文档库 最新最全的文档下载
当前位置:文档库 › 最新从变速箱速比谈手动挡Polo的换挡

最新从变速箱速比谈手动挡Polo的换挡

最新从变速箱速比谈手动挡Polo的换挡
最新从变速箱速比谈手动挡Polo的换挡

从变速箱速比谈手动挡P o l o的换挡

从变速箱速比谈手动挡Polo的换挡其实无论升挡还是降挡,从操作上说,无非是油门和离合的掌握!如果能找到发动机转速与车速的关系,虽然只是在理论上,实际驾驶还有坡度,载荷,加速度等多种复杂因素!但是就可以清楚地知道在什么速度下什么挡位是什么转速,尽可能地避免降挡过程中(含降挡超速)车速和挡位转速不匹配造成的拖挡(车子一蹭),也可以避免在升挡时机把握不好造成拖挡,避免同步器、离合器额外的磨损。所以先来看看Polo手动变速箱(MQ200,经典的好东西)的速比吧。

有了这些技术资料,就可以根据挡位,转速,速比换算出变速系数(该系数为常数),公式如下:

速度×速比=变速系数×转速

因为没有找到MQ200的精确数据,所以只好根据本人的测试,即每个档位2000转的时候记下速度(没有精确值,估计所得),得出如下数据根据多次测试和计算,得出变速系数的平均值=0.0271

5挡0.776200070

有了这个系数,接下来就可以

根据速度算出Polo手动的相应转

速,很有用的一张表。→→

先说换挡,如1挡1900转

换2挡,那时的速度应该在

15km/h左右,而该速度2挡对

应的是1000转左右,那么当升

挡过程中,发动机降到1000转

的时候切入2挡就会非常平顺

的。如1挡3000转换2挡,那

时的速度应该在25km/h左右,

而该速度2挡对应的是1600转

左右,那么就因该在发动机降到

1600转的时候切入2挡。所以,

曾经有TX说高转速换档顿挫更大

所以就在2000左右换!其实这

是因为高转速换档转速差更大

了,1800换档差900转,3000

换档差1400转,同样的控制方

式当然后者更容易产生顿挫,还有,Polo松油门后转速下得很快,所以比一般车子更容易产生顿挫,有TX以快速换档来因对Polo松

油门后转速掉得很快从而克服顿挫,其实这也是尽量减少转速差,是松油后转速正好在切入挡的合理转速范围时换挡,再说减挡,也是一样道理,换挡时必须加油加转,使转速在切入挡的合理转速范围。

再来研究这张表,可以发现很多有意思的内容:

在5挡5727转时可以接近200;

3挡在4727转可以破100的时速;

4挡在近5400转可以达到150时速;

1挡的加速能力较弱,超过4000转对提速没啥意义,追求0-100加速还不如切入2挡;

追求加速的TX可以在2700转1换2,在3100转2换3,在3400转3换4,在3800转4换5。

此份数据只针对Polo手动(轮胎195/60/R15)有用,且不少是实际测量估算值,不是很准确,仅供大家参考。

目前顺畅换档的做法是:

1挡1900左右迅速换2挡,转速下落到1000左右松开离合自由行程;

2挡2200左右迅速换3挡,转速下落同时油门配合到1500左右松开离合自由行程;

3挡2300左右迅速换4挡,转速下落同时油门配合到1750左右松开离合自由行程;

4挡2500左右迅速换5挡,转速下落同时油门配合到2000左右松开离合自由行程;

降挡的过程正好相反。

【精品】汽车变速箱的基本工作原理

变速箱的基本工作原理 一、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现.比如,发动机最大功率出现在5500转。变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速箱应具有灵活的变速比。无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。 二、CVT 无级变速箱有着连续的变速比.其一直因为价格、尺寸及可靠性的关系而没有大量装备汽车.现在,改进的设计使得CVT的使用已比较普遍。 下图为国产AUDI2。8CVT

汽车变速箱的基本工作原理 汽车变速箱的基本工 作原理 变速箱通过离合器与发动机相连,这样,变速箱的输入轴就可以和发动机达到同步转速

下为奔驰C级SportCoupe6速手动变速箱 汽车变速箱的基本工作原理 一个5档的变速箱提供5种不同的变速比,在输入轴和输出轴间产生转速差。见下表: 汽车变速箱的基本工作原理 三、简单的变速箱模型 为了更好的理解变速箱的工作原理,下面让我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的:

汽车变速箱的基本工作原理 输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。 轴和齿轮(红色)叫做中间轴。它们一起旋转.轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了. 轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。车轮转动会带着花键轴一起转动. 齿轮(蓝色)在花键轴上自由转动.在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动. 齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色)。 1档 挂进1档时,套筒就和右边的齿轮(蓝色)啮合。见下图:

GF6变速箱结构及原理

GF6自动变速器结构及原理 一.自动变速器简介 1904年,美国通用汽车公司的凯迪拉克采用了手动的三挡行星齿轮变速器。 1926年,别克小轿车开始使用液力机械传动的变速器。 1940年,美国通用正式装备OLDSMOBILE 顺风轿车Hydra-Matic 自动变速器。该变速器被认为是自动变速器的代表,是世界上第一个真正意义上的自动变速器。 1998年上海通用汽车率先在国产的别克新世纪轿车上推出4T65E 自动变速器。 随着新技术的发展应用,自动变速器结构也不断改进,逐步成熟。自动变速器与机械式变速器相比,它有以下主要优点: 1)提高发动机和传动系的使用寿命。自动变速器是液体工作介质“软”性连接。液力传动起一定的吸收、衰减和缓冲的作用,大大减少冲击和动载荷。例如,当负荷突然增大时,可防止发动机过载和突然熄火。汽车在起步、换挡或制动时,能减少发动机和传动系所承受的冲击及动载荷,因而提高了有关零部件的使用寿命。 2) 提高汽车通过性。采用自动变速器的汽车,在起步时,驱动轮上的驱动转矩是逐渐增加的,可防止很大的振动,减少车轮的打滑,使起步容易,且更换平稳。它的稳定车速可以降低。举例来说:当行驶阻力很大时(如爬陡坡),发动机也不至于熄火,使汽车仍能以极低速度行驶。在特别困难的路面行驶时,因换挡时没有功率间断,不会出现汽车停车的现象。 3) 具有良好的自适应性。自动变速器能自动适应汽车驱动轮负荷的变化。当行驶阻力增大时,汽车自动降低速度,使驱动轮力矩增加。当行驶阻力减小时,减小驱动力矩,增加车速。 4) 操纵轻便。不需要离合器和来回的换挡,大大减轻了驾驶员的劳动强度。 自动变速器主要缺点 1)结构较复杂。相应的维修技术也较复杂,要求有专门的维修人员,具有较高的修理水平和故障检查分析的能力。 2)效率不够高。传动效率比机械式变速器低,使汽车的燃油经济性有所降低。

变速箱的工作原理(简易)

变速箱的工作原理 变速箱的原理一、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现。比如,发动机最大功率出现在5500转。变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速箱应具有灵活的变速比。无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。 二、CVT 无级变速箱有着连续的变速比。其一直因为价格、尺寸及可靠性的关系而没有大量装备汽车。现在,改进的设计使得CVT的使用已比较普遍。 国产AUDI 2.8 CVT 变速箱通过离合器与发动机相连,这样,变速箱的输入轴就可以和发动机达到同步转速。 级Sport Coupe 6速手动变速箱 一个5档的变速箱提供5种不同的变速比,在输入轴和输出轴间产生转速差。 三、简单的变速箱模型 为了更好的理解变速箱的工作原理,下面让我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的:

输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。 轴和齿轮(红色)叫做中间轴。它们一起旋转。轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了。 轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。车轮转动会带着花键轴一起转动。 齿轮(蓝色)在花键轴上自由转动。在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。 齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色)。 1档 挂进1档时,套筒就和右边的齿轮(蓝色)啮合。见下图:

自动变速器动力传递路线分析

自动变速器动力传递路线分析(一) 2007/4/12/09:55 来源:汽修之家 一.自动变速器动力传递概述 自动变速器由液力元件、变速机构、控制系统、主传动部件等几大部分组成。变速机构可分为固定平行轴式、行星齿轮式和金属带式无级自动变速器(CVT)三种。我国在用的车辆中,大多数自动变速器都采用行星齿轮式变速机构,这也是本文重点分析的对象。行星齿轮机构一般由2个或2个以上行星齿轮组按不同的组合方式构成,其作用是通过对不同部件的驱动或制动,产生不同速比的前进挡、倒挡和空挡。 换挡执行元件的作用是约束行星齿轮机构的某些构件,包括固定并使其转速为0,或连接某部件使其按某一规定转速旋转。通过适当选择行星齿轮机构被约束的基本元件和约束方式,就可以得到不同的传动比,形成不同的挡位。换挡执行元件包括离合器、制动器和单向离合器3 种不同的元件,离合器的作用是连接或驱动,以将变速机构的输入轴(主动部件)与行星齿轮机构的某个部件(被动部件)连接在一起,实现动力传递。制动器的作用是固定行星齿轮机构中的某基本元件,它工作时将被制动元件与变速器壳体连接在一起,使其固定不能转动。单向离合器具有单向锁止的特点,当与之相连接的元件的旋转趋势使其受力方向与锁止方向相同时,该元件被固定(制动)或连接(驱动);当受力方向与锁止方向相反时,该元件被释放(脱离连接)。由此可见,单向离合器在不同的状态下具有与离合器、制动器相同的作用。 由以上介绍可知,掌握不同组合行星齿轮机构的运动规律是自动变速器故障诊断的基础。

