文档库 最新最全的文档下载
当前位置:文档库 › 抛物线(几个常见结论证明及其应用)

抛物线(几个常见结论证明及其应用)

抛物线(几个常见结论证明及其应用)
抛物线(几个常见结论证明及其应用)

高考复习中抛物线(几个常见结论及其应用)

抛物线的几个常见结论 抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。 结论一:若AB 是抛物线2 2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2 124 p x x =,212y y p =-。 证明:因为焦点坐标为F(2 p ,0),当AB 不垂直于x 轴时,可设直线AB 的方程为: ()2p y k x =-, 由2()22p y k x y px ?=- ?? ?=? 得: 2220ky py kp --= ∴212y y p =-,2242 121222244 y y p p x x p p p =?==。 当AB ⊥x 轴时,直线AB 方程为2 p x =,则1y p =,2y p =-,∴2 12y y p =-,同上也有:2124p x x =。 例:已知直线AB 是过抛物线2 2(0)y px p =>焦点F ,求证:11AF BF +为定值。 结论二:(1)若AB 是抛物线2 2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α =(α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。 证明:(1)设11(,)A x y ,22(,)B x y ,设直线AB:()2 p y k x =- 由2()22p y k x y px ? =-?? ?=? 得:,2220ky py kp --= ∴122p y y k +=,212y y p =-, ∴12AB y -=2222 22(1)2(1tan )2tan sin p k p P k ααα ++===。 易验证,结论对斜率不存在时也成立。 (2)由(1):AB 为通径时,90α= ,2 sin α的值最大,AB 最小。 例:已知过抛物线2 9y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。 结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。 已知AB 是抛物线2 2(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。 由抛物线定义:AM AF =,BN BF =, ∴111 ()()222 QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切 (2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,

(完整版)抛物线的性质归纳及证明

抛物线的常见性质及证明 概念 焦半径:抛物线上一点与其焦点的连线段; 焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦. 性质及证明 过抛物线y 2=2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-= + =p p x AF ;②焦半径α cos 12||2+=+=p p x BF ; ③1| AF |+1| BF |=2p ; ④弦长| AB |=x 1+x 2+p =α 2sin 2p ;特别地,当x 1=x 2(α=90?)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB =α sin 22 p . 证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p 2 , | AB |=| AF |+| BF |=x 1+x 2+p 如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为 A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ, ∴| AF |= | RF |1-cos θ=p 1-cos θ 同理,| BF |=| RF |1+cos θ=p 1+cos θ ∴| AB |=| AF |+| BF |= p 1-cos θ+p 1+cos θ=2p sin 2θ . S △OAB =S △OAF +S △OBF =12| OF || y 1 |+12| OF || y 1 |=12·p 2·(| y 1 |+| y 1 |) ∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 | ∴S △OAB =p 4| y 1-y 2 |=p 4(y 1+y 2)2-4y 1y 2=p 44m 2p 2+4p 2=p 221+m 2 =p 2 2sin θ .

梳理抛物线焦点弦的结论

梳理抛物线焦点弦的有关结论 知识点1:若AB 是过抛物线()022>=p px y 的焦点F 的弦。设(), ,11y x A ()22,y x B ,则(1)4 2 21p x x =;(2)221p y y -=证明:如图, (1)若AB 的斜率不存在时, 依题意,221p x x ==4221p x x =∴ 若AB 的斜率存在时,设为,k 则? ? ?=2:k y AB .4221p x x =∴ 综上:.4 2 21p x x = (2)p y x p y x 2,22 22211==Θ,,22142221p y y p y y ±=?=∴ 但22121,0p y y y y -=∴< (2)另证:设2:p my x AB +=与px y 22=联立,得 知识点2:若AB 是过抛物线()022>=p px y 的焦点F 的弦。设(),,11y x A ()22,y x B ,则(1);21p x x AB ++=(2) 设直线AB 证明:(1)由抛物线的定义知 (2)若,2,90210p x x ===则α由(1)知2p AB ==若px y p x k y AB 2,2:,9020=??? ??-=≠与设α联立,得 (),22221k k p x x +=+∴() 222112k k p p x x AB +=++=∴知识点3:若AB 是过抛物线()022>=p px y 的焦点F 的弦,则以AB 为直径的圆与抛物线的准线相切。 证明:过点B A 、

