文档库 最新最全的文档下载
当前位置:文档库 › 导数的综合大题及其分类

导数的综合大题及其分类

导数的综合大题及其分类
导数的综合大题及其分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用.

题型一 利用导数研究函数的单调性、极值与最值

题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.

(1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论.

(2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点.

(3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值.

已知函数f (x )=x -1

x ,g (x )=a ln x (a ∈R ).

(1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ??

??

0,12,求

h (x 1)-h (x 2)的最小

值.

[审题程序]

第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围;

第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值.

[规范解答] (1)由题意得F (x )=x -1

x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1

x 2,

令m (x )=x 2-ax +1,则Δ=a 2-4.

①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-4

2

∴F (x )的单调递增区间为

? ????0,a -a 2-42和? ????a +a 2-42,+∞,

F (x )的单调递减区间为? ??

??

a -a 2-42,

a +a 2-42. 综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为 ? ????0,a -a 2-42和? ????a +a 2-4

2,+∞

, F (x )的单调递减区间为? ????

a -a 2-42,

a +a 2-42. (2)对h (x )=x -1

x +a ln x ,x ∈(0,+∞)

求导得,h ′(x )=1+1x 2+a x =x 2

+ax +1

x 2

设h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a , ∴x 2=1x 1

,从而有a =-x 1-1x 1

.

令H (x )=h (x )-h ????1

x

=x -1x +?

??

?-x -1x ln x -????

1x

-x +????-x -1x ·ln 1x =2???

?????-x -1x ln x +x -1

x

, H ′(x )=2????1x 2-1ln x =2(1-x )(1+x )ln x x 2

. 当

x ∈? ??

??

0,12时,H ′(x )<0, ∴H (x )在? ??

??

0,12上单调递减,

H (x 1)=h (x 1)-h ? ??

??

1x 1=h (x 1)-h (x 2),

∴[h (x 1)-h (x 2)]min =H ? ??

??

12=5ln2-3.

[解题反思] 本例(1)中求F (x )的单调区间,需先求出F (x )的定义域,同时在解不等式F ′(x )>0时需根据方程x 2-ax +1=0的根的情况求出不等式的解集,故以判别式“Δ”的取值作为分类讨论的依据.在(2)中求出h (x 1)-h (x 2)的最小值,需先求出其解析式.由题可知x 1,x 2是h ′(x )=0的两根,可得到x 1x 2=1,x 1+x 2=-a ,从而将h (x 1)-h (x 2)只用一个变量x 1导出.从而得到H (x 1)

=h (x 1)-h ? ??

??

1x 1,这样将所求问题转化为研究新函数

H (x )=h (x )-h ? ????1x 在? ??

??

0,12上的最值问题,体现

转为与化归数学思想.

[答题模板] 解决这类问题的答题模板如下:

[题型专练]

1.设函数f (x )=(1+x )2-2ln(1+x ). (1)求f (x )的单调区间;

(2)当0

1+x =2x (x +2)x +1

.

由f ′(x )>0,得x >0;由f ′(x )<0,得-1

∴函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0). (2)由题意可知g (x )=(2-a )x -2ln(1+x )(x >-1), 则g ′(x )=2-a -2

1+x =(2-a )x -a 1+x .

∵00, 令g ′(x )=0,得x =a

2-a

∴函数g (x )在? ????0,a 2-a 上为减函数,在? ??

??a 2-a ,+∞上为增函数.

①当0

<3,即0

2时,在区间[0,3]上,

g (x )在? ????0,a 2-a 上为减函数,在? ????a 2-a ,3上为增函数, ∴g (x )min =g ? ??

??a 2-a =a -2ln 22-a .

②当a 2-a ≥3,即3

2≤a <2时,g (x )在区间[0,3]上为减函数,

∴g (x )min =g (3)=6-3a -2ln4.

综上所述,当0

2-a

当3

2≤a <2时,g (x )min =6-3a -2ln4.

北京卷(19)(本小题13分)

已知函数f (x )=e x

cos x ?x .

(Ⅰ)求曲线y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数f (x )在区间[0,π

2

]上的最大值和最小值.