二.单排单级行星齿轮机构 1.单排单级行星齿轮机构的传动比 最简单的行星齿轮机构由一个太阳轮、一个内齿圈和一个行星架组成,我们称之为一个单排单级行星排,如图1所示。由于单排行星齿轮机构具有两个自由度,为了获得固定的传动比,需将太阳轮、齿圈或行星架三者之一制动(转速为0)或约束(以某一固定的转速旋转),以获得我们所需的传动比;如果将三者中的任何两个连接为一体,则整个行星齿轮机构以同一速度旋转。 目前,在有关自动变速器的资料中,有关传动比的计算公式有以下几个: (n1-nH)/(n3-nH)=-Z3/Z1 式(1) 式中:n1-太阳轮转速;nH-行星架转速;n3-内齿圈转速;Z1-太阳轮齿数;Z3-内齿圈齿数n1+αn2-(1+α)n3=0 式(2) 式中:n1-太阳轮转速;n2-内齿圈转速;n3-行星架转速;α=内齿圈齿数/太阳轮齿数=Z2/Z1 Z2=Z1+Z3 式(3) 式中:Z1-太阳轮齿数;Z2-行星架假想齿数;Z3-内齿圈齿数 下面对这3个公式的原理与推导过程作以介绍,这也是本文后面对不同型号自动变速器速比计算方法的基础。定轴轮系齿轮传动比计算公式为i=(-1)m(所有的从动齿轮数乘积)/(所有的主动齿轮数乘积)=(-1)mZn/Z1,它对行星齿轮机构是不适用的。因为在行星齿轮机构中,星轮在自转的同时,还随着行星架的转动而公转,这使得定轴轮系传动比的计算方法不再适用。我们可以用“相对速度法”或“转化机构法”对行星齿轮机构的传动比进行分析,这一方法的理论依据是“一个机构整体的绝对运动并不影响其内部各构件间的相对运动”,这就好象手表表针的相对运动并不随着人的行走而变化一样,这一理论是一位名叫Willes的科学家于1841年提出的。假定给整个行星轮系加上一个绕支点O旋转的运动(-ω),这个运动的角速度与行星架转动的角速度(ω)相同,但方向相反,这时行星架静止不动,使星轮的几何轴线固定,我们就得到了一个定轴轮系,这样就能用定轴轮系的方法进行计算了。用转速n代替角速度ω,nbsp; 利用定轴轮系传动比计算公式有: i13H=n1H/n3H=(n1-nH)/(n3-nH)=(-1)1Z2Z3/Z1Z2=-Z3/Z1 式(4) 如果把α=Z2/Z1代入原公式(4)中,可得到式(2)或式(3)。由此可见,这3个公式其实是同一个公式的不同表达方式。 2.单排单级行星齿轮机构行星架的假想齿数 在式(4)中,假设固定内齿圈,使n3=0,代入式(5)得式(6): n1/nH=(Z1+Z3)/Z1 式(5) 又:i1H=n1/nH=ZH/Z1 式(6) 联解式(5)、(6)可得出: ZH=Z1+Z3 即“行星架的假想齿数是太阳轮齿数和内齿圈齿数之和”,注意,这一结论只适用于单级行

变速箱工作原理

变速箱工作原理 2019.03 汽车变速器,由大小齿轮构成,按大小排列成塔状。 一般地,变速器有四根轴组成,第一根轴是动力进入轴,插在离合器内,只要离合器踏板抬起来,它就转,与发动机的转速同步。第二根轴在变速器的底部,其中一个齿与第一轴的一个齿永远啮合,跟着转,上面有大小不同的许多齿轮。第三根轴与第一根轴同心安置,上面大小不同的齿轮可以前后滑动,与第二轴的齿轮啮合,得到不同的转速和扭矩。第三轴是动力输出轴。 第四根轴是倒车轴,第二根轴要得到反向旋转,必须增加一个齿轮。这个齿轮专门安装在一根轴上。 变速器的齿轮,永远啮合的,用斜齿,为什么要用斜齿,说起来就费劲了。滑动的,起变速作用的,只能用直齿。 现在的汽车变速器,一般安装有同步器,作用是避免变档时齿轮发出响声,容易啮合成功。因为同步器结构复杂,增加成本,一般只安装在高速档上,高级轿车会全部安上同步器,当然由你买单啦。 这是拆开盖子的变速器,左边是离合器,第一个斜齿,是第一轴的。下面的第二轴看不见,除了第一轴上的那个齿轮,其余

齿轮全部是第三轴上的,由此也可以看出第三轴很长。第一轴是空心的,第三轴的一端要插入第一轴空心部分,以支承自身。 有小齿的,是同步器,密密的小齿是同步器的标志。 齿轮边上磨得发亮的凹槽,是变速叉叉的位置,变速杆带动变速叉前后移动,就使齿轮前后移动。 变速器在同一时间里,只能有一对齿轮啮合,否则就别死不可转动了。这个任务由变速器盖子实现。变速器盖结构简单,没有什么高科技,但却充满了智慧,非常巧妙,决定着变速叉的动作。机械就是这样,讲究一个巧劲。简单的东西能完成复杂的使命,另外的例子就是枪械,上面没有什么电路板,其动作却是智慧的结晶。 一、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现。比如,发动机最大功率出现在5500转。变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速箱应具有灵活的变速比。无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。