,11B A 、过AB 中点M 向准线引垂线,垂足为,N 设以AB 为直径的圆的半径为,r ∴以AB 为直径的圆与抛物线的准线相切。 知识点4:若AB 是过抛物线()022>=p px y 的焦点向抛物线的准线引垂线,垂足分别为,11B A 、则11=∠FB A 证明借助于平行线和等腰三角形容易证明 知识点5:若AB 是过抛物线()022>=p px y 的焦点与x 轴相交于点K ,则.BKF AKF ∠=∠ 证明:过点B A 、分别作准线的垂线,垂足分别为B B A A K B K A 1111=∴ B B K B A A K A 1111=∴,而11∠=∠BB K AA K AA 1?∴∽K BB 1? KB B KA A 11∠=∠∴ 知识点6:若AB 是过抛物线()022>=p px y 的焦点F 的弦,o 为抛物线的顶点,连接AO 并延长交该抛物线的准线于点,C 则//BC 证明:设(),,11y x A ()22,y x B ,则 由知识点1知2 21p y y -= 2222y y p p y C =--=∴逆定理:若AB 是过抛物线()022>=p px y 的焦点F 的弦,过点B 作OF BC //交抛物线准线于点,C 则O C A 、、三点共线。 证明略 知识点7:若AB 是过抛物线()022>=p px y 的焦点F ,,n BF m AF ==则 证法:(1)若x AB ⊥轴,则AB 为通径,而,2p AB =

最新抛物线的几个常见结论及其用

抛物线的几个常见结论及其应用 抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。 结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦), 且11(,)A x y ,22(,)B x y ,则:2 124 p x x =,212y y p =-。 例:已知直线AB 是过抛物线22(0)y px p =>焦点F , 求证: 11AF BF +为定值。 结论二:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α, 则 22sin P AB α = (α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线 对称轴的弦)最短。 例:已知过抛物线29y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。AB 倾斜角为3 π 或 23 π 。 结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线, 以两垂足为直径端点的圆与焦点弦相切。 例:已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线, 垂足为M 、N ,求证:以MN 为直径的圆 与直线AB 相切。

结论四:若抛物线方程为22(0)y px p =>,过(2p ,0)的直线与之交于A 、B 两点,则OA ⊥OB 。反之也成立。 结论五:对于抛物线22(0)x py p =>,其参数方程为2 22x pt y pt =?? =?, , 设抛物线22x py =上动 点P 坐标为2 (22)pt pt , ,O 为抛物线的顶点,显然2 22OP pt k t pt ==,即t 的几何意义为过抛物线顶点O 的动弦OP 的斜率. 例 直线2y x =与抛物线22(0)y px p =>相交于原点和A 点,B 为抛物线上一点,OB 和OA 垂直,且线段AB 长为,求P 的值. 解析:设点A B ,分别为22(22)(22)A A B B pt pt pt pt , ,,, 则11 2 A OA t k = =,1 2B OA OB t k k = =-=-. A B ,的坐标分别为 (84)2p p p p ??- ???,,, .AB ∴=.2p =∴. 练习: 1.过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于P Q ,两点, 若线段PF 与FQ 的长分别是p q ,,则11p q += 故114a p q +=】 2.设抛物线22(0)y px p =>的焦点为F ,经过点F 的直线交抛物线 于A B ,两点.点C 在抛物线的准线上,且BC x ∥轴. 证明直线AC 经过原点O . 【证明:抛物线焦点为02 p F ?? ??? , .设直线AB 的方程为2 p x my =+, 代入抛物线方程,得2220y pmy p --=.若设1122()()A x y B x y ,,,, 则212y y p =-. BC x ∵∥轴,且点C 在准线1 2CO p k y = ; 又由2112y px =,得11 1 2AO y p k x y ==, 故CO AO k k =,即直线AC 经过原点O .】

初中抛物线常见结论汇总(教师版)