(19)(共13分)

解:(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.

(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-. 当π(0,)2

x ∈时,()0h x '<, 所以()h x 在区间π[0,]2

上单调递减.

所以对任意π(0,]2

x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2

上单调递减.

因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22

f =-

.

21.(12分)

已知函数3

()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;

(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<. 21.解:

(1)()f x 的定义域为()0,+∞

设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()1

1=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x

若a =1,则()1

1-

g'x =x

.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故

()()1=0≥g x g

综上,a=1

(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()1

22ln ,则'()2h x x x h x x

=--=-

当10,2x ??∈ ??

?

时,()'<0h x ;当1,+2

x ??∈∞ ???

时,()'>0h x ,所以()h x 在10,2?? ??

?

单调递减,在1,+2

??∞ ???

单调递增

又()

()21>0,<0,102h e h h -??= ???

,所以()h x 在10,2?

? ??

?有唯一零点x 0,在1,+2

??

∞????

有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,

()<0h x ,当()1,+x ∈∞时,()>0h x .

因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01

'<

4

f x 因为x=x 0是f(x)在(0,1)的最大值点,由()()

110,1,'0e f e --∈≠得

()()

120>f x f e e --=

所以()2-20<<2e f x -

题型二 利用导数研究方程的根、函数的零点或图象交点

题型概览:研究方程根、函数零点或图象交点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.

已知函数f(x)=(x+a)e x,其中e是自然对数的底数,a∈R.

(1)求函数f(x)的单调区间;

(2)当a<1时,试确定函数g(x)=f(x-a)-x2的零点个数,并说明理由.[审题程序]

第一步:利用导数求函数的单调区间;

第二步:简化g(x)=0,构造新函数;

第三步:求新函数的单调性及最值;

第四步:确定结果.

[规范解答](1)因为f(x)=(x+a)e x,x∈R,

所以f′(x)=(x+a+1)e x.

令f′(x)=0,得x=-a-1.

当x变化时,f(x)和f′(x)的变化情况如下:

故f(

(2)结论:函数g(x)有且仅有一个零点.

理由如下:

由g(x)=f(x-a)-x2=0,得方程x e x-a=x2,

显然x=0为此方程的一个实数解,

所以x=0是函数g(x)的一个零点.

当x≠0时,方程可化简为e x-a=x.

设函数F(x)=e x-a-x,则F′(x)=e x-a-1,

令F′(x)=0,得x=a.

当x变化时,F(x)和F′(x)的变化情况如下:

即F(x)

所以F (x )的最小值F (x )min =F (a )=1-a . 因为a <1,所以F (x )min =F (a )=1-a >0, 所以对于任意x ∈R ,F (x )>0, 因此方程e x -a =x 无实数解.

所以当x ≠0时,函数g (x )不存在零点. 综上,函数g (x )有且仅有一个零点.

典例3

21.(12分)

已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;

(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<. 21.解:

(1)()f x 的定义域为()0,+∞

设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()1

1=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x

若a =1,则()1

1-g'x =x

.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g

综上,a=1

(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()1

22ln ,则'()2h x x x h x x

=--=-

当10,2x ??∈ ??

?

时,()'<0h x ;当1,+2

x ??∈∞ ???

时,()'>0h x ,所以()h x 在10,2?? ??

?

单调递减,在1,+2

??∞ ???

单调递增

又()

()21>0,<0,102h e h h -??= ???

,所以()h x 在10,2?

? ??

?有唯一零点x 0,在1,+2

??

∞????

有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,

()<0h x ,当()1,+x ∈∞时,()>0h x .

因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==--

由()00,1x ∈得()01'<

4

f x 因为x=x 0是f(x)在(0,1)的最大值点,由()()

110,1,'0e f e --∈≠得

()()

120>f x f e e --=

所以()2-20<<2e f x -

[解题反思] 在本例(1)中求f (x )的单调区间的关键是准确求出f ′(x ),注意到e x >0即可.(2)中由g (x )=0得x e x -a =x 2,解此方程易将x 约去,从而产生丢解情况.研究e x -a =x 的解转化为研究函数F (x )=e x -a -x 的最值,从而确定F (x )零点,这种通过构造函数、研究函数的最值从而确定函数零点的题型是高考中热点题型,要熟练掌握.

