析模块)

实验数据:矢量图层:高程点Elevpt_Clip.shp,高程Elev_Clip.shp,边界Boundary.shp,洱海Erhai.shp

三、实验内容及步骤

1. TIN 及DEM 生成

1.1由高程点、等高线矢量数据生成TIN转为DEM

在ArcMap中新建一个地图文档

(1)添加矢量数据:Elevpt_Clip、Elev_Clip、Boundary、Erhai(同时选中:在点击的同时按

住Shift)

(2)激活“3D Analyst”扩展模块(执行菜单命令[工具]>>[扩展],在出现的对话框中选中

3D分析模块),在工具栏空白区域点右键打开[3D分析] 工具栏

(3)执行工具栏[3D分析]中的菜单命令[3D分析]>>[创建/修改TIN]>>[从要素生成TIN];

(4)在对话框[从要素生成TIN中]中定义每个图层的数据使用方式;

(5) 确定生成文件的名称及其路径,生成新的图层tin,在TOC(内容列表)中关闭除[TIN]和[Erhai]之外的其它图层的显示,设置TIN的图层(符号)得到如下的效果。

确定后得到DEM数据:TinGrid, 其中,每个栅格单元表示50m×50m的区域

1.2 TIN的显示及应用

(1)在上一步操作的基础上进行,关闭除[TIN]之外的所有图层的显示,编辑图层[tin]的

属性,在图层属性对话框中,点击[符号] 选项页,将[ 边界类型] 和[ 高程] 前面检查框中的勾去掉; 点击[ 添加] 按钮

(2)在[添加渲染] 对话框中,将[所有边用同一符号进行渲染] 和[ 所有点用同一

符号进行渲染] 这两项添加么TIN的显示列表中,

(3)将TIN图层局部放大,认真理解TIN的存储模式及显示方式

(4)TIN 转换为坡度多边形

新建地图文档,加载图层[tin],参考上一步操作,将[面坡度用颜色梯度表进行渲染] 和[面坡向用颜色梯度进行渲染] 这两项添加到TIN的显示列表中,

在上面的对话框中,选中Slope,点击[分类] 按钮,在下面的对框中,将[类] 指定为5,然后在[间隔值] 列表中输入间隔值:[ 8, 15,25, 35,90],图层[ tin ] 将根据指定的渲染方式进

行渲染

2. DEM的应用

2.1坡度:Slope

(5)新建地图文档,加载[1.2(6)]中得到的DEM数据:TINGrid

(6)加载3D分析扩展模块,打开[3D分析]工具栏,执行菜单命令[3D分析]>>[表面分

析]>>[坡度],

(7)得到坡度栅格slope of TinGrid:

(8)在上一步的基础上进行,关闭[Slope of tingrid]的显示。

执行菜单命令:[3D分析]>>[表面分析]>>[坡向]

以下计算剖面曲率:

(9)执行菜单命令:[3D分析]>>[表面分析]>>[坡度]。

2.3提取等高线

(10)新建地图文档,加载DEM数据:[tingrid]。〔在执行以下操作时确保,3D分

析扩展模块已激活〕

(11)生成等高线矢量图层:Contour_tingrid:

2.4计算地形表面的阴影图

(12)在上一步基础上进行,打开[3D 分析]工具栏

(13)执行菜单命令:[ 3D分析]>>[表面分析]>>[ 山影],按下图所示指定各参数:

(14)生成地表阴影栅格

(15)DEM渲染:

如以下第2幅图所示,关闭除[tingrid] 和[Hillshade of tingrid]以外所有图层的显示,并将[ tingrid ] 置于[ Hillshade of tirngrid] 之上,右键点击[ tingrid] ,在出现的右键菜单中执行[ 属性],在[图层属性]对话框中,参照下图所示设置[符号]选项页中颜色。

2.5可视性分析

A.通视性分析

(16)在上一步的基础上进行,打开[ 3D分析] 工具栏,从工具栏选择[ 通视线](Line

of sight)工具:

(17)在出现的[ 通视线]Line of Sight对话框中输入[观察者偏移量] 和[目标偏移

量], 即距地面的距离,如图:

在地图显示区中从某点[A]沿不同方向绘制多条直线,可以得到观察点[A] 到不同目标点的通视性:

B.可视区分析:移动发射基站信号覆盖分析

(18)在上一步基础上进行,在内容列表区[TOC]中关闭除[tingrid] 之外的所有图层,

加载移动基站数据-矢量图层:[移动基站.shp]

(19)在[3D 分析] 工具栏中,执行菜单命令:[3D 分析]>>[表面分析]>>[视域],按下

图所示指定各参数:

生成可视区栅格

其中绿色表示现有发射基站信号已覆盖的区域,淡红色表示,无法接收到手机信号的区域

2.6地形剖面

在上一步基础上进行,打开[ 3D分析] 工具栏,点击[插入线] 工具,跟踪一条线段,

这条线段可以从DEM:[TINGRID] 中得到高程值,

点击[ 创建剖面图] 按钮,得到上一步所生成的3D线段的剖面图:

ArcGIS之水文分析

ArcGIS教程之DEM水文分析详细图文教程,本教程和之前的两个教程有关联的,数据上是使用上一个教程的结果,步骤相互联系!最后会提供给大家数据和教程的链接!水文分析需要: 1.理解基于DEM数据进行水文分析的基本原理。 2.利用ArcGIS的提供的水文分析工具进行水文分析的基本方法和步骤。 下面开始教程: 工具/原料 ?软件准备:ArcGIS Desktop 10.0---ArcMap(spatial Analyst模块) ?数据准备:DEM(使用由本人前面的教程【ArcGIS地形分析--TIN及DEM 的生成,TIN的显示】中使用的原始数据。 方法/步骤 1.数据基础:无洼地的DEM 在ArcMap中加载 DEM数据,右击DEM图层,点击缩放至图层,显示全部。 2.在【ArcToolbox】中,(要打开扩展模块)执行命令[SpatialAnalyst工 具]——>[水文分析]——> [填洼],按下图所示指定各参数,其中Z限制——填充阈值,当设置一个值后,在洼地填充过程中,那些洼地深度大于阈值的地方将作为真实地形保留,不予填充;系统默认情况是不设阈值,也就是所有的洼地区域都将被填平。之后点击确定即可。 3.确定后执行结果得到无洼地的DEM数据[Fill_dem1]

