文档库

最新最全的文档下载
当前位置:文档库 > 计量计算题

计量计算题

五、计算与分析题(每小题10分)

计量计算题

X:年均汇率(日元/美元)Y:汽车出口数量(万辆)

问题:(1)画出X与Y关系的散点图。

(2)计算X与Y的相关系数。其中,,,,(3)采用直线回归方程拟和出的模型为t值1.2427 7.2797 R2=0.8688 F=52.99

解释参数的经济意义。

2.已知一模型的最小二乘的回归结果如下:

标准差(45.2)(1.53)n=30 R2=0.31

其中,Y:*河蟹*债券价格(百美元),X:利率(%)。

回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是而不是;(3)在此模型中是否漏了误差项;(4)该模型参数的经济意义是什么。

3.估计消费函数模型得

t值(13.1)(18.7)n=19 R2=0.81

其中,C:消费(元)Y:收入(元)

已知,,,。

问:(1)利用t值检验参数的显著性(α=0.05);(2)确定参数的标准差;(3)判断一下该模型的拟合情况。

4.已知估计回归模型得

且,,

求判定系数和相关系数。

5.有如下表数据

计量计算题

(1)设横轴是U,纵轴是P,画出散点图。根据图形判断,物价上涨率与失业率之间是什么样的关系?拟合什么样的模型比较合适?(2)根据以上数据,分别拟合了以下两个模型:模型一:模型二:

分别求两个模型的样本决定系数。

7.根据容量n=30的样本观测值数据计算得到下列数据:,,,,,试估计Y对X的回归直线。

8.下表中的数据是从某个行业5个不同的工厂收集的,请回答以下问题:

总成本Y与产量X的数据

计量计算题

(1)估计这个行业的线性总成本函数:(2)的经济含义是什么?

9.有10户家庭的收入(X,元)和消费(Y,百元)数据如下表:

计量计算题

若建立的消费Y对收入X的回归直线的Eviews输出结果如下:

Dependent Variable: Y

Variable Coefficient Std. Error

X 0.202298 0.023273

C 2.172664 0.720217

R-squared 0.904259 S.D. dependent var 2.233582

Adjusted R-squared 0.892292 F-statistic 75.55898

Durbin-Watson stat 2.077648 Prob(F-statistic) 0.000024

(1)说明回归直线的代表性及解释能力。

(2)在95%的置信度下检验参数的显著性。(,,,)

(3)在95%的置信度下,预测当X=45(百元)时,消费(Y)的置信区间。(其中,)10.已知相关系数r=0.6,估计标准误差,样本容量n=62。

求:(1)剩余变差;(2)决定系数;(3)总变差。

11.在相关和回归分析中,已知下列资料:

(1)计算Y对X的回归直线的斜率系数。(2)计算回归变差和剩余变差。(3)计算估计标准误差。

12.根据对某企业销售额Y以及相应价格X的11组观测资料计算:

(1)估计销售额对价格的回归直线;

(2)当价格为X1=10时,求相应的销售额的平均水平,并求此时销售额的价格弹性。13.假设某国的货币供给量Y与国民收入X的历史如系下表。

计量计算题

根据以上数据估计货币供给量Y对国民收入X的回归方程,利用Eivews软件输出结果为:Dependent Variable: Y

Variable Coefficient Std. Error t-Statistic Prob.

X 1.968085 0.135252 14.55127 0.0000

C 0.353191 0.562909 0.627440 0.5444

R-squared 0.954902 Mean dependent var 8.258333

Adjusted R-squared 0.950392 S.D. dependent var 2.292858

S.E. of regression 0.510684 F-statistic 211.7394

Sum squared resid 2.607979 Prob(F-statistic) 0.000000

问:(1)写出回归模型的方程形式,并说明回归系数的显著性()。(2)解释回归系数的含义。

(2)如果希望1997年国民收入达到15,那么应该把货币供给量定在什么水平?