[答题模板] 解决这类问题的答题模板如下:

[题型专练]

2.(2017·浙江金华期中)已知函数f (x )=ax 3+bx 2+(c -3a -2b )x +d 的图象如图所示.

(1)求c ,d 的值;

(2)若函数f (x )在x =2处的切线方程为3x +y -11=0,求函数f (x )的解析式;

(3)在(2)的条件下,函数y =f (x )与y =1

3f ′(x )+5x +m 的图象有三个不同的交点,求m 的取值范围. [解] 函数f (x )的导函数为f ′(x )=3ax 2+2bx +c -3a -2b .

(1)由图可知函数f (x )的图象过点(0,3),且f ′(1)=0,

得??? d =3,3a +2b +c -3a -2b =0,解得???

d =3,c =0.

(2)由(1)得,f (x )=ax 3+bx 2-(3a +2b )x +3, 所以f ′(x )=3ax 2+2bx -(3a +2b ).

由函数f (x )在x =2处的切线方程为3x +y -11=0,

得?

??

f (2)=5,f ′(2)=-3,

所以??? 8a +4b -6a -4b +3=5,12a +4b -3a -2b =-3,解得???

a =1,

b =-6,

所以f (x )=x 3-6x 2+9x +3.

(3)由(2)知f (x )=x 3-6x 2+9x +3,所以f ′(x )=3x 2-12x +9. 函数y =f (x )与y =1

3f ′(x )+5x +m 的图象有三个不同的交点, 等价于x 3-6x 2+9x +3=(x 2-4x +3)+5x +m 有三个不等实根, 等价于g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个交点. 因为g ′(x )=3x 2-14x +8=(3x -2)(x -4),

g ???

?23=68

27-m ,g (4)=-16-m ,

当且仅当?????

g ????23=6827-m >0,g (4)=-16-m <0时,g (x )图象与x 轴有三个交点,解得-16

27. 所以m 的取值范围为????-16,6827.

21.(12分)

已知函数)f x =(a e 2x +(a ﹣2) e x

﹣x .

(1)讨论()f x 的单调性;

(2)若()f x 有两个零点,求a 的取值范围.

21.解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(十字相乘法)

(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.

当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.

(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1

(ln )1ln f a a a

-=-+.(观察特殊值1) ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于1

1ln 0a a

-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,1

1ln 0a a

-

+<,即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点. 设正整数0n 满足03ln(1)n a

>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a

->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).

题型三 利用导数证明不等式

题型概览:证明f (x )

(2017·陕西西安三模)已知函数f (x )=e x

x .

(1)求曲线y =f (x )在点P ? ?

???2,e 2

2处的切线方程;

(2)证明:f (x )>2(x -ln x ). [审题程序]

第一步:求f ′(x ),写出在点P 处的切线方程;

第二步:直接构造g (x )=f (x )-2(x -ln x ),利用导数证明g (x )min >0.

[规范解答] (1)因为f (x )=e x x ,所以f ′(x )=e x ·x -e x x 2=e x (x -1)x 2,f ′(2)=e 2

4,又切点为? ????2,e 22,所以切线方

程为y -e 22=e 2

4(x -2),即e 2x -4y =0.

(2)证明:设函数g (x )=f (x )-2(x -ln x )=e x

x -2x +2ln x ,x ∈(0,+∞),

则g ′(x )=e x (x -1)x 2-2+2x =(e x

-2x )(x -1)

x 2

,x ∈(0,+∞). 设h (x )=e x -2x ,x ∈(0,+∞),

则h ′(x )=e x -2,令h ′(x )=0,则x =ln2.

当x ∈(0,ln2)时,h ′(x )<0;当x ∈(ln2,+∞)时,h ′(x )>0. 所以h (x )min =h (ln2)=2-2ln2>0,故h (x )=e x -2x >0. 令g ′(x )=(e x -2x )(x -1)x 2

=0,则x =1. 当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.