4.关键步骤:流向分析 在上一步的基础上进行,在【ArcToolbox】中,执行命令[SpatialAnaly st工具]——>[水文分析]——>[流向],按下图所示指定各参数: 5.确定后执行完成后得到流向栅格[Flowdir_fill1],理解代表什么含义! 6.计算流水累积量 在上一步的基础上进行,在【ArcToolbox】中,执行命令[SpatialAnaly st工具]——>[水文分析]——>[流量],按下图所示指定各参数: 1.7 确定后执行完成得到流水累积量栅格[flowacc_flow1] 如图: 7.提取河流网络 首先,提取河流网络栅格。 在上一步的基础上进行,打开【Arctoolbox】,运行工具[Spatial Anal yst 工具]——>[地图代数]——>[栅格计算器],在[地图代数表达式]中输入公式:Con(Flow Accumulation1>800,1),(这里的Flow Accumulat ion1要以上一步得到的文件名为准,注意是Con,不是con,大写第一个字母,不然出错)如图: [输出栅格]指定为:StreamNet保存路径和文件名任意)

ArcGIS地形分析实验内容步骤

实验九地形分析-----TIN及DEM的生成及应用(综合实验) 一、实验目的 DEM是对地形地貌的一种离散的数字表达,是对地面特性进行空间描述的一种数字方法、途径,它的应用可遍及整个地学领域。通过对本次实习的学习,我们应: a)加深对TIN建立过程的原理、方法的认识; b)熟练掌握ArcGIS中建立DEM、TIN的技术方法。 c)掌握根据DEM或TIN 计算坡度、坡向的方法。 d)结合实际,掌握应用DEM解决地学空间分析问题的能力。 二、实验准备 软件准备:ArcGIS Desktop -----ArcMap(3D分析模块---3D Analyst) 实验数据:矢量图层:高程点Elevpt_Clip.shp,等高线Elev_Clip.shp,边界Boundary.shp,洱海Erhai.shp,移动基站.shp 三、实验内容及步骤 1. TIN 及DEM 生成 1.1由高程点、等高线矢量数据生成TIN转为DEM 在ArcMap中新建一个地图文档(Insert---Data Frame) (1)添加矢量数据:Elevpt_Clip、Elev_Clip、Boundary、Erhai(同时选中:在点击的同时按 住Shift) (2)激活“3D Analyst”扩展模块(执行菜单命令[Tools]>>[Extensions扩展],在出现的对 话框中选中3D分析模块---3D Analyst),在工具栏空白区域点右键打开[3D Analyst] 工具栏 (3)执行工具栏[3D Analyst]中的菜单命令[3D Analyst]>>[Create/Modify TIN创建/修改 TIN]>>[Create TIN From Features从要素生成TIN]; (4)在对话框[Create TIN From Features]中定义每个图层的数据使用方式; 在[Create TIN From Features]对话框中,在需要参与构造TIN的图层名称前的检查框上打上勾,指定每个图层中的一个字段作为高度源(Height Source),设定三角网特征输入(Input as)方式。可以选定某一个值的字段作为属性信息(可以为None)。即勾选elevpt Clip:高度源(height resource):ELEV;三角网作为(triangulate as):mass points;标识之字段(tag value field):none。勾选elev Clip,高度源(height resource):ELEV;三角网作为(triangulate as):mass points;勾选Boundary,三角网作为(triangulate as):soft clip,其余不变,勾选ErHai,高度源(height resource):ELEV;三角网作为(triangulate as):hard replace;标识之字段(tag value field):none。

ArcGIS地形分析--TIN及DEM的生成,TIN的显示练习数据

DEM的应用包括:坡度:Slope、坡向:Aspect、提取等高线、算地形表面的阴影图、可视性分析、地形剖面、水文分析等,其中涉及的知识点有: a)对TIN建立过程的原理、方法的认识; b)掌握ArcGIS中建立DEM、TIN的技术方法。 (对于这两步的教程本人之前有做过,下面教程不会再重复) c)掌握根据DEM 计算坡度、坡向的方法。 d)理解基于DEM数据进行水文分析的基本原理。 e)利用ArcGIS的提供的水文分析工具进行水文分析的基本方法和步骤。 下面开始教程: 工具/原料 ?软件准备:ArcGIS Desktop 10.0---ArcMap(3D Analyst模块和spatial analyst模块) ?数据:DEM和TIN(使用由本人前面的教程【ArcGIS地形分析--TIN及DEM的生成,TIN的显示】得到的结果数据。 ?原始数据下载:https://www.wendangku.net/doc/fa3280885.html,/s/1GGzT2 方法/步骤 1. 1

建议先看【ArcGIS地形分析--TIN及DEM的生成,TIN的显示】经验教程,因为本经验教程的数据使用的是此经验的最后结果数据! (数据会提高下载,另外本人使用的版本是10.1英文版,不过教程步骤为中文的,本人翻译过来,方便大家!有些地方和9.3差别很大,和10.0差别不大) END DEM应用之坡度:Slope 1. 1 首先,(1) 新建地图文档,加载【ArcGIS地形分析--TIN及DEM的生成,TIN的显示】经验教程中得到的DEM数据:TINGrid (2) 在【ArcToolbox】中,执行命令[3D Analyst工具]——[栅格表面]——[坡度],参照下图所示,指定各参数:

ArcGIS地形分析

实验三、地形分析-----TIN及DEM的生成及应用一、实验目的 DEM是对地形地貌的一种离散的数字表达,是对地面特性进行空间描述的一种数字方法、途径,它的应用可遍及整个地学领域。通过对本次实习的学习,我们应: a)加深对TIN建立过程的原理、方法的认识; b)熟练掌握ArcGIS中建立DEM、TIN的技术方法。 c)掌握根据DEM或TIN 计算坡度、坡向的方法。 d)结合实际,掌握应用DEM解决地学空间分析问题的能力。 二、实验准备 软件准备:ArcGIS Desktop 9.x ---ArcMap(3D分析模块) 实验数据:矢量图层:高程点Elevpt_Clip.shp,高程Elev_Clip.shp,边界Boundary.shp,洱海Erhai.shp 三、实验内容及步骤 1. TIN 及DEM 生成 1.1由高程点、等高线矢量数据生成TIN转为DEM 在ArcMap中新建一个地图文档 (1)添加矢量数据:Elevpt_Clip、Elev_Clip、Boundary、Erhai(同时选中:在点击的同时按 住Shift) (2)激活“3D Analyst”扩展模块(执行菜单命令[工具]>>[扩展],在出现的对话框中选中 3D分析模块),在工具栏空白区域点右键打开[3D分析] 工具栏 (3)执行工具栏[3D分析]中的菜单命令[3D分析]>>[创建/修改TIN]>>[从要素生成TIN]; (4)在对话框[从要素生成TIN中]中定义每个图层的数据使用方式; 在[从要素生成TIN中]对话框中,在需要参与构造TIN的图层名称前的检查框上打上勾,指定每个图层中的一个字段作为高度源(Height Source),设定三角网特征输入(Input as)方式。可以选定某一个值的字段作为属性信息(可以为None)。在这里指定图层[Erhai] 的参数:[三角网作为:]指定为[硬替换] ,其它图层参数使用默认值即可。即勾选elevpt Clip:高度源(height resource):ELEV;三角网作为(triangulate as):mass point;标识之字段(tag value field):none。勾选elev Clip,高度源(height resource):ELEV;三角网作为(triangulate as):mass point;勾选Boundary,三角网作为(triangulate as):soft clip,其余不变,勾选ErHai,高度源(height resource):ELEV;三角网作为(triangulate as):hard replace;标识之字段(tag value field):none。

ArcGIS软件中 基于文本数据的地形分析

实验五基于文本数据的地形分析 一、实验背景 克里金插值法,又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法。它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。根据样品空间位置不同、样品间相关程度的不同,对每个样品品位赋予不同的权,进行滑动加权平均,以估计中心块段平均品位。克里金方法是基于这样的一个假设,即被插值的某要素(例如地形要素),可以被当做是一个区域化的变量来看待,所谓区域化的变量就是介于完全随机的变量和完全确定的变量之间的一种变量,它随所在区域位置的改变而连续地变化,因此,彼此离得近的点之间有某种程度上的空间相关性,而相隔比较远的点之间在统计上看是相互独立无关的。克里金方法就是建立在一个预知定义的协方差模型的基础上通过线性回归方法把估计值的方差最小化的一种差值方法。克里金方法具体分成许多种,主要有:普通克里金、简单克里金和通用克里金等等。 二、实验目的 1.熟练掌握克里金差值法,掌握利用高程点要素生成等值线的方法,点的内插是GIS数据处理常用的方法之一,广泛应用于生成等值线。点的内插是用于建立具有连续变化特征现象(例如地面高程、地形、气温)的数值方法。 2 按照点数据samp_pt.txt(坐标和高程数据单位均为m),画出以5m为等高距的等高线,并求在bound图层边界范围内坡度>=25的区域面积。学会ArcToolBox中的栅格计算器、裁剪、坡度以及克里金法。 三、实验数据

GIS的核心之一:数字地形分析

第9章 DEM 与数字地形分析 数字地面模型于1958年提出,特别是基于DEM 的GIS 空间分析方法的出现,使传统的地形分析方法产生了革命性的变化,数字地形分析方法逐步形成和完善。目前,基于DEM 的数字地形分析已经成为GIS 空间分析中最具特色的部分,在测绘、遥感及资源调查、环境保护、城市规划、灾害防治及地学研究各方面发挥越来越重要的作用。本章首先介绍了数字高程模型的基本概念和建立步骤,然后从基本坡面因子、特征地形因子、水文因子和可视域等方面简述数字地形分析的主要内容和研究方法。 9.1 基本概念 9.1.1 数字高程模型 数字高程模型(Digital Elevation Model ,简称DEM )是通过有限的地形高程数据实现对地形曲面的数字化模拟(即地形表面形态的数字化表示),它是对二维地理空间上具有连续变化特征地理现象的模型化表达和过程模拟。由于高程数据常常采用绝对高程(即从大地水准面起算的高度),DEM 也常常称为DTM (Digital Terrain Model )。“Terrain”一词的含义比较广泛,不同专业背景对“Terrain”的理解也不一样,因此DTM 趋向于表达比DEM 更为广泛的内容。 从研究对象与应用范畴角度出发,DEM 可以归纳为狭义和广义两种定义。从狭义角度定义,DEM 是区域表面海拔高程的数字化表达。这种定义将描述的范畴集中地限制在“地表”、“海拔高程”及“数字化表达”内,观念较为明确。从广义角度定义,DEM 是地理空间中地理对象表面海拔高度的数字化表达。这是随着DEM 的应用不断向海底、地下岩层以及某些不可见的地理现象(如空中的等气压面等)延伸,而提出的更广义的概念。该定义将描述对象不再限定在“地表面”,因而具有更大的包容性,有海底DEM 、下伏岩层DEM 、大气等压面DEM 等。 数学意义上的数字高程模型是定义在二维空间上的连续函数),(y x f H =。由于连续函数的无限性,DEM 通常是将有限的采样点用某种规则连接成一系列的曲面或平面片来逼近原始曲面,因此DEM 的数学定义为区域D 的采样点或内插点Pj 按某种规则ζ连接成的面片M 的集合: } ,,1,,1,),,()({m i n j D H y x P P M DEM j j j j j i ==∈==ζ (9.1) DEM 按照其结构,可分为规则格网DEM 、TIN 、基于点的DEM 和基于等高线的DEM 等。由于规则格网结构简单,算法设计明了,在实际运用中被广泛采用。本书中的DEM 仅指规则格网DEM 。 9.1.2 数字地形分析 数字地形分析(Digital Terrain Analysis, DTA ),是指在数字高程模型上进行地形属性计算和特征提取的数字信息处理技术。DTA 技术是各种与地形因素相关空间模拟技术的基础。 地形属性根据地形要素的关系特征和计算特征,可以归纳为地形曲面参数(parameters )、地形形态特征(features )、地形统计特征(statistics )和复合地形属性(compound attributes )。