14.假定有如下的回归结果

其中,Y表示美国的咖啡消费量(每天每人消费的杯数),X表示咖啡的零售价格(单位:美元/杯),t表示时间。问:

(1)这是一个时间序列回归还是横截面回归?做出回归线。

(2)如何解释截距的意义?它有经济含义吗?如何解释斜率?(3)能否救出真实的总体回归函数?

(4)根据需求的价格弹性定义:,依据上述回归结果,你能救出对咖啡需求的价格弹性吗?如果不能,计算此弹性还需要其他什么信息?

15.下面数据是依据10组X和Y的观察值得到的:

,,,,

假定满足所有经典线性回归模型的假设,求,的估计值;

16.根据某地1961—1999年共39年的总产出Y、劳动投入L和资本投入K的年度数据,运用普通最小二乘法估计得出了下列回归方程:

(0.237) (0.083) (0.048)

,DW=0.858

式下括号中的数字为相应估计量的标准误。

(1)解释回归系数的经济含义;(2)系数的符号符合你的预期吗?为什么?

17.某计量经济学家曾用1921~1941年与1945~1950年(1942~1944年战争期间略去)美国国内消费C和工资收入W、非工资-非农业收入P、农业收入A的时间序列资料,利用普通最小二乘法估计得出了以下回归方程:

式下括号中的数字为相应参数估计量的标准误。试对该模型进行评析,指出其中存在的问题。

18.计算下面三个自由度调整后的决定系数。这里,为决定系数,为样本数目,为解释变量个数。

(1)(2)(3)

19.设有模型,试在下列条件下:

①②。分别求出,的最小二乘估计量。

20.假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里以上的人数,以便决定是否修建第二条跑道以满足所有的锻炼者。你通过整个学年收集数据,得到两个可能的解释性方程:

方程A:

方程B:

其中:——某天慢跑者的人数——该天降雨的英寸数——该天日照的小时数

——该天的最高温度(按华氏温度)——第二天需交学期论文的班级数

请回答下列问题:(1)这两个方程你认为哪个更合理些,为什么?

(2)为什么用相同的数据去估计相同变量的系数得到不同的符号?

21.假定以校园内食堂每天卖出的盒饭数量作为被解释变量,盒饭价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:千人)作为解释变量,进行回归分析;假设不管是否有假期,食堂都营业。不幸的是,食堂内的计算机被一次病毒侵犯,所有的存储丢失,无法恢复,你不能说出独立变量分别代表着哪一项!下面是回归结果(括号内为标准差):(2.6)(6.3) (0.61) (5.9)

要求:(1)试判定每项结果对应着哪一个变量?(2)对你的判定结论做出说明。

22.设消费函数为,其中为消费支出,为个人可支配收入,为随机误差项,并且(其中为常数)。试回答以下问题:

(1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。

23.检验下列模型是否存在异方差性,列出检验步骤,给出结论。

样本共40个,本题假设去掉c=12个样本,假设异方差由引起,数值小的一组残差平方和为,数值大的一组平方和为。

24.假设回归模型为:,其中:;并且是非随机变量,求模型参数的最佳线性无偏估计量及其方差。

计量计算题

假设y对x的回归模型为,且,试用适当的方法估计此回归模型。

26.根据某地1961—1999年共39年的总产出Y、劳动投入L和资本投入K的年度数据,运用普通最小二乘法估计得出了下列回归方程:

(0.237) (0.083) (0.048)

,DW=0.858

上式下面括号中的数字为相应估计量的标准误差。在5%的显著性水平之下,由DW检验临界值表,得dL=1.38,du=1.60。问;(1) 题中所估计的回归方程的经济含义;(2) 该回归方程的估计中存在什么问题?应如何改进?

27.根据我国1978——2000年的财政收入和国内生产总值的统计资料,可建立如下的计量经济模型:

(2.5199)(22.7229)

=0.9609,=731.2086,=516.3338,=0.3474

请回答以下问题:

(1)何谓计量经济模型的自相关性?