所以g (x )min =g (1)=e -2>0,故g (x )=f (x )-2(x -ln x )>0,从而有f (x )>2(x -ln x ).

[解题反思] 本例中(2)的证明方法是最常见的不等式证明方法之一,通过合理地构造新函数g (x ).求g (x )的最值来完成.在求g (x )的最值过程中,需要探讨g ′(x )的正负,而此时g ′(x )的式子中有一项e x -2x 的符号不易确定,这时可以单独拿出e x -2x 这一项,再重新构造新函数h (x )=e x -2x (x >0),考虑h (x )的正负问题,此

题看似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也是易忽视的一个方向.

[答题模板] 解决这类问题的答题模板如下:

[题型专练]

3.(2017·福建漳州质检)已知函数f (x )=a e x -b ln x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =?

??

??

1e -1x +

1.

(1)求a ,b ; (2)证明:f (x )>0.

[解] (1)函数f (x )的定义域为(0,+∞).

f ′(x )=a e x

-b x ,由题意得f (1)=1e ,f ′(1)=1

e -1,

所以?????

a e =1e ,

a e -

b =1

e -1,

解得???

a =1e

2,

b =1.

(2)由(1)知f (x )=1e 2·e x

-ln x .

因为f ′(x )=e x -2-1

x 在(0,+∞)上单调递增,又f ′(1)<0,f ′(2)>0, 所以f ′(x )=0在(0,+∞)上有唯一实根x 0,且x 0∈(1,2). 当x ∈(0,x 0)时,f ′(x )<0,当x ∈(x 0,+∞)时,f ′(x )>0, 从而当x =x 0时,f (x )取极小值,也是最小值. 由f ′(x 0)=0,得

e x 0-2

=1x 0

,则

x 0-2=-ln x 0.

故f (x )≥f (x 0)=e x 0-2-ln x 0=1

x 0

+x 0-2>2

1

x 0·

x 0-2=0,所以f (x )>0. 4、【2017高考三卷】21.(12分)已知函数()f x =x ﹣1﹣a ln x . (1)若()0f x ≥ ,求a 的值;

(2)设m 为整数,且对于任意正整数n ,21

111++1+)2

22

n ()(1)(﹤m ,求m 的最小值. 21.解:(1)()f x 的定义域为()0,+∞.

①若0a ≤,因为11=-+2<022

f aln ?? ???

,所以不满足题意;

②若>0a ,由()1a

x a

f 'x x x

-=-=

知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x=a 是()f x 在()0,+x ∈∞的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1

(2)由(1)知当()1,+x ∈∞时,1>0x ln x --

令1=1+

2n

x 得11

1+

<22

n n ln ?? ???,从而 2211111

111++1+++1+<+++=1-<122222

22n n n ln ln ln ???????????? ? ? ???????

故21111+1+1+<222n e

????????? ??? ??

??

?

?

?

而231111+1+1+>2222??????

??????

??

??

?

,所以m 的最小值为3. 21.(12分)

已知函数()f x =ln x +ax 2

+(2a +1)x .

(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3

()24f x a

≤-

-. 【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0

单调递增,在),21

(+∞-a

单调递减;(2)详见解析

题型四 利用导数研究恒成立问题

题型概览:已知不等式恒成立求参数取值范围,构造函数,直接把问题转化为函数的最值问题;若参数不便于分离,或分离以后不便于求解,则考虑直接构造函数法,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.

已知函数f (x )=12ln x -mx ,g (x )=x -a

x (a >0).

(1)求函数f (x )的单调区间;

(2)若m =1

2e 2,对?x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,求实数a 的取值范围. [审题程序]

第一步:利用导数判断f (x )的单调性,对m 分类讨论;

第二步:对不等式进行等价转化,将g (x 1)≥f (x 2)转化为g (x )min ≥f (x )max ; 第三步:求函数的导数并判断其单调性进而求极值(最值); 第四步:确定结果.

[规范解答] (1)f (x )=12ln x -mx ,x >0,所以f ′(x )=1

2x -m , 当m ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.