ArcGIS10.2地形分析

基于ArcGIS下的地形分析报告 —以寨场山森林公园的地形为例 1.整理CAD 根据要求,只要对寨场山森林公园整个地形中的红线范围里面的部分进行分析,为了保持红线内的内容清晰、完整,同时节约内存和空间,因此要删除红线外的部分,隐藏或者删除不必要的其他图层。然后把红线删除,并对边缘等高线做细微的调整,使最后出图边缘保持平滑(如图1、图2)。另外要注意的一点是,保证所有等高线都是闭合的,再将调整完后的图复制到新的文件或者写块,这样是防止CAD图导入ArcGIS后出现其他图层的内容。本次分析只需要等高线和高程点所在图层。 图1 CAD原图图2 调整后的CAD图 2.定义坐标系统 打开ArcCatalog10.2—链接到文件—右击命名为dixing01.dwg的文件—属性—编辑—选择地理坐标系—Afraca—北京1954—确定(如图3)。然后新建个人

图3 定义坐标 地理数据库,右击CAD文件—导出—转出至地理数据库,输入要素和选择输出 的地理数据库文件,再保存为mdb文件(如图4)。 图4 保存至地理数据库 3.导入CAD图 打开ArcGIS的ArcMap界面,(本文用的是Arcgis10.2版本),点击菜单 栏“窗口”—“目录”,点击带“加号”的文件夹创建文件夹链接(如图5), 找到CAD所属文件夹,添加刚整理过的名为dixing01.dwg的文件,前提是要把该

图5 文件夹链接 CAD文件存放的文件夹以及文件名要用英文名,不能用汉字。 CAD导入Arcgis以后有annotation、multipatch、point、polygon、polyline 五种要素(如图6),分别右击我们所需要的point点、polyline线文件,右键, 图6 目录 “导出”—“转为shapefile(单个)”,输出为shp格式文件(如图7)。输出位置就是文件保存的地方,输出要素是文件名,字段映射选择“Layer(文本)”,

地理学arcgis地形分析#(精选.)

学生实验报告 学院专业年级、班 学号姓名同组者无 课程名称地理信息系统实验题目地形分析成绩 一、实验目的: 掌握在ArcGIS 10.2软件的地形分析功能。 二、实验准备: 学习在ArcGIS 10.2加载栅格数据,设置栅格空间分析属性,以及利用Spatial Analyst Tools工具集下的Surface工具子集或3D Analyst Tools工具集下的Raster Surface提供的功能提取地形因子,包括表面积、体积、坡度、坡向、剖面曲率、平面曲率、山体阴影、等高线、填挖类型及范围、可视范围和剖面线。并利用Neighborhood Statistics和栅格计算器分别计算地形起伏度和地表粗糙度。 三、实验内容: 利用提供的DEM数据提取该区域的表面积、体积、坡度、坡向、剖面曲率、平面曲率、山体阴影、等高线、曲面面积、地形起伏度、地表粗糙度,并计算观测点的可视范围和道路的剖面线。 四、实验过程及步骤: 1、插入DAM数据:

2、提取DAM数据的表面积和体积: 在ArcToolbox下选择3D Analyst Tools,单机Functional Surface选择Surface V olume。输入dam 栅格数据,指定输出位置,单机确定按钮,得到如下数据: 3、坡度: 在ArcToolbox中选择Spatial Analyst Tools,然后选择Raster Surface下的Slope工具,打开后在输入栏插入DAM数据,指定输出位置,单击确定按钮。 4、坡向: 在ArcToolbox中选择Spatial Analyst Tools然后选择Surface栏下Aspect工具打开坡向添加工具,在输入栏中添加DAM数据,指定存放位置,单击确定按钮。

arcgis生成DEM+利用dem做地形分析

在arcgis中中,进行如下操作: 1、创建TIN 打开3d analyst模块,利用creat /modify TIN---creat TIN from features命令(height source 选择高程字段),先将等高线转为TIN; 2、从TIN中创建栅格表面 打开3d analyst模块,利用convert---TIN to raster命令(attribute选择elevation,cell size自定义,若为大比例尺数据可以选择5或10,可以参考相关研究文献),生成栅格表面,即DEM; (备注:矢量化的等高线必须比研究区的范围大些,创建TIN并生成Raster后,再用研究区边界来裁切,这样的DEM数据才能满足精度要求) 3、地形因子分析 打开3d analyst模块,利用surface analysis---slope命令,生成坡度数据; 打开3d analyst模块,利用surface analysis---aspect命令,生成坡向数据; 打spatial analyst模块,利用neighborhood tatistics命令进行邻域分析,先将statistic type设为最大值,输出栅格为A,再将statistic type设为最小值,输出栅格为B,利用raster calculator 生成地形起伏度数据,公式为[A]-[B]; 以上的地形数据,可以根据需要进行reclassfy重分类处理,分类标准参考相关文献,就可以获取所需的地形因子统计数据。 制图时,用view---layout view,添加比例尺、指北针、图例,就可以整饰出图