发动机变速箱的几个速比值

发动机变速箱的几个速比值,换挡时机选择,降档超车等必掌握的数据2012-7-27 23:46 阅读(409) 赞(1)转载(21)分享(1)评论(3)复制地址举报更多 上一篇| 下一篇:超车方式的要点注... 许多刚学出来的驾驶员都在默默记住教练的换挡教导,1档到10km/h时~~换2档,到20km/h 时换3,到40km/h换4,到50km/h换5。先不说这些做法对不对,是否千篇一律。但在至于为什么上教练一般都不会讲。我来说,教练教的这个换挡方式,适合于缓慢提速的过程——比如刚刚拥堵好的道路,前面一排车都开始加速的过程。这种换挡时机的方式用到的概率其实不高,我一般大概只有30%左右会用到,我先不说这些这些换挡时机的选择了。我觉得更应该让大家知道为什么选择某个时机换挡,以及为何在不同驾驶状况下换挡时机也是不同的。 这里先简单说几句,以后详述,大家要记住发动机的变速箱的速比,以下是针对目前一般的5档手动挡汽车的变速箱速比,是个大致数据 1档2000rpm:15km/h 2档2000rpm:30km/h 3档2000rpm:40km/h 4档2000rpm:60km/h 5档2000rpm:70km/h rpm就是发动机转速——转/每分钟 上面的数值说明的是不同档位在2000转时的汽车的速度。我不是让大家记住2000和15 30 40 60 70这些数字,我是让大家记住他们的比值,比如1档2000:15,就是记住这样个数字比例20比15,或者说2比15,2比1.5,记住这样个比例,在任何档位发动机的转速和车速都是成比例的,比如1档2000转15km/h,1000转就是7.5km/h,4000转就是30km/h,这我相信大家应该容易理解,男人更容易理解,小姑娘和女同志不理解可以咨询下边上的男人。每个档位都有不同的比例值,记住并熟知这些比例值要想乘法口诀一样熟记在心里,要做到能在看到车速值后能迅速脑子反应出某个档位的发动机转速值,比如在60km/h车速时,我想切3档,就可以迅速知道切到3档发动机会3000转,思考过程可以这样——熟知3档时是1比2,然后60km/h时脑子就迅速反应个数字是6,然后1比2就是3比6,发动机3就是3000转。 大家会问知道这个啥用?用处多多,以后再说,大家先消化这些吧 (补充解答) 这牵涉到个机械原理,其实也很简单,容易理解。 简单来看,变速箱有主轴和副轴,主轴连发动机,副轴连动力轮,不同的档位就是不同的齿轮组合,每个齿轮组合有个比值,就是转速比,比如1档就是2000比15km/h,就是发动机2000转,车轮速度15km/h,这个发动机转速和车轮转速是成比例上升和下降的,比如4000转时就30km/h,6000转就要45km/h,很容易理解应该。然后为了方便记忆,所以就可以记20比15,或者2比15,然后速度不同就按比例心中计算,30Km/h就是4比30,6比45……成比例变化。因为仪表盘上转速表一般都是标千位值,1000转标个“1”,2000转就是标“2”……然后后面有个数字标着乘1000,所以这样记忆方便观察仪表盘。当然这是我采用的特殊方式,不知道大家能不能习惯了。

自动变速箱工作原理

自动变速箱工作原理 虽然现在市场上车型繁多,配备的自动变速器种类也繁多,但其控制和使用方法都大同小异。早几年,在国产车中最常见的是4前速自动变速器,现在很多车型更新换代,配备了5前速自动变速,奥迪A4甚至还配备了6前速自动变速。 自动变速器看似复杂,事实上只要我们了解了其中一些简单参数的奥秘,那么在选购汽车时,自动变速器的好坏就可一目了然了。自动变速器最重要的参数就是挡位的个数。这一点凡是开过车的人都能理解,谁都愿意开挡位多的车。如果挡位越多,变速器与发动机动力的配合就会越紧密,能够把发动机的性能发挥得更好。但光看挡位的个数是不够的。事实上一台自动变速器的挡位多少并不是技术的核心,因为简单的增加行星齿轮组就能增加挡位。象奔驰,沃尔沃的商用货车,有的挡位甚至多达20多个。自动变速器的技术核心在它的控制机构。因为一台好的自动变速器,它的换挡品质必须做到响应速度快,换挡冲击小等特点。而这一切都需要靠设计和改进性能优良的控制机构得以实现。 自动变速器是通过各种液压多片离合器和制动闸限制或接通行星齿轮组中的某些齿轮得到不同的传动比的。所以换挡品质的好坏与这些离合器和制动器有直接关系。根据汽车挡次的不同,出于成本考虑,经济型车的自动变速器的控制机构通常被设计得很简单。如图:

上图为自动变速器中最常用的制动机构。它通过制动带来限制行星齿轮的运动。制动带在杠杆的推动下能迅速包紧被制动的齿轮或轴,从而产生强大的制动力达到限制行星齿轮运动的目的。杠杆是直接被顶杆推动的,顶杆的动力又来自液压。所以行星齿轮的制动完全由液压来决定。这种制动带式的设计,结构非常简单,成本也很低,常用于经济型车的自动变速器当中。但由于制动带制动非常唐突,制动力来得很猛,所以换挡震动相对较大。在高挡车中很少用这种设计。高挡车中用得较多的是多片离合器式制动设计。如下图:

自动变速器传动比的计算

汽车自动变速器各档传动比的计算 摘要:本文通过用机械基础知识解析汽车自动变速器各档传动比,为读者提供一种学习、钻研汽车专业知识的方法,提高学习汽车专业知识的兴趣及水平。关键词:汽车自动变速器,行星齿轮机构,传动比 汽车自动变速器中的行星齿轮机构,通过液压控制装置,使各制动器、离合器、单向离合器等配合动作,能得到不同的传动比,许多学生觉得传动比的计算较难,不容易掌握。其实,在“汽车机械基础”这门课程中,学生们学习过“齿轮传动”和“齿轮系”两个内容,他们已经接触过“行星齿轮机构传动比计算”的相关内容,只要教师进一步引导,由浅入深,循序渐进,逐步深化分析,还是能使学生们把这部分内容消化、吸收并融会贯通的。 在“汽车机械基础”、“机械基础”或“机械设计基础”等教科书中,常以汽车差速器作为典型的行星齿轮机构来讲解传动比问题,但是这完全是圆锥齿轮组成的行星轮系,包括两个中心轮,即半轴齿轮,一组行星轮(四个齿轮)都是圆锥齿轮,而全部由圆柱齿轮组成的行星齿轮机构,在汽车上最典型的例子就是自动变速器里的行星齿轮系了。“汽车机械基础”作为汽车专业基础课程,如结合汽车专业讲解自动变速器中的行星齿轮机构,有利于学生更好地掌握现代汽车技术,同时也能使他们的机械基础、机械原理知识得到拓展和提高,对以后学习汽车专业知识更有帮助。 我看了一些有关“汽车自动变速器”的教科书后,觉得在阐述自动变速器中行星齿轮机构的传动比方面也不够清楚、完整。现将一种典型的自动变速器行星齿轮机构传动比作一计算分析。机构简图如下:

图中210,,C C C 为离合器,3210,,,B B B B 为制动器,210,,F F F 为单向离合器,共有三排行星齿轮组。第1排为超速行星齿轮组。 在无超速状态时,离合器0C 工作,使超速行星架与太阳轮连接,此时 I I HI n n n 31==,即第1排行星齿轮组的传动比13== I HI n n i ,此时,第2、3排行星齿轮组的工作情况如下: 一)1D 档,离合器1C 和单向离合器2F 工作。输入轴与第3排齿圈连接,输出轴与第2排齿圈及第3排行星架连接,传动比应为Ⅲ Ⅲ H D n n i 31= 。 由于是差动行星轮系,第3排行星轮系有 Ⅲ ⅢⅢⅢⅢⅢ3113Z Z n n n n H H -=-- ⑴ 第2排行星轮系有 Ⅱ ⅡⅡⅡⅡⅡ3113Z Z n n n n H H -=-- 因单向离合器2F 作用,0=ⅡH n ,故 Ⅱ ⅡⅡⅡ3113Z Z n n -= ⑵ 从⑴得;ⅢⅢⅢ ⅢⅢⅢⅢⅢ=H H n n Z Z n Z Z n ++- 311313 因2、3排太阳轮为一体,且从⑵得 第Ⅰ排超速行星齿轮组 第Ⅱ、Ⅲ排行星齿轮组

汽车换挡原理变速箱工作原理精选版

汽车换挡原理变速箱工 作原理 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

手动挡汽车档位原理是什么 解答: 手动档汽车变速器组成和基本工作原理首先我们来看两张图片.第一张是承接前面两期的,整个动力总成的工作方式.这张图呢,先说声抱歉,我没有找到前驱车的图片,只能用后驱的凑合一下.我们看到,发动机通过曲轴把动力传递给离合器,离合器传递给变速箱,变速箱传递给传动轴,连接到车轮,提供车轮转动的动力. 第二张是变速箱内部的一个立体图 看起来可能很复杂,大家一头雾水,没关系,我们来看看简化后的理论图.为了便于理解, 我们先采取一个两档变速箱的图片来讲解 绿色的叫做变速箱输入轴,结合上期的内容,我们知道这是离合器传递动力给变速箱的一根输入轴.红色 的部分叫中间轴,它们一起旋转。只要绿色的轴在转,中间轴就会一起转动,传输动力.黄色的轴,连接差 速器和传动轴,传递动力给轮胎.需要注意的是,黄色轴和紫色的套筒是通过花键相连的.这里稍微解释下花键,上一期中没有很好的说明这个东西,这里补上:

红圈部分就是花键,紫色套筒中间有开一个空,也是有齿的,和轴上红圈中的齿啮合,一起转动.也就是说,套筒和黄色的轴总是一起转动.但是,蓝色齿轮不和黄色轴相连,他们此时是自由的.举例来说.当你空挡 滑行的时候,车轮还在转,黄色轴也一起在转,但是蓝色齿轮此时是不转动的.因为没有动力传输过来.我 们看到了右上有排挡杆.拉动排挡杆,换档叉就会左右移动,下面就来看看,挂一档的情况 右边是一档,我们可以看到这个齿轮非常大.下面红色齿轮非常小.这里就有一个齿轮比,1档的齿轮比总是最大的,这样的好处就是,发动机曲轴转很多圈,1档齿轮才转1圈.我们骑过山地车就明白,这样很轻松就 可以让车跑起来,很省力.但是跑不快.为了跑的更快,我们需要让轮子转的更快,而发动机不要转那么快.这样我们就需要小一些的齿轮比.可以看到,2档的齿轮比就会小一些.图中,推动排挡杆,换档叉向右运动,套筒和蓝色齿轮啮合,前面讲过,套筒和黄色轴是一起转动的,所以动力被传递到黄色轴,继而传递给传动轴, 轮胎,车子就跑起来了.相应的,挂两档,换档叉就被推向另一边,和两档齿轮啮合.原理其实就是这么简单, 下面我们来看看正常的变速器,这是个5MT的变速器. 有了前面的讲解,这张图我们就很好理解了,齿轮比从1-5档逐渐变小,5档是最终比,这个比值一般是1:1,也就是说,发动机曲轴转一圈,5档齿轮就转一圈,这也是最经济的齿轮比.所以我们的汽车开到一定时速后,都会挂到最高档,以获得最佳燃油经济性.我们结合下面一张图,看看换档具体是怎么实现的,实际上,5MT 的汽车,换档叉有3根.从上面的图我们看不清楚,这里就很容易看到了。 排挡杆通过三个连杆连接着三个换档叉这样我们就很清楚了,你挂1档2档,实际上是让换档叉把套筒推向1档或2档的蓝色齿轮.你左右移动排档杆时,实际上是在选择不同的换档叉(不同的套筒),前后移动时则是选择不同的蓝色齿轮.这样,我们就了解了换档是怎么一回事最后还要讲两点:一是倒档,倒档实际上就是在红色和蓝色齿轮之间增加一个小齿轮.让蓝色齿轮反方向转动,实现倒车. 就这么简单. 二,同步器.

自动变速器传动比计算

自动变速器的速比计算涉及到动力的传递路线,对档位分析很重要。本文简述了自动变速器行星齿轮系统传动比(速比)的计算方法,希望对汽车维修类专业学习者有所帮助。Abstract The automatic transmission speed ratio calculations related to the power transmission line, analysis of the stall is very important. This paper describes the automatic transmission planetary gear transmission ratio system (ratio) method of calculation, would like to help novice staff. 关键词自动变速器速比 Key words Automatic transmission speed ratio 为适应人们日益提高的对汽车安全与舒适度的要求,自动变速器在轿车上逐渐普及。随着自动变速器的广泛应用,轿车驾驶变得轻松,乘坐变得舒适。但由于自动变速器的结构相对复杂,自动变速器速比计算在很多教材中暂未涉及,这给汽车维修类专业学习者熟练理解自动变速器的传动性能和档位分析造成了一定的困难。下面,我们对典型的单排行星齿轮机构的传动比计算原理及方法作出仔细分析。 一、自动变速器动力传递概述 自动变速器由液力元件、变速机构、控制系统、主传动部件等几大部分组成。变速机构可分为固定平行轴式、行星齿轮式和金属带式无级自动变速器(CVT)三种。在轿车上,自动变速器都采用行星齿轮式变速机构。行星齿轮机构一般由2个或2个以上行星齿轮组按不同的组合方式构成,其作用是通过对不同构件的驱动或制动,产生不同速比的前进挡、倒挡和空挡。 换挡执行元件是指约束行星齿轮机构的某些构件,其作用包括固定并使其转速为0,或连接某部件使其按某一规定转速旋转。通过适当选择行星齿轮机构被约束的基本元件和约束方式,就可以得到不同的传动比,形成不同的挡位。换挡执行元件包括离合器、制动器和单向离合器三种不同的元件。其中,离合器的作用是连接或驱动,以将变速机构的输入轴(主动部件)与行星齿轮机构的某个部件(被动部件)连接在一起,实现动力传递。制动器的作用是固定行星齿轮机构中的某基本元件,它工作时将被制动元件与变速器壳体连接在一起,使其固定不能转动。单向离合器具有单向锁止的功能,当与之相连接元件的旋转趋势使其受力方向与锁止方向相同时,该元件被固定(制动)或连接(驱动);当受力方向与锁止方向相反时,该元件被释放(脱离连接)。由此可见,单向离合器在不同的状态下具有与离合器、制动器相同的作用。 二、单排单级行星齿轮机构 1、单排单级行星齿轮机构的传动比。最简单的行星齿轮机构由一个太阳轮、一个内齿圈和一个行星架组成,我们称之为一个单排单级行星排,如图1所示。由于单排行星齿轮机构具有两个自由度,为了获得固定的传动比,需将太阳轮、齿圈或行星架三者之一制动(转速为0)或约束(以某一固定的转速旋转),以获得我们所需的传动比;如果将三者中的任何两个连接为一体,则整个行星齿轮机构以同一速度旋转。 目前,在有关自动变速器的资料中,有关传动比的计算公式有以下几个: (n1-nH)/(n3-nH)=-Z3/Z1 ------------------------------式(1) 式中:n1-太阳轮转速;nH-行星架转速;n3-内齿圈转速;Z1-太阳轮齿数;Z3-内齿圈齿数 n1+αn2-(1+α)n3=0 ------------------------------------式(2) 式中:n1-太阳轮转速;n2-内齿圈转速;n3-行星架转速;α=内齿圈齿数轮齿数=Z2/Z1 Z2=Z1+Z3 -------------------------------------------------式(3) 式中:Z1-太阳轮齿数;Z2-行星架假想齿数;Z3-内齿圈齿数