当m >0时,由f ′(0)=0得x =12m ;由??? f ′(x )>0,x >0得0

f ′(x )<0,x >0

得x >12m . 综上所述,当m ≤0时,f ′(x )的单调递增区间为(0,+∞);

当m >0时,f (x )的单调递增区间为? ????0,12m ,单调递减区间为? ??

??12m ,+∞.

(2)若m =12e 2,则f (x )=12ln x -1

2e 2x . 对?x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立, 等价于对?x ∈[2,2e 2]都有g (x )min ≥f (x )max , 由(1)知在[2,2e 2

]上f (x )的最大值为f (e 2

)=1

2,

g ′(x )=1+a x 2>0(a >0),x ∈[2,2e 2],函数g (x )在[2,2e 2

]上是增函数,g (x )min =g (2)=2-a 2,由2-a 2≥12,得a ≤3,又a >0,所以a ∈(0,3],所以实数a 的取值范围为(0,3].

[解题反思] 本例(1)的解答中要注意f (x )的定义域,(2)中问题的关键在于准确转化为两个函数f (x )、g (x )的最值问题.本题中,?x 1,x 2有g (x 1)≥f (x 2)?g (x )min ≥f (x )max .若改为:?x 1,?x 2都有g (x 1)≥f (x 2),则有g (x )max ≥f (x )max .若改为:?x 1,?x 2都有g (x 1)≥g (x 2),则有g (x )min ≥f (x )min 要仔细体会,转化准确.

[答题模板] 解决这类问题的答题模板如下:

[题型专练]

4.已知f (x )=x ln x ,g (x )=-x 2+ax -3.

(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (2)证明:对一切x ∈(0,+∞),ln x >1e x -2

e x 恒成立.

[解] (1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立, 则a ≤2ln x +x +3

x , 设h (x )=2ln x +x +3

x (x >0), 则h ′(x )=

(x +3)(x -1)

x 2

, ①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减,

②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,

所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4.

即实数a 的取值范围是(-∞,4].

(2)证明:问题等价于证明x ln x >x e x -2

e (x ∈(0,+∞)). 又

f (x )=x ln x ,f ′(x )=ln x +1,

当x ∈? ?

?

??0,1e 时,f ′(x )<0,f (x )单调递减;

当x ∈? ????1e ,+∞时,f ′(x )>0,f (x )单调递增,所以f (x )min =f ? ??

??1e =-1e . 设m (x )=x e x -2

e (x ∈(0,+∞)), 则m ′(x )=1-x

e x , 易知m (x )max =m (1)=-1

e ,

从而对一切x ∈(0,+∞),ln x >1e x -2

e x 恒成立. ②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,

所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4.

即实数a 的取值范围是(-∞,4].

题型五:二阶导主要用于求函数的取值范围

23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).

(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;

(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.

【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).

f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)?﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;

(II)∵f(x)=(x+1)lnx﹣a(x﹣1),

∴f′(x)=1++lnx﹣a,∴f″(x)=,

∵x>1,∴f″(x)>0,

∴f′(x)在(1,+∞)上单调递增,

∴f′(x)>f′(1)=2﹣a.

①a≤2,f′(x)>f′(1)≥0,

∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;

②a>2,存在x0∈(1,+∞),f′(x0)=0,

函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,

由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.

综上所述,a≤2.

23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).

高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x . 所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令

导数题型总结(12种题型)

导数题型总结 1.导数的几何意义 2.导数四则运算构造新函数 3.利用导数研究函数单调性 4.利用导数研究函数极值和最值 5.①知零点个数求参数范围②含参数讨论零点个数 6.函数极值点偏移问题 7.导函数零点不可求问题 8.双变量的处理策略 9.不等式恒成立求参数范围 10.不等式证明策略 11.双量词的处理策略 12.绝对值与导数结合问题 导数专题一导数几何意义 一.知识点睛 导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。 二.方法点拨: 1.求切线 ①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导

数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0). ②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。 2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上 三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习 1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是 2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.3 3.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= 4.(2014江西)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是 5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2 + x b (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=2 1e x 上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B. 2(1-ln2) C.1+ln2 D.2(1+ln2) 7.若存在过点(1,0)的直线与曲线y=x 3 和y=ax 2 + 4 15 x-9都相切,则a 等于 8.抛物线y=x 2 上的点到直线x-y-2=0的最短距离为 A. 2 B.8 27 C. 2 2 D. 1

导数的综合大题及其分类.