(2)试检验该模型是否存在一阶自相关,为什么?

(3)自相关会给建立的计量经济模型产生哪些影响?

(4)如果该模型存在自相关,试写出消除一阶自相关的方法和步骤。

(临界值,)

28.对某地区大学生就业增长影响的简单模型可描述如下:

式中,为新就业的大学生人数,MIN1为该地区最低限度工资,POP为新毕业的大学生人数,GDP1为该地区国内生产总值,GDP为该国国内生产总值;g表示年增长率。

(1)如果该地区*河蟹*以多多少少不易观测的却对新毕业大学生就业有影响的因素作为基础来选择最低限度工资,则OLS估计将会存在什么问题?

(2)令MIN为该国的最低限度工资,它与随机扰动项相关吗?

(3)按照法律,各地区最低限度工资不得低于国家最低工资,哪么gMIN能成为gMIN1的工具变量吗?

29.下列假想的计量经济模型是否合理,为什么?

(1)其中,是第产业的国内生产总值。

(2)其中,、分别为农村居民和城镇居民年末储蓄存款余额。

(3)其中,、、分别为建筑业产值、建筑业固定资产投资和职工人数。

(4)其中,、分别为居民耐用消费品支出和耐用消费品物价指数。

(5)(6)

其中,、分别为煤炭工业职工人数和固定资产原值,、分别为发电量和钢铁产量。30.指出下列假想模型中的错误,并说明理由:

(1)

其中,为第年社会消费品零售总额(亿元),为第年居民收入总额(亿元)(城镇居民可支配收入总额与农村居民纯收入总额之和),为第年全社会固定资产投资总额(亿元)。(2)其中,、分别是城镇居民消费支出和可支配收入。

(3)其中,、、分别是工业总产值、工业生产资金和职工人数。

31.假设王先生估计消费函数(用模型表示),并获得下列结果:

,n=19

(3.1)(18.7) R2=0.98

这里括号里的数字表示相应参数的T比率值。

要求:(1)利用T比率值检验假设:b=0(取显著水平为5%,);(2)确定参数估计量的标准误差;

(3)构造b的95%的置信区间,这个区间包括0吗?

32.根据我国1978——2000年的财政收入和国内生产总值的统计资料,可建立如下的计量经济模型:

(2.5199)(22.7229)

=0.9609,=731.2086,=516.3338,=0.3474

请回答以下问题:

(1)何谓计量经济模型的自相关性?(2)试检验该模型是否存在一阶自相关及相关方向,为什么?

(3)自相关会给建立的计量经济模型产生哪些影响?

(临界值,)

33.以某地区22年的年度数据估计了如下工业就业回归方程

(-0.56)(2.3) (-1.7) (5.8)

式中,Y为总就业量;X1为总收入;X2为平均月工资率;X3为地方*河蟹*的总支出。(1)试证明:一阶自相关的DW检验是无定论的。(2)逐步描述如何使用LM检验

计量计算题

要求:(1)样本容量是多少?(2)求RSS?(3)ESS和RSS的自由度各是多少?(4)求和?

35.根据我国1985——2001年城镇居民人均可支配收入和人均消费性支出资料,按照凯恩斯绝对收入假说建立的消费函数计量经济模型为:

;;;

;;;

其中:是居民人均可支配收入,是居民人均消费性支出要求:

(1)解释模型中137.422和0.772的意义;(2)简述什么是模型的异方差性;(3)检验该模型是否存在异方差性;

计量计算题

假设你做Y对X1和X2的多元回归,你能估计模型的参数吗?为什么?

37.在研究生产函数时,有以下两种结果:

(1)

(2)

其中,Q=产量,K=资本,L=劳动时数,t=时间,n=样本容量

请回答以下问题:

(1)证明在模型(1)中所有的系数在统计上都是显著的(α=0.05)。

(2)证明在模型(2)中t和lnk的系数在统计上不显著(α=0.05)。

(3)可能是什么原因造成模型(2)中lnk不显著的?