初中抛物线常见结论汇总(教师版) 1. (唯一交点或最值) (1)已知抛物线y=x 2-2x -3,过点D (0,-4)求与抛物线有且只有一个公共点的直线的解析式。 (判别式) (2)已知抛物线y=x 2-2x -3,在第四象限的抛物线上求点P ,使四边形ACPB 的面积最大。 2. (焦点—准线:顶点上下14a 个单位)已知抛物线y =12 x 2-x +1,直线过点P (1,1)与抛物线交于A 、B 。过A 、B 分别作x 轴的垂线,垂足分别为M 、N 。 (1)连PM 、PN ,求证:△PMN 为直角三角形; (2)①求证:AB =AM+BN ;②求1AP +1BP 的值。 (3)已知点D (1,0),求证:DP 经过△AB D 的内心。 3. 如图,抛物线y =12x 2﹣x -32 顶点为D ,对称轴上有一点E (1,4),在抛物线上求点P ,使∠EPD=90°。 4. (定直角特殊点——特殊)已知抛物线y=12 x 2,过对称轴上P 点的任意一条直线与抛物线的两交点A 、B 和O 点构成以O 点为直角顶点的直角三角形,求P 点坐标。(定点:顶点向上平移1/a 个单位长度)

5. (定直角特殊点——半特殊)如图:抛物线y=ax 2+bx+c 与x 轴交于A 、B ,与y 轴交于C ,交点C 向上平移t 个单位长度到D ,过D 作EF ∥AB ,交抛物线于E 、F ,∠ECF=90°。求t 与a 的关系。 6. (定直角特殊点——一般)如图:抛物线y=ax 2+bx+c 与x 轴交于A 、B ,与y 轴交于C ,点P (m,n )为抛物线 上任意一点,过D (0,n+t )作EF ∥AB ,交抛物线于E 、F ,∠EPF=90°。求t 与a 的关系。 7. (纵向平分对称点——特殊)已知抛物线y=12 x 2,过对称轴上P 点的任意一条直线与抛物线的两交点为A 、B ,在对称轴负半轴上有点Q (0,-2),且∠AQB 被对称轴平分,求P 点坐标。 8. (纵向平分对称点——一般)如图,抛物线y =x 2-x -2与x 轴交于A 、B ,与y 轴交于C ,点D 和点C 关于对 称轴对称,MN ∥AD ,交抛物线于M 、N ,直线MD 、ND 分别交y 轴于E 、F 。求证:CF =CE 。

抛物线常用性质总结

结论一:若AB 是抛物线2 2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则: 2 124 p x x =,212y y p =-。 结论二:已知直线AB 是过抛物线2 2(0)y px p =>焦点F ,求证:112=AF BF p + 。 结论三:(1)若AB 是抛物线2 2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则 22sin P AB α = (α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。 结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

证明结论二: 例:已知直线AB 是过抛物线2 2(0)y px p =>焦点F ,求证:11AF BF +为定值。 证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+ ,22 p BF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2 124 p x x =。 则:212 121211()()()2224AF BF AB AB p p AF BF AF BF x x x x x x ++===?+++++ =22 2()424 AB p p p p AB p =+-+(常数 证明:结论四: 已知AB 是抛物线2 2(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 切。 证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。 由抛物线定义:AM AF =,BN BF =, ∴111 ()()222 QP AM BN AF BF AB = +=+=, ∴以AB 为直径为圆与准线l 相切 (2)作图如(1),取MN 中点P ,连结PF 、MF 、NF , ∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。同理,∠BFN=∠NFO , ∴∠MFN= 1 2 (∠AFM+∠MFO+∠BFN+∠NFO )=90°, ∴1 2 MP NP FP MN ===, ∴∠PFM=∠FMP ∴∠AFP=∠AFM+∠PFM=∠FMA+∠FMP=∠PMA=90°,∴FP ⊥AB

抛物线的焦点弦-经典性质及其证明过程

有关抛物线焦点弦问题的探讨 过抛物线px y 22 =(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点 结论1:p x x AB ++=21 p x x p x p x BF AF AB ++=+++ =+=2121)2 ()2( 结论2:若直线L 的倾斜角为θ,则弦长θ2 sin 2p AB = 证: (1)若2 π θ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2 (2)若2 π θ≠ 时,设直线L 的方程为:θtan )2(p x y - =即2 cot p y x +?=θ 代入抛物线方程得0cot 222=-?-p py y θ由韦达定理θcot 2,21221p y y p y y =+-= : 由弦长公式得θ θθ22212 sin 2)cot 1(2cot 1p p y y AB = +=-+= 结论3: 过焦点的弦中通径长最小 p p 2sin 21sin 22≥∴ ≤θ θ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(8 3 2为定值p AB S oAB =?