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?? ?? 0,12,求 h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规范解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2, 令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-4 2 ,

高考真题导数第一问分类汇总

切线问题 1 已知函数31()4 f x x ax =++,()ln g x x =-.当a 为何值时,x 轴为曲线()y f x =的切线; 2 设函数1 (0ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. 3已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.求a 、b 的值; 4 设函数()()23x x ax f x a R e +=∈若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程; 5已知函数f(x)=e x -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1. 求a 的值及函数f(x)的极值; 6设函数,曲线在点处的切线方程为, 7已知函数.求曲线在点处的切线方程; 8设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.求a ,b ,c ,d 的值; ()a x f x xe bx -=+()y f x =(2,(2))f (1)4y e x =-+()e cos x f x x x =-()y f x =(0,(0))f

单调性问题 1已知函数)(x f 满足212 1)0()1(')(x x f e f x f x +-=-.求)(x f 的解析式及单调区间; 2 讨论函数2()2 x x f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>; 3已知函数()2x x f x e e x -=--. 讨论()f x 的单调性; 4 设1a >,函数a e x x f x -+=)1()(2.求)(x f 的单调区间 ; 5已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的 切线的斜率为4-c . (1)确定a ,b 的值; (2)若c =3,判断f (x )的单调性; 6设,已知定义在R 上的函数在区间内有一个零点,为的导函数.求的单调区间; 7已知函数()ln()x f x e x m =-+. 设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; a ∈Z 432 ()2336f x x x x x a =+--+(1,2)0x ()g x ()f x ()g x

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

(word完整版)高中数学导数练习题(分类练习)讲义

导数专题 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22 y x =+,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1 (1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线32 242y x x x =--+在点(1 3)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(1 3)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在() 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴ 2632302 0020+-=+-x x x x , 整理得:03200=-x x ,解得:2 3 0=x 或00=x (舍),此时,830- =y ,41-=k 。所以,直线l 的方程为x y 4 1 -=,切点坐标是?? ? ??-83,23。 答案:直线l 的方程为x y 41- =,切点坐标是?? ? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在 R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。

(完整word版)高考导数题型归纳

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例 已知函数f (x )=x 3﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 练习 1. 已知曲线x x y 33 -= (1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。答案:(03=+y x 或027415=--y x ) (2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。 2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1) 题型3 求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x );

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

近五年高考试题分类汇编-导数部分(附答案解析)

2018年全国高考试题分类汇编-导数部分(含解析) 1.(2018·全国卷I 高考理科·T5)同(2018·全国卷I 高考文科·T6)设函数f (x )=x3+(a -1)x2+ax.若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 2.(2018·全国卷II 高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为 3.(2018·全国卷II 高考文科·T13)曲线y=2lnx 在点(1,0)处的切线方程为 4.(2018·全国Ⅲ高考理科·T14)曲线y=(ax +1)ex 在点(0,1)处的切线的斜率为-2,则a= . 5.(2018·天津高考文科·T10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 . 6.(2018·全国卷I 高考理科·T16)已知函数f (x )=2sinx+sin2x,则f (x )的最小值是 . 7.(2017·全国乙卷文科·T14)曲线y=x 2 + 1 x 在点(1,2)处的切线方程为 . 8.(2017·全国甲卷理科·T11)若x=-2是函数f (x )=(2x +ax-1)1x e -的极值点,则f (x )的极小值为 ( ) A.-1 B.-23e - C.53e - D.1 9.(2017 10.(2017递增,则称f (x )A.f (x )=2-x 11.(2017数a 12.(2017则称f (x )具有M ①f (x )=2-x ;②f (x

13.(2017·全国乙卷理科·T16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3 )的最大值为 . 14.(2017·天津高考文科·T10)已知a ∈R ,设函数f (x )=ax-lnx 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 15.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3 sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A.[-1,1] B.11,3 ? ? -?? ?? C.11,33??- ???? D.11,3? ? --???? 16.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的 切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 17.(2016·四川高考文科·T6)已知a 为函数f (x )=x 3 -12x 的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 18.(2016·四川高考文科·T10)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切线,l 1 与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 19.(2016·山东高考文科·T10)同(2016·山东高考理科·T10) 若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是 ( ) A.y=sinx B.y=lnx C.y=e x D.y=x 3 20.(2016·全国卷Ⅱ理科·T16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= .