38. 根据某种商品销售量和个人收入的季度数据建立如下模型:

其中,定义虚拟变量为第i季度时其数值取1,其余为0。这时会发生

什么问题,参数是否能够用最小二乘法进行估计?

39.某行业利润Y不仅与销售额X有关,而且与季度因素有关。

(1)如果认为季度因素使利润平均值发生变异,应如何引入虚拟变量?

(2)如果认为季度因素使利润对销售额的变化额发生变异,应如何引入虚拟变量?

(3)如果认为上述两种情况都存在,又应如何引入虚拟变量?对上述三种情况分别设定利润模型。

40.设我国通货膨胀I主要取决于工业生产增长速度G,1988年通货膨胀率发生明显变化。(1)假设这种变化表现在通货膨胀率预期的基点不同

(2)假设这种变化表现在通货膨胀率预期的基点和预期都不同

对上述两种情况,试分别确定通货膨胀率的回归模型。

41.一个由容量为209的样本估计的解释CEO薪水的方程为:

(15.3) (8.03) (2.75) (1.775) (2.13) (-2.895)

其中,Y表示年薪水平(单位:万元), 表示年收入(单位:万元), 表示公司股票收益(单位:万元); 均为虚拟变量,分别表示金融业、消费品工业和公用业。假设对比产业为交通运输业。(1)解释三个虚拟变量参数的经济含义。

(2)保持和不变,计算公用事业和交通运输业之间估计薪水的近似百分比差异。这个差异在1%的显著性水平上是统计显著吗?

(3)消费品工业和金融业之间估计薪水的近似百分比差异是多少?

42.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的月收入水平外,还受在学校是否得奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。试设定适当的模型,并导出如下情形下学生消费支出的平均水平: (1)来自欠发达农村地区的女生,未得奖学金;(2)来自欠发达城市地区的男生,得到奖学金; (3)来自发达地区的农村女生,得到奖学金;(4)来自发达地区的城市男生,未得奖学金.

43. 试在家庭对某商品的消费需求函数中(以加法形式)引入虚拟变量,用以反映季节因素(淡、旺季)和收入层次差距(高、低)对消费需求的影响,并写出各类消费函数的具体形式。

44.考察以下分布滞后模型:

假定我们要用多项式阶数为2的有限多项式估计这个模型,并根据一个有60个观测值的样本求出了二阶多项式系数的估计值为:0=0.3,1 =0.51,2 =0.1,试计算( = 0, 1, 2, 3) 45.考察以下分布滞后模型:

假如用2阶有限多项式变换模型估计这个模型后得

式中,,,

(1)求原模型中各参数值(2)估计对的短期影响乘数、长期影响乘数和过渡性影响乘数

46.已知某商场1997-2006年库存商品额与销售额的资料,假定最大滞后长度,多项式的阶数。

(1)建立分布滞后模型

(2)假定用最小二乘法得到有限多项式变换模型的估计式为

请写出分布滞后模型的估计式

47.考察下面的模型

式中为投资,为收入,为消费,为利率。

(1)指出模型的内生变量和前定变量;(2)分析各行为方程的识别状况;

(3)选择最适合于估计可识别方程的估计方法。

48.设有联立方程模型:

消费函数:投资函数:恒等式:

其中,为消费,为投资,为收入,为*河蟹*支出,和为随机误差项,请回答:(1)指出模型中的内生变量、外生变量和前定变量(2)用阶条件和秩条件识别该联立方程模型

(3)分别提出可识别的结构式方程的恰当的估计方法

49.识别下面模型

式1:(需求方程)式2:(供给方程)

其中,为需求或供给的数量,为价格,为收入,和为内生变量,为外生变量。50.已知结构式模型为

式1:式2:

其中,和是内生变量,和是外生变量。

(1)分析每一个结构方程的识别状况;(2)如果=0,各方程的识别状况会有什么变化?