()8 sin 2sin sin 2221sin 21sin 21sin 2 1 sin 21322 20P AB S p p p AB OF BF AF OF AF OF BF OF S S S OAB AF OBF OAB = ∴=???=??=+?=??+??= +=????θθθθθ?θ 结论5: (1) 2 21p y y -= (2) x 1x 2=4 2 p 证44)(,2,22 2 221212 22211P P y y x x p y x p y x = =∴== 结论6:以AB 为直径的圆与抛物线的准线相切 : 证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 2 2 2 1 11AB BF AF BB AA MM = += += 故结论得证 结论7:连接A 1F 、B 1 F 则 A 1F ⊥B 1F FA A FO A FO A F AA OF AA AFA F AA AF AA 11111111//,∠=∠∴∠=∠∴∠=∠∴= 同理?=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F 结论8:(1)AM 1⊥BM 1 (2)M 1F ⊥AB (3)BF AF F M ?=2 1 (4)设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 则M 1,Q ,F ,H 四点共圆 - (5)2 1212 1 4M M B M AM =+ 证:由结论(6)知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 1 11FB A ?为直角三角形, M 1 是斜边A 1 B 1 的中点 1 11111111AFA F AA F A M FA M F M M A ∠=∠∠=∠∴=∴ ?=∠=∠+∠9011111M AA M FA F AA ?=∠+∠∴90111FM A AFA ∴M 1F ⊥AB BF AF F M ?=∴2 1 AM 1⊥BM 1 F B F A 90111⊥?=∠∴ 又B AM ?=∠∴90FB A 11 所以M 1,Q ,F,H 四点共圆,2 212 1 AB B M AM =+ ()()()2 12 12 11 2 42MM MM BB AA BF AF ==+=+= ,

抛物线的常见结论

抛物线的常见结论 一、知识点总结 1. 抛物线的弦长公式 2122122124)(11x x x x k x x k l -+?+=-+=, 其中k 是弦所在直线的斜率,21,x x 是交点的横坐标,本表达式不包含斜率不存在的情况。 2122122124)(11y y y y m y y m l -+?+=-+=,其中弦长所在直线 方程为b my x +=,21,y y 是交点的纵坐标,本表达式包含斜率不存在的情况。 2. 抛物线的焦点弦 对于抛物线,022 >=p px y ,,倾斜角为α的直线过抛物线的焦点,与抛物线交于A ,B 两点,过A,B 做抛物线准线的垂线,垂足分别为C,D ,那么有: ①2212 21,4 p y y p x x -==A B F C D O α

由?????+==222p my x px y 得0222=--p pmy y (*) ,因此?? ???==-=44)(2222121221p p y y x x p y y ②焦点弦长 p x x AB ++=21,焦点弦长α 2 sin 2P AB = α αsin 4)(sin 212212 1y y y y y y AB -+= -=,结合(*)式与αtan 1 =m 得: α ααααααααα sin sin sin sin cos 2sin 1tan 12sin 4tan 4sin 442 22222 222 22+= +=+= += p p p p p m p AB α αα22sin 2sin sin 1 2p p == ③ P BF AF 211=+ 简单证明如下:p p p y y p y y P BF AF BF AF BF AF 222sin sin sin 211221212====+=+ααα ④焦点三角形面积α sin 22 P S = 简单证明如下:以 AB 为底,以O 到AB 的距离为高,该三角形面积课表示为: α αααsin 2sin 2sin 221sin 2122p p p OF AB S AOB =??== ⑤焦点弦相关的几何关系: a. 以AF/BF 为直径的圆与y 轴相切 b. 以AB 为直径的圆与准线相切,切点与焦点连线垂直于AB. c. 以CD 为直径的圆与AB 相切 d. A,B 在准线上的投影对F 的张角为90°,?=∠90CFD e. 以A,B 为切点分别做两条切线,两切线的交点在准线上;在准线上取一点做抛物线的切线,