导数大题方法总结

导数大题方法总结 一总论 一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。 二主流题型及其方法 *(1)求函数中某参数的值或给定参数的值求导数或切线 一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x = k时取得极值,试求所给函数中参数的值;或者是f(x)在(a , f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是: 先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。 注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。 *(2)求函数的单调性或单调区间以及极值点和最值 一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是: 首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。 极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。 最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。 注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。②分类要准,不要慌张。③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下

(完整word版)北京高考导数大题分类

导数大题分类 一、含参数单调区间的求解步骤: ①确定定义域(易错点) ②求导函数)('x f ③对)('x f 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理. ④)('x f 中x 的最高次系数是否为0,为0时求出单调区间. 例1:x x a x a x f ++-=232 13)(,则)1)(1()('--=x ax x f 要首先讨论0=a 情况 ⑤)('x f 最高次系数不为0,讨论参数取某范围的值时,若0)('≥x f ,则)(x f 在定义域内单调递增; 若0)(' ≤x f ,则)(x f 在定义域内单调递减. 例2:x x a x f ln 2 )(2+=,则)('x f =)0(,12>+x x ax ,显然0≥a 时0)('>x f ,此时)(x f 的单调区间为),0(+∞. ⑥)('x f 最高次系数不为0,且参数取某范围的值时,不会出现0)('≥x f 或者0)('≤x f 的情况 求出)(' x f =0的根,(一般为两个)21,x x ,判断两个根是否都在定义域内.如果只有一根在定义域 内,那么单调区间只有两段. 若两根都在定义域内且一根为常数,一根含参数.则通过比较两根大小分三种情况讨论单调区间, 即212121,,x x x x x x =<>. 例3:若)0(,ln )1(2 )(2≠++-= a x x a x a x f ,则x x ax x f )1)(1()('--=,)0(>x 解方程0)('=x f 得a x x 1,121== 0a 时,比较两根要分三种情况:1,10,1><<=a a a 用所得的根将定义域分成几个不同的子区间,讨论)('x f 在每个子区间内的正负,求得)(x f 的单调区间。

2017年高考真题分类汇编(理数)专题2导数(解析版)

2017年高考真题分类汇编(理数):专题2 导数 一、单选题(共3题;共6分) 1、(2017?浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是() A、 B、 C、 D、 2、(2017?新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为() A、﹣1 B、﹣2e﹣3 C、5e﹣3 D、1 3、(2017?新课标Ⅲ)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=() A、﹣ B、 C、 D、1 二、解答题(共8题;共50分)

4、(2017?浙江)已知函数f(x)=(x﹣)e﹣x(x≥ ). (Ⅰ)求f(x)的导函数; (Ⅱ)求f(x)在区间[ ,+∞)上的取值范围. 5、(2017?山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分) (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.6、(2017?北京卷)已知函数f(x)=e x cosx﹣x.(13分) (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 7、(2017·天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个 零点x0, g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0, 2],满足| ﹣x0|≥ . 8、(2017?江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (Ⅰ)求b关于a的函数关系式,并写出定义域; (Ⅱ)证明:b2>3a; (Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围. 9、(2017?新课标Ⅰ卷)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(12分) (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 10、(2017?新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (Ⅰ)求a; (Ⅱ)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 11、(2017?新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx. (Ⅰ)若 f(x)≥0,求a的值; (Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.