DEM地形信息提取对比研究_以坡度为例

第33卷第5期 2008年9月 测绘科学 Science of Surveying and M app ing Vol .33No .5 Sep. 作者简介:姜栋(19792),女,山东青岛人,在读硕士,地图制图与地理信息系统专业,研究方向:GI S 与遥感应用。E 2mail:dandili on1017@1631com 收稿日期:2007204228 基金项目:北京市教委科技重点项目(编号:05531830);北京自然科学基金资助项目(基金号:6032003);北京市属市管高等学校人才强教计划资助项目,PHR (I HLB ) D E M 地形信息提取对比研究 ———以坡度为例 姜 栋① ,赵文吉① ,朱红春② ,张有全 ① (①首都师范大学三维信息获取与应用教育部共建实验室,北京 100037;②山东科技大学地科学院,山东青岛 266510) 【摘 要】由于DE M 数据本身多尺度因素,加之地形、地貌特征具有宏观性与区域分异性的特点,直接的信息提 取往往很难达到预期的目的。利用DE M 制作坡度图高效、省力,但其精度有很大的不确定性,同时DE M 制作过程中的误差传播、转移对坡度信息的影响缺少系统的判断依据。选取位于陕北黄土高原上的两个不同地区作为实验样区,在不同DE M 生产的基础上,以高精度的1∶10000DE M 为准值,通过对1∶5万和1∶1万DE M 提取定量地形要素的叠合、比较与统计分析,探讨具有不同地貌类型的区域1∶5万DE M 提取地形信息的精度及其统计意义上的数量百分比关系。【关键词】数字高程模型;坡度;精度【中图分类号】P282 【文献标识码】A 【文章编号】1009-2307(2008)05-0177-03DO I:1013771/j 1issn 1100922307120081051063 1 引言 近年来,DE M 数据生产和分析方法方面取得了巨大进步,但是从不同地形复杂度、不同空间分辨率及不同比例尺的DE M 提取地形信息,特别是地面坡度的精度研究几乎与坡度及DE M 在各领域的广泛应用严重脱节。1∶5万地形图因自身的制图综合和DE M 生产过程中产生的误差,使得基于1∶5万地形图的DE M 对实际地面的描述和模拟产生了极大的误差,利用此DE M 提取的地面坡度势必会使栅格单元内的实际地形复杂度及坡度组成均一化,由此提取的坡度无法真实反映实地地形地貌。研究DE M 提取地面坡度的精度,探求不同空间尺度坡度提取结果的精度对比,并能够得到由低分辨率到高分辨率提取结果的转换关系,实现误差纠正,为广大用户提供基于DE M 提取地面坡度的应用适宜性与结果可信性的基本判别标准、换算标准,十分必要,且相当紧迫。 前人在DE M 的建立、地形信息的提取及地形信息精度方面的研究取得了显著成果。111 地形信息提取及提取精度分析研究方面 一些地形因子可以基于DE M 求取。前人从不同角度进行地形因子方面的研究表明:地形因子的求取可以有多种算法、方法。 坡度和坡向是进行地形特征分析和可视化的基本因子,也是研究集水单元的重要因子。结合其他因子,坡度和坡向可以在各个领域得到广泛应用。Fl orinsky (1998)不仅对坡度、坡向的算法精度作了系统分析,而且进行了平面曲率和剖面曲率方面的分析。提取坡度、坡向的精度依赖于DE M 数据精度、计算方法和DE M 分辨率及地形复杂度。前人研究成果表明:高精度的DE M 能提取精度相对高的坡 度、坡向数据。坡度、坡向数据精度随DE M 分辨率的增大而降低;坡度、坡向与DE M 高程值的标准偏差和平均高程之间呈线性相关。在其他条件相同情况下,坡度的减小在地形复杂地区较单一地形快。汤国安基于不同比例尺的DE M 地形因子精度方面研究表明,1∶50000比例尺DE M 所提取的坡度、地面曲率及沟壑密度均比1∶10000DE M 小,通过对不同比例尺DE M 提取地面坡度精度的研究还建立了 黄土丘陵区1∶50000与1:10000DE M 的坡度转换对比[1,13] 。112 D E M 建立与D E M 精度分析研究方面 DE M 的建立,一般利用同比例尺地形图数字化获取高程与平面数据,然后选择合适的内插方法构建TI N ,再内插 TI N 得到不同栅格分辨率的规则格网DE M [2] 。前人在DE M 建立方面的研究表明:数字化获取的数据与野外实测数据有较大的误差,地形图数字化过程中产生的误差影响DE M 的精度,不同的数据模型、不同的内插算法、不同的空间采样方法及不同的栅格分辨率均对DE M 及其应用精度有不同程度的影响[2]。Suhut (1972)很有深度地揭示了在DE M 建立过程中不同内插技术和数字化过程中可能产生的误差。王光霞等人近来在DE M 精度评估方法的研究与实践方面做出了创新性的成果[3,4]。 2 研究区概况 本次研究在实验样区的选择上,遵循科学性、典型性、数据的可获取性和完整性以及实用性的原则,选取位于陕北的黄土高原上的两个不同区域作为实验样区,它们分别属于典型的黄土丘陵沟壑区和黄土丘陵地形区。 样区一位于陕西省无定河中游左岸,属于典型的黄土丘陵沟壑区代表流域。样区内土壤侵蚀极为剧烈,土地类型复杂,自分水岭至沟底可分为梁峁坡、沟谷坡和沟谷底三部分。梁峁坡坡面较完整,顶部较平坦,坡度多在5°以下,坡长10m 220m;梁峁坡上部,坡度多在20°以下,坡长20m 230m;梁峁坡中下部地形比较复杂,坡度在20°230°之间,坡长15m 220m 。 样区二位于咸阳地区西北角,泾河上游右岸,地形属黄土高原沟壑区,是陕北高原的一部分。样区自然特点是:塬高、沟深、坡陡,水土流失以塬面周边的重力侵蚀为主。按其地形分为:塬面、沟坡、沟谷、河谷(川道)四种类型。其中塬面宽阔平坦,一般在5°以下,是农业生产基地;沟坡多为旧式台田,部分为耕地或牧草地,坡度为10°230°;河谷均呈“V ”字型,坡度为40°270°,陡峭破碎,侵蚀剧烈;河谷分布在泾、黑、南三河沿岸,坡度平缓,水