抛物线性质及证明

抛物线性质及证明Writer:Dreaming Rainbow 版权所有,转载请注明作者

抛物线 焦点弦性质 AB 是抛物线的焦点弦(即过焦点F ),过A 、B 作对称轴的平行线交准线于P 、Q 两点,M 、N 分别是AB 和PQ 的中点,G 、H 分别为PF 和QF 的中点,E 是MN 的中点。1.AB MN 2 1=证:由抛物线定义,()()AB FB FA QB PA MN 2 12121=+=+=。2.以AB 为直径的圆与准线相切于N 证:由1即证。 3.NB AN ⊥证:由2即证。 4.抛物线上点()00,y x 处的切线方程为() x x p y y +=00证:由抛物线方程p y x 22 =得p y dy dx y y 00==,故切线方程为()000002x p y y y y p y x x -=-=-,即()x x p y y +=00。5.设()()2211,,,y x B y x A ,则4,2 212 21p x x p y y =-=

证:设2 :p ty x AB +=,代入抛物线方程得0222=--p pty y ,由Vieta 定理221p y y -=,pt y y 221=+,因此()4422222212122121p p y y t p y y t p ty p ty x x =+++=??? ??+??? ? ?+=6.A 、B 两点处的切线相交于N 点 证:由4,联立两点切线方程得交点坐标为???? ??+,2121y y y y ,由5知其为??? ??+-2,221y y p ,即N 点。 7.NA 切抛物线于A ,NB 切抛物线于B 证:由6即证。 8.FP 平分∠AFO ,FQ 平分∠BFO 证:由抛物线定义AP FA =,故∠AFP=∠APF=∠PFO ,即FP 平分∠AFO ,同理FQ 平分∠BFO 。 9.NA 平分∠PAF ,NB 平分∠PBF 证:由4知A 点处切线交x 轴于()0,1x C -,于是FA p x FC =+=2 1,故∠NAF=∠NCF=∠PAN ,即NA 平分∠PAF ,同理NB 平分∠PBF 。 10.NA 垂直平分PF 于G ,NB 垂直平分QF 于H 证:因为△APF 为等腰三角形,由9知NA 是底边PF 的中垂线,即NA 垂直平分PF 于G ,同理NB 垂直平分QF 于H 。 11.NA 平分∠PNF ,NB 平分∠QNF 证:由10知△PNG ≌△FNG ,故∠PNG=∠FNG ,即NA 平分∠PNF ,同理NB 平分∠QNF 。12.PQ FN 2 1=证:由11的证明过程知NQ NF NP ==,即PQ FN 2 1=。13.FQ PF ⊥证:由12知以PQ 为直径的圆与AB 相切于F ,因此FQ PF ⊥。 14.AB FN ⊥证:由12和11知△PNA ≌△FNA ,因此由13知AB FN ⊥。

圆锥曲线常见结论

椭圆与双曲线的对偶性质--(必背的经典结论) 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个 端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形 的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双 曲线的焦点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相 应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M , A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线22 221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 0202y a x b K K AB OM =?,即020 2y a x b K AB =。 12. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b -=-. 13. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b -=-.

抛物线的标准方程及性质

抛物线的标准方程及性质2018/11/25 题型一、抛物线的标准方程: 例题: 1、 顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 _______ 2、 已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为 3、 以抛物线y 2=2px (p >0)的焦半径|PF |为直径的圆与y 轴的位置关系为 4、 点M 与点F (4,0)的距离比它到直线:50x +=的距离小1,则点M 的轨迹方程是 _______ 5、 抛物线x y =2上到其准线和顶点距离相等的点的坐标为 _______ 练习: 1、 抛物线的顶点在原点,对称轴是x 轴,点(-到焦点距离是6,则抛物线的方程为 _______ 2、 顶点在原点,以坐标轴为对称轴,且焦点在直线3x-4y =12上的抛物线方程是 _______ 3、 已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p ________ 4、 若点A 的坐标是(3,2),F 为抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MA |+|MF |取最小值的M 的坐标为 _______ 题型二、抛物线性质: 例题: 1、 抛物线x y 122=截直线12+=x y 所得弦长等于 2、 抛物线y 2=4x 与直线2x +y -4=0交于两点A 与B ,F 是抛物线的焦点,则|FA |+|FB |=________ 3、 如果过两点)0,(a A 和),0(a B 的直线与抛物线322 --=x x y 没有交点,那么实数a 的取值范围是 4、 已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交的公共弦长等于23,则这抛物线的方程是 练习: 1、 过A (-1,1),且与抛物线22y x =+有一个公共点的直线方程为 2、 边长为1的等边三角形AOB ,O 为原点,AB ⊥x 轴,则以O 为顶点,且过A 、B 的抛物线方程是________ 3、 若直线l 过抛物线y 2=4x 的焦点,与抛物线交于A ,B 两点,且线段AB 中点的横坐标为2,则线段AB 的长 4、 过点Q (4,1)的抛物线y 2=8x 的弦AB 恰被点Q 平分,则AB 所在直线方程是 题型三、抛物线的应用 例题: 1、 已知圆2290x y x +-=与顶点原点O ,焦点在x 轴上的抛物线交于A 、B 两点,△AOB 的垂心恰为抛物线的焦点,求抛物线C 的方程。