高二数学选修2-2导数12种题型归纳(中等难度)

导数题型分类解析(中等难度) 一、变化率与导数 函数)(0x f y =在x 0到x 0+x ?之间的平均变化率,即)('0x f =0 lim →?x x y ??=0 lim →?x x x f x x f Δ)()Δ(00-+,表 示函数)(0x f y =在x 0点的斜率。注意增量的意义。 例1:若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .' 02()f x - D .0 例2:若' 0()3f x =-,则000 ()(3) lim h f x h f x h h →+--=( ) A.3- B .6- C .9- D .12- 例3:求0lim →h h x f h x f ) ()(020-+ 二、“隐函数”的求值 将)('0x f 当作一个常数对)(0x f 进行求导,代入0x 进行求值。 例1:已知()()232 f x x x f '+=,则()='2f 例2:已知函数()x x f x f sin cos 4+?? ? ??'=π,则??? ??4πf 的值为 . 例3:已知函数)(x f 在R 上满足88)2(2)(2 -+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程为( ) A. 12-=x y B. x y = C. 23-=x y D. 32+-=x y 三、导数的物理应用 如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s ′(t )。 如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v′(t )。 例1:一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒,求物体在3秒末的瞬时速度。 例2:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

导数题型分类大全

导数题型分类(A ) 题型一:导数的定义及计算、常见函数的导数及运算法则 (一)导数的定义:函数)(x f y =在0x 处的瞬时变化率x x f x x f x y o x x ?-?+=??→?→?)()(lim lim 000称为函数)(x f y =在0x x =处的导数,记作)(0/ x f 或0 / x x y =,即 x x f x x f x f x ?-?+=→?) ()(lim )(000 0/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/ x f ,从而构成了一个新的函数)(/ x f 。称这个函数)(/ x f 为函数 )(x f y =在开区间内的导函数,简称导数,也可记作/y ,即)(/x f =/y = x x f x x f x ?-?+→?) ()(lim 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数 )(x f y =在0x 处的导数0 / x x y =,就是导函数)(/ x f 在0x 处的函数值,即0 / x x y ==)(0/ x f 。 例1.函数()a x x f y ==在处的导数为A ,求 ()()t t a f t a f t 54lim +-+→。 例2.2 3 33 x y x x += =+求在点处的导数。 (二)常见基本初等函数的导数公式和运算法则 : +-∈==N n nx x C C n n ,)(;)(01''为常数; ;sin )(cos ; cos )(sin ''x x x x -== a a a e e x x x x ln )(; )(' ' ==; e x x x x a a log 1 )(log ;1 )(ln ''= = 法则1: )()()]()([' ' ' x v x u x v x u ±=± 法则2: )()()()()]()([' ' ' x v x u x v x u x v x u += 法则3: )0)(() ()()()()(])()([2' ''≠-=x v x v x v x u x v x u x v x u (理)复合函数的求导:若(),()y f u u x ?==,则'()'()x y f x x ?'=g 如,sin ()'x e =_______________;(sin )'x e =_____________ 公式1 / )(-=n n nx x 的特例:①=')x (______; ②=' ?? ? ??x 1_______, ③=')x (_________.

(完整版)导数的综合大题及其分类.(可编辑修改word版)

a - a 2-4 2 a + a 2-4 2 导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1) 单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点 的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2) 极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3) 最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极 值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数 f (x )=x 1 g (x )=a ln x (a ∈R ). - , x (1) 当 a ≥-2 时,求 F (x )=f (x )-g (x )的单调区间; (2) 设 h (x )=f (x )+g (x ),且 h (x )有两个极值点为 x ,x ,其中 x ∈ 1 ,求 h (x )-h (x )的最 1 2 1 (0, ] 1 2 2 小值. [审题程序] 第一步:在定义域内,依据 F ′(x )=0 根的情况对 F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立 x 1、x 2 及 a 间的关系及取值范围; 第四步:通过代换转化为关于 x 1(或 x 2)的函数,求出最小值. [规范解答] (1)由题意得 F (x )=x 1 a ln x , - - x x 2-ax +1 其定义域为(0,+∞),则 F ′(x )= , x 2 令 m (x )=x 2-ax +1,则 Δ=a 2-4. ①当-2≤a ≤2 时,Δ≤0,从而 F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当 a >2 时,Δ>0,设 F ′(x )=0 的两根为 x 1= ,x 2= ,

相关文档
相关文档 最新文档