DEM分析及景观分析

实现平台:ArcGIS 9.3和Fragstats3.3,实验源数据为ASCII数据:srtm3和水流方向数据FlowDir,在ArcMap中将ASCII数据转换为栅格数据,保存为DEM 和FlowDir: 1.基本地形参数 坡度Sl ope 实现流程: 1)在Arc Map 中加载DEM数据; 2)以DEM为输入数据,打开【Arc Tool Box】→【Spatial Analyst Tools】→ 【Surface】→【Slope】工具,在窗口中设置相应的输出路径,并将输出 单位为Degree,其它为默认值,得到Slope图层。 坡向Aspect 实现流程: 1)在Arc Map 中加载DEM数据; 2)以DEM为输入数据,打开【Arc Tool Box】→【Spatial Analyst Tools】 →【Surface】→【Aspect】工具,设置相应的输出路径,得到Aspect 图层。 坡度变率SOS 1)在ArcMap中,加载已经生成的Slope数据; 2)以Slope为输入数据,打开【Arc Tool Box】→【Spatial Analyst Tools】 →【Surface】→【Slope】工具,在窗口中设置相应的输出路径,并将 输出单位为Degree,其它为默认值,得到SOS图层。 坡向变率SOA(纠正结果) 1)在ArcGIS中加载Aspect数据; 2)以Aspect作为输入数据,执行【ArcToolBox】→【Spatial Analyst Tools】→【Surface】→【Slope】,得到SOA;

曲率Curvature 全曲率Curvature All 平面曲率Plan Curvature 平面曲率Plan Curvature 实现流程: 1)在ArcGIS中加载测试数据DEM; 2)以DEM作为输入数据,打开【Arc Tool Box】→【Spatial Analyst Tools】→【Surface】→【Curvature】; 3)在曲率对话框中设置相应的曲率、剖面曲率和平面曲率的输出路径及名称,其余为默认值。 坡长Sl opeLength 上游坡长UpstreamSlopeLength 实现流程: 1)在Arc Map 中加载FlowDir数据; 2)以执行FlowDir作为输入数据,执行【Arc Tool Box】→【Spatial Analyst Tools】→【Hydrology】→【Flow Length】; 3)对话框Direction of Measurement选项选择Upstream 来求上游波长, 设置相应的输出路径,保存为Upstr_Len。 下游坡长DownstreamSlopeLength 实现流程: 1)在Arc Map 中加载FlowDir数据; 2)以执行FlowDir作为输入数据,执行【Arc Tool Box】→【Spatial Analyst Tools】→【Hydrology】→【Flow Length】; 3)对话框Direction of Measurement选项选择Downstream 来求下游坡 长,设置相应的输出路径。

基于DEM的皖西南地区地貌类型分析

基于DEM的皖西南地区地貌类型分析 摘要:地貌作为地理信息的重要贡献组成要素,它决定着自然地理单元的形成和地面物质与能量的再分配。该研究利用GIS图像处理技术方法,通过对皖西南地区数字高程模型数据进行处理,提取了研究区有关坡度、坡向、地形起伏度等的地貌特征要素,并进行定位表达与特征统计分析,结果获得了对本区地貌特征的定位与定量化的总体认识,为研究区的农业规划、水土流失、土壤侵蚀、地质灾害等研究提供了新的空间信息基础平台。 关键词:皖西南地区(Southwest Anhui);地貌形态;地理信息系统(GIS); 数字高程模型(DEM) 引言 安庆市作为皖西南中心城市,安徽省“皖江开发”的重点城市之一,长江沿岸著名的港口城市,将作为研究皖西南地貌类型的重点,本篇论文就是基于安庆市地貌类型研究皖西南地貌类型。地貌作为地理信息的重要贡献组成要素,通过海拔、坡度、坡向、起伏度等特征组合构成形态与分布多样的地表景观,并对区域生态环境与资源的地域优势种类分布、利用方式和利用程度等具有主导作用]1[。而地貌学的发展,也逐渐从以往的定性描述转入数理定量分析研究阶段]2[。但按传统研究方法,由于地貌数据庞大、计算繁琐使定量地貌研究发展缓慢,而今随着计算机与空间技术的迅猛发展,特别是具有强大的空间数据获取与管理、分析、计算等功能的3S技术的应用,为地貌定量研究提供了有力的技术支持。 GIS数字地形分析是以数字高程模型为主的产生式分析,数字高程模型(简称DEM)表示区域D上的三维向量有限序列,用函数的形式描述为: Vi=(Xi,Yi,Ei)(i=1,2,…,n) 式中,Xi、Yi是平面坐标;Ei是(Xi,Yi)对应点的高程。DEM是GIS进行地形分析的基础数据。利用DEM数据可快速地进行各种地形因子的提取,主要包括坡度、坡向、粗糙度等的计算和通视分析、地形特征提取、水系特征提取、水文分析、道路分析等]3[。它记录了精确的空间三维定位信息.利用DEM为基本的数据依托进行地形要素的提取与分析,无疑是获取所需地表信息的有效手段。