01M自动变速器传动比分析与计算

一汽大众宝来、高尔夫、捷达都市先锋轿车 用01M自动变速器 1、拉维纳式行星齿轮基础知识 1-行星架 2-长行星齿轮 3-内齿圈 4-小太阳轮组件 5-大太阳轮组件 6-长行星轮 图一、拉维纳式行星齿轮机构 图一是拉维纳式行星齿轮机构,该行星齿轮是一种复合式行星齿轮机构,它由一个前面单行星轮式行星排和一个双行星轮式行星排组合而成。大太阳轮和长行星轮、行星架和齿圈共同组成一个单行星轮式行星排;小太阳轮、短行星轮、长行星齿轮、行星架和齿圈共同组成一个双行星轮式行星排。 2、01M自动变速器动力流分析 图二、拉维纳式行星齿轮变速器 2.1动力传递路线

(1)一挡:液力一挡时,离合器K1接合,单相离合器F1进入工作状态,其动力传递路线是:泵轮(顺时针转动)→涡轮(顺时针转动)→涡轮轴(顺时针转动)→离合器K1接合(顺时针转动)→小太阳轮(顺时针转动)→短行星齿轮(逆时针自转)→长行星齿轮(顺时针自转)→整个行星架有向顺时针方向转动的趋势(由于在起步的过程中,车速为零,常行星齿轮对齿圈产生顺时针方向力矩的同时受到齿圈的反作用力矩,则有向逆时针方向转动的趋势,而此时单向离合器F1限制着行星架的逆时针方向转动)→齿圈(顺时针转动)→主减速器→差速器。 (2)二挡:液力式二挡时,离合器K1接合,制动器B2制动大太阳轮,其动力传递路线是:泵轮(顺时针转动)→涡轮(顺时针转动)→涡轮轴(顺时针转动)→离合器K1接合(顺时针转动)→小太阳轮(顺时针转动)→短行星齿轮(逆时针自转)→长行星齿轮(顺时针自转)→此时由于制动器B2起作用,大太阳轮被锁止不动→长行星齿轮顺时针自转的同时围绕大太阳轮顺时针公转→齿圈(顺时针转动)→主减速器→差速器。 (3)三挡:液力式三挡时,离合器K1与K3接合,驱动小太阳轮和行星架,其动力传递路线是:泵轮(顺时针转动)→涡轮(顺时针转动)→涡轮轴(顺时针转动)→由于离合器K1和K3的共同作用,将整个行星齿轮机构锁死为一体(顺时针转动)→齿圈(顺时针转动)→主减速器→差速器。 (4)四挡:液力式四挡时,离合器K3接合,制动器B2起作用,其

变速箱传动比

变速箱传动比 这些参数对换挡有何指导意义吗? 我是一档起步,10km换二档,20km换三档,40km换四档,70km换五档,对吗? 有指导意义的!我一般是2000r/min-2200r/min换档,因为在这个转速下,只要你舍得给油,发动机所能发出的最大扭矩可以达到最大扭矩的90%以上,用于一般条件下的换档加速,足够了!所说的多少公里/小时换档,实际上取决于在2000r/min-2200r/min下,当时的车速是多少。只要不是自动档,这是有对应关系的,可以通过底盘参数计算,这些参数就包括上面几个。计算方法如下: ua=0.377 r n / ig i0 ——ua代表汽车行驶速度,单位km/h(公里/小时) ——r代表轮胎半径,单位m(米)a5用的195轮胎,大概是320毫米=0.32米 ——n代表发动机转速,单位r/min (转/分钟) ——ig代表变速箱某档速比,无单位 ——i0代表主减速器传动比,无单位 以a516为例,计算一下4档,发动机2000r/min时的车速: ua=0.377 r n / ig i0 =0.377 x 0.32 x 2000 / ( 0.972 x 4.313 ) =57.55 (公里/小时) 再看一下老a520的情况吧!,计算一下4档,发动机2000r/min时的车速: ua=0.377 r n / ig i0 =0.377 x 0.32 x 2000 / ( 1.03 x 3.722 ) =62.94 (公里/小时) 可以看到,同样发动机是2000r/min,由于变速箱和主减速器的参数不同,造成车速的差异,如果车主还是希望在60公里左右换档,那么换档转速就应下降到1800r/min左右!油耗就会相对低一些!