抛物线的有关结论

探索与研究 圆锥曲线中抛物线的有关结论 山东省德州市实验中学 肖成荣 由于抛物线的离心率是常数,导致了许多自身具有的规律性,再加上抛物线的方程比较简单,所以灵活性就更加显现,了解了抛物线的规律性后在处理抛物线的相关问题时会起到事半功倍的效果。下面就抛物线的结论作以归整,供参考! 一、焦点)0,2 ( p F 处的结论 1、焦半径长:),(11y x A ,)0,2 ( p F ,2||1p x AF +=; 2、焦点弦长:),(11y x A 、),(22y x B 在抛物线上, 且AB 过焦点F ,则p x x AB ++=21||,或θ 2 sin 2||p AB = (θ为直线l 与抛物线对称轴的夹角); 3、过焦点的直线与抛物线相交于A 、B 两点,分别过A 、B 两点作准线的垂线,垂足分别为M 、N ,MN 的中点为G 。 (1)两相切:①以焦半径AF 为直径的圆与y 轴相切;②以焦点弦AB 为直径的圆与抛物线的准线相切. (2)三直角:① ∠AGB ②090=∠MFN ③GF (3)六定值:),(11y x A 、),(22y x B 的乘积是定值:21x x =24 3 p -=?; ②n BF m AF ==,mn GF =||. ③22sin AOB p S θ ?= 二、点)0,(p D 处的结论 例:抛物线px y 22=上的点到)0,(a A 的最近距离是多少? 结论:)0,(p D 是抛物线px y 22=上到点)0,(a A 的距离最近的点为顶点的分界点, )0,(a A 在)0,(p D 左边顶点到点)0,(a A 的距离最近,右边横坐标为p a -的那两个抛物 线上的点到点)0,(a A 的距离最近. 三、点)0,2(p E 处的结论 B A ,是抛物线)0(22>=p px y 上的两点,OB OA ⊥,),(11y x A ,),(22y x B ,则 ⅰ.2214p x x =,2214p y y -=;ⅱ.直线AB 过定点)0,2(p ;ⅲ.求AB 中点的轨迹方程; ⅳ.过O 向AB 引垂线,求垂足T 的轨迹方程;ⅴ.求AOB ?面积的最小值. 结论:),(11y x A 、),(22y x B 是抛物线)0(22>=p px y 上的两点,O 为抛物线的顶点,(1)090=∠AOB ?直线AB 过点)0,2(p E .(2)2214p x x =,2214p y y -=. 四、准线上的有关结论 过抛物线的焦点的直线交抛物线于两点B A ,,再以B A ,为切点作抛物线的切 线,其交点在抛物线的准线上,且两切线垂直。反过来, 准线上任意一点做抛 物线的切线有两条,且两条切线垂直,两切点连线过抛物线的焦点。

抛物线的焦点弦-经典性质及其证明过程

有关抛物线焦点弦问题的探讨 过抛物线px y 22 =(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点 结论1:p x x AB ++=21 p x x p x p x BF AF AB ++=+++ =+=2121)2 ()2( 结论2:若直线L 的倾斜角为θ,则弦长θ2sin 2p AB = 证: (1)若2 π θ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2 (2)若2 π θ≠ 时,设直线L 的方程为:θtan )2(p x y - =即2 cot p y x +?=θ 代入抛物线方程得0cot 222=-?-p py y θ由韦达定理θcot 2,21221p y y p y y =+-= 由弦长公式得θ θθ2 2212 sin 2)cot 1(2cot 1p p y y AB = +=-+= 结论3: 过焦点的弦中通径长最小 p p 2sin 21sin 2 2≥∴ ≤θ θΘ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(8 3 2为定值p AB S oAB =? ()8 sin 2sin sin 2221sin 21sin 21sin 2 1 sin 21322 20P AB S p p p AB OF BF AF OF AF OF BF OF S S S OAB AF OBF OAB = ∴=???=??=+?=??+??= +=????θθθθθ?θ