DEM分析与可视化

一.软件平台ArcGIS或MapGIS(软件测试部分): (1)数据处理:拓扑构建、误差校正、地图投影 (2)数据管理:属性表创建、属性表关联、图形与属性数据挂接、属性表导出 (3)空间分析:查询检索、叠加分析、缓冲区分析 (4)数字高程模型:GRID及TIN模型创建,DEM分析(包括坡度、坡向、粗糙度、可视性、洪水淹没、流域地貌等分析)(5)数据转换:ArcGIS、MapGIS、MapInfo、AutoCAD等数据间格式转换 实验四基于ArcGIS的DEM分析与可视化 一、实验目的 1、掌握利用ArcGIS三维分析模块进行创建表面的基本方法 2、掌握地形特征信息的提取方法,能利用ArcGIS软件基于DEM对山脊线和山谷线的提取,显示粗糙度 3、掌握三维场景中表面及矢量要素的立体显示其原理与方法,熟练掌握ArcGIS软件表面及矢量要素杂场景中的三维显示及其叠加显示 4、熟练掌握ArcScene三维场景中要素、表面的多种可视化方法。 二、主要实验器材(软硬件、实验数据等) 计算机硬件:性能较高的PC;计算机软件:ArcGIS9.3软件;实验数据:《ArcGIS地理信息系统空间分析实验教程》随书光盘或其他中 三、实验内容与要求 1、地形特征信息提取 实验数据:dem 要求:利用所给区域DEM数据,提取该区域山脊线、山谷线栅格数据层。 具体操作: 1.打开arcmap,添加dem数据,点击DEM数据,打开Arctoolbox,使用Spatial Analysis tools\Surface Analysis\Aspect工具,提取DEM的坡向数据层,命名为A。 2.点击数据层A,使用Spatial Analysis tools\Surface Analysis\Slope工具,提取数据层A的坡度数据,命名为SOA1。(地面坡向变率,是指在地表的坡向提取基础之上,进行对坡向变化率值的二次提取,亦即坡向之坡度(Slope of Aspect, SOA)。它可以很好的反映等高线弯曲程度。) 3.求取原始DEM数据层的最大高程值,记为H;使用空间分析工具集中的栅格计算器(Raster Calculator),公式为(H—DEM),得到与原来地形相反的数据层,即反地形DEM 数据。记为“-DEM”。 4.基于“-DEM”数据,使用Spatial Analysis tools\Surface Analysis\Aspect工具,提取-DEM的坡向数据层,命名为-A。。 5. 点击数据层-A,使用Spatial Analysis tools\Surface Analysis\Slope工具,提取反地形的坡向变率,记为SOA2。 6.使用空间分析工具集中的栅格计算器(Raster Calculator),公式为SOA=(([SOA1]+[SOA2])-Abs([SOA1]+[SOA2]))/2,这样就可以求出没有误差的DEM的坡向变

地理学arcgis地形分析

学生实验报告

3、坡度: 在ArcToolbox中选择Spatial Analyst Tools,然后选择Raster Surface下的Slope 4、坡向: 在ArcToolbox中选择Spatial Analyst Tools然后选择Surface栏下Aspect工具打开坡向添加工具,在输入栏中添加DAM数据,指定存放位置,单击确定按钮。

5、剖面曲率和平面曲率: 在ArcToolbox中选择Spatial Analyst Tools然后在Raster Surface栏中选择Curvature工具。输入DAM数据,选择合适的存放位置,单击确定按钮。 (1)剖面曲率: (2)平面曲率:

6、山体阴影: 在ArcToolbox中选择Spatial Analyst Tools然后在Raster Surface栏中选择Hillshade工具。在输入栏中添加DAM数据,指定存放位置,单击确定按钮。 7、等高线: 在ArcToolbox中选择Spatial Analyst Tools然后选择Raster Surface栏中的Contour工具。在输入栏中添加DAM数据文件,指定存放位置,在Contour interval文本框中输入“10”。

8、地形起伏度: 在ArcToolbox中选择Spatial Analyst Tools然后选择Neighborhood栏中的Focal Statistics 工具。在输入栏中添加DAM数据文件,选择存放位置,在下边的Statistics type(optional)中选择RANGE,其他数值为默认数值,单击确定按钮。

ArcGIS之水文分析完整版

A r c G I S之水文分析 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

ArcGIS教程之DEM水文分析详细图文教程,本教程和之前的两个教程有关联的,数据上是使用上一个教程的结果,步骤相互联系!最后会提供给大家数据和教程的链接!水文分析需要: 1.理解基于DEM数据进行水文分析的基本原理。 2.利用ArcGIS的提供的水文分析工具进行水文分析的基本方法和步骤。 下面开始教程: 工具/原料 软件准备:ArcGIS Desktop (spatial Analyst模块) 数据准备:DEM(使用由本人前面的教程【ArcGIS地形分析--TIN及DEM 的生成,TIN的显示】中使用的原始数据。 方法/步骤 1.数据基础:无洼地的DEM 在ArcMap中加载 DEM数据,右击DEM图层,点击缩放至图层,显示全 部。 2.在【ArcToolbox】中,(要打开扩展模块)执行命令[SpatialAnalyst工 具]——>[水文分析]——> [填洼],按下图所示指定各参数,其中Z限制——填充阈值,当设置一个值后,在洼地填充过程中,那些洼地深度大于阈值的地方将作为真实地形保留,不予填充;系统默认情况是不设阈值,也就是所有的洼地区域都将被填平。之后点击确定即可。 3.确定后执行结果得到无洼地的DEM数据[Fill_dem1]

4.关键步骤:流向分析 在上一步的基础上进行,在【ArcToolbox】中,执行命令[SpatialAnaly st工具]——>[水文分析]——>[流向],按下图所示指定各参数: 5.确定后执行完成后得到流向栅格[Flowdir_fill1],理解代表什么含义! 6.计算流水累积量 在上一步的基础上进行,在【ArcToolbox】中,执行命令[SpatialAnaly st工具]——>[水文分析]——>[流量],按下图所示指定各参数: 1.7 确定后执行完成得到流水累积量栅格[flowacc_flow1] 如图: 7.提取河流网络 首先,提取河流网络栅格。 在上一步的基础上进行,打开【Arctoolbox】,运行工具[Spatial Anal yst 工具]——>[地图代数]——>[栅格计算器],在[地图代数表达式] 中输入公式:Con(Flow Accumulation1>800,1),(这里的Flow Accumu lation1要以上一步得到的文件名为准,注意是Con,不是con,大写第一 个字母,不然出错)如图: [输出栅格]指定为:StreamNet保存路径和文件名任意)

Arcgis地理建模原理与方法

XXXXX学院 12 学年— 13 学年第 1 学期 地理建模原理与方法实验报告书 专业:地理信息系统班级: XXXX 姓名: LS 学号: XXXXXX 实验地点: XXXXXXXXX 任课教师: XXXXX 实验题目:地形分析 实验环境: Windows XP; ArcGis9.0; 实验目的: DEM是对地形地貌的一种离散的数字表达,是对地面特性进行空间描述的一种 数字方法、途径,它的应用可遍及整个地学领域。通过对本次实习的学习, 我们应: a) 加深对TIN建立过程的原理、方法的认识; b) 熟练掌握ArcGIS中建立DEM、TIN的技术方法。 c) 掌握根据DEM或TIN 计算坡度、坡向的方法。 d) 结合实际,掌握应用DEM解决地学空间分析问题的能力。 实验准备: 软件准备:ArcGIS Desktop 9.x ---ArcMap(3D分析模块) 实验数据:矢量图层:高程点Elevpt_Clip.shp,高程Elev_Clip.shp,边界 Boundary.shp,洱海Erhai.shp 实验方法和步骤: 1. TIN 及DEM 生成 1.1由高程点、等高线矢量数据生成TIN转为DEM 在ArcMap中新建一个地图文档 (1) 添加矢量数据:Elevpt_Clip、Elev_Clip、Boundary、Erhai(同时选中:在点击的同 时按住Shift) (2) 激活“3D Analyst”扩展模块(执行菜单命令[工具]>>[扩展],在出现的对话框中选中

3D分析模块),在工具栏空白区域点右键打开[3D分析] 工具栏 (3) 执行工具栏[3D分析]中的菜单命令[3D分析]>>[创建/修改TIN]>>[从要素生成TIN]; (4) 在对话框[从要素生成TIN中]中定义每个图层的数据使用方式; 在[从要素生成TIN中]对话框中,在需要参与构造TIN的图层名称前的检查框上打上勾,指定每个图层中的一个字段作为高度源(Height Source),设定三角网特征输入(Input as)方式。可以选定某一个值的字段作为属性信息(可以为None)。在这里指定图层[Erhai] 的参数:[三角网作为:]指定为[硬替换] ,其它图层参数使用默认值即可。 (5) 确定生成文件的名称及其路径,生成新的图层tin,在TOC(内容列表)中关闭除[TIN]和[Erhai]之外的其它图层的显示,设置TIN的图层(符号)得到如下的效果。

ArcGIS地形分析TIN及DEM的生成及应用实验报告

实验四、地形分析-----TIN及DEM的生成及应用 一、实验目的 DEM是对地形地貌的一种离散的数字表达,是对地面特性进行空间描述的一种数字方法、途径,它的应用可遍及整个地学领域。通过对本次实习的学习,我们应: a)加深对TIN建立过程的原理、方法的认识; b)熟练掌握ArcGIS中建立DEM、TIN的技术方法。 c)掌握根据DEM或TIN 计算坡度、坡向的方法。 d)结合实际,掌握应用DEM解决地学空间分析问题的能力。 二、实验准备 软件准备:ArcGIS Desktop 9.x ---ArcMap(3D分析模块) 实验数据:矢量图层:高程点Elevpt_Clip.shp,高程Elev_Clip.shp,边界Boundary.shp,洱海Erhai.shp 三、实验内容及步骤 1. TIN 及DEM 生成 1.1由高程点、等高线矢量数据生成TIN转为DEM 在ArcMap中新建一个地图文档 (1)添加矢量数据:Elevpt_Clip、Elev_Clip、Boundary、Erhai(同时选中:在点击的同时按 住Shift) (2)激活“3D Analyst”扩展模块(执行菜单命令[工具]>>[扩展],在出现的对话框中选中 3D分析模块),在工具栏空白区域点右键打开[3D分析] 工具栏 (3)执行工具栏[3D分析]中的菜单命令[3D分析]>>[创建/修改TIN]>>[从要素生成TIN]; (4)在对话框[从要素生成TIN中]中定义每个图层的数据使用方式; (5) 确定生成文件的名称及其路径,生成新的图层tin,在TOC(内容列表)中关闭除[TIN]和[Erhai]之外的其它图层的显示,设置TIN的图层(符号)得到如下的效果。

相关文档