结论5: (1) 2 21p y y -= (2) x 1x 2=4 2 p 证44)(,2,22 2 221212 22211P P y y x x p y x p y x ==∴==Θ 结论6:以AB 为直径的圆与抛物线的准线相切 证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 2 2 2 1 11AB BF AF BB AA MM = += += 故结论得证 结论7:连接A 1F 、B 1 F 则 A 1F ⊥B 1F FA A FO A FO A F AA OF AA AFA F AA AF AA 11111111//,∠=∠∴∠=∠∴∠=∠∴=ΘΘ 同理?=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F 结论8:(1)AM 1⊥BM 1 (2)M 1F ⊥AB (3)BF AF F M ?=2 1 (4)设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 则M 1,Q ,F ,H 四点共圆 (5)2 1212 1 4M M B M AM =+ 证:由结论(6)知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 1 Θ11FB A ?为直角三角形, M 1 是斜边A 1 B 1 的中点 1 11111111AFA F AA F A M FA M F M M A ∠=∠∠=∠∴=∴Θ ?=∠=∠+∠9011111M AA M FA F AA Θ ?=∠+∠∴90111FM A AFA ∴M 1F ⊥AB BF AF F M ?=∴2 1 Θ AM 1⊥BM 1 F B F A 90111⊥?=∠∴Θ又B AM ?=∠∴90FB A 11 所以M 1,Q ,F,H 四点共圆,2 212 1 AB B M AM =+ ()()()2 12 12 11 2 42MM MM BB AA BF AF ==+=+= 结论9: (1)、A O 、B 1 三点共线 (2)B ,O ,A 1 三点共线 (3)设直线AO 与抛物线的准线的交点为B 1,则BB 1平行于X 轴 (4)设直线BO 与抛物线的准线的交点为A 1,则AA 1平行于X 轴 证:因为p y p y k y p p y y x y k oB oA 22121 11122,221-=-==== ,而221p y y -= 所以122 2 22oB oA k p y y p p k =-=-= 所以三点共线。同理可征(2)(3)(4) 结论10: p FB FA 211=+

高中数学抛物线及其性质知识点大全

抛物线及其性质 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2 p x =- 2p x = 2 p y =- 2 p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 的补充 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,2 2sin p AB α = 若AB 的倾斜角为α,则22cos p AB α = 2124 p x x = 2 12y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 3.抛物线)0(22>=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.

很全抛物线焦点弦的有关结论附标准答案

很全抛物线焦点弦的有关结论附答案

————————————————————————————————作者:————————————————————————————————日期:

x B A y o F B A y o F [很全]抛物线焦点弦的有关结论 知识点1:若AB 是过抛物线()022>=p px y 的焦点F 的弦。设(),,11y x A ()22,y x B ,则 (1)4 2 21p x x =;(2)221p y y -= 证明:如图, (1)若AB 的斜率不存在时, 依题意,2 21p x x ==4221p x x =∴ 若AB 的斜率存在时,设为,k 则??? ? ? -=2:p x k y AB ,与px y 22=联立,得 () 04222222 222 2=++-?=?? ? ??-p k px k x k px p x k .4221p x x =∴ 综上:.4 2 21p x x = (2)p y x p y x 2,22 22211==Θ,,22142 221p y y p y y ±=?=∴ 但22121,0p y y y y -=∴< (2)另证:设2 :p my x AB + =与px y 22=联立,得22122,02p y y p pmy y -=∴=-- 知识点2:若AB 是过抛物线()022>=p px y 的焦点F 的弦。设(),,11y x A ()22,y x B ,则(1);21p x x AB ++=(2)设直线AB 的倾斜角为α,则α 2 sin 2p AB = 。 证明:(1)由抛物线的定义知 ,2 ,221p x BF p x AF +=+= p x x BF AF AB ++=+=∴21 (2)若,2,90210p x x = ==则α由(1)知α 2 sin 22p p AB == 若px y p x k y AB 2,2:,9020=??? ? ? -=≠与设α联立,得

相关文档
相关文档 最新文档