6AT动力传递分析及时传动比计算

6FWD传动比计算 6FWD变速器采用两组行星齿轮机构组成,前排采用辛普森式行星齿轮机构,后排采用拉维娜式行星齿轮机构;拉维娜式行星机构是由一个单排单级行星齿轮机构和一个单排双级行星齿轮机构组成; 传动比计算公式: 单排单级行星齿轮计算公式:n1+a1n2-(1+a1)n3=0 (1) 单排双级行星齿轮计算公式:n4-a2n2-(1-a2)n3=0 (2) 式中:n1 n2 n3 n4分别为倒档太阳轮、齿圈、行星架、前进档太阳轮转速a1=z2/z1 a2=z2/z4 z1为倒档太阳轮齿数 z2为齿圈齿数 z4为前进档太阳轮齿数6FWD变速器前排行星齿轮机构太阳轮齿数z5=36齿圈齿数z6=69行星架齿数z3=105;后排行星齿轮机构倒档太阳轮齿数z1=34 齿圈齿数z2=71 前进档太阳轮齿数Z4=26 一、倒档传递路线分析 R档动力传递路线如图所示,R档时输入轴顺时针转动,动力传递到前排行星齿轮机构的齿圈带动行星架(行星架与C2、C3齿毂连接在一起)工作,倒档离合器C3接合,驱动倒档太阳轮顺时针转动,带动长行星齿轮逆时针转动;制动带B2工作,固定后排行星架,因长行星轮逆时针转动与齿圈是内啮哈,所以齿圈逆时针转动;倒档太阳轮、齿圈、行星架组成一个单级行星机构,太阳轮输入,行星架固定,齿圈反向减速输出;

倒档传动比计算: R档时,倒档太阳轮的动力是经前排行星齿轮机构减速输入;后排行星机构以一个单 级行星机构的方式工作,行星架固定,倒档太阳轮输入,齿圈输出;行星架固定n3转速为O,假设输入轴输入速度为1,倒档太阳轮输入速度n1=z6/z5=69/105=0.6571 引用公式(1)n1+a1n2-(1+a1)n3=0 a1=z2/z1=71/34=2.088 a2=z2/z4=71/26=2.731 代入公式:n1+a1n2+(1+a1)n3=0 n1+a1n2=0 0.6571=-2.088n2 n2=-0.6571/2.088=-0.3147 (负号表示齿圈转动方向) 传动比i=1/n2=1/0.3147=3.178 二、手动一档传递路线分析 手动一档动力传递路线如图所示,手动一档时输入轴顺时针转动,动力传递到前排行星齿轮机构的齿圈带动行星架(行星架与C2、C3齿毂连接在一起)工作,前进档离合器C2接合,驱动前进档太阳顺时针转动,带动短行星齿轮逆时针转动,短行星齿轮带动长行星齿轮顺 时针转动;单向离合器锁止,防止后排行星架逆时针转动,同时制动带B2工作,固定后排行星架,因长行星齿轮顺时针转动与齿圈内啮合,所以齿圈顺时针转动;前进档太阳轮、长行星齿轮、短行星齿轮、齿圈、行星架组成一个双级行星机构;前进档太阳轮输入、行星架 固定、齿圈减速输出;因有B2固定行星架,在手动一档时,有发动机制动;

变速箱主要参数的选择计算

第三章变速箱主要参数的选择 根据变速箱运用的实际场合,结合同类变速箱的设计数据和经验,来进行本设计的主要参数的选择,包括:挡数、传动比范围、中心距、外形尺寸、齿轮参数等。 挡数 变速箱的挡数可在3~20个挡位范围内变化。通常变速箱的挡数在6挡以下,当挡数超过六挡以后,可在6挡以下的主变速箱基础上,再配置副变速箱,通过两者的组合获得多挡位变速箱。 传动系的挡位增多后,增加了选用合适挡位使发动机处于工作状况的机会,有利于提高燃油经济性。因此,轿车手动变速箱已基本采用5挡,也有6挡的。近年来,为了降低油耗,变速箱的挡位也有增加的趋势。发动机排量大的乘用车多用5个挡。【本设计采用5个挡位】 传动比范围 变速箱传动比的范围是指变速箱最低挡传动比与最高挡传动比的比值。高挡通常是直接挡,传动比为;有的变速箱最高挡是超速挡,传动比为~。影响最低挡传动比选取的因素有:发动机的最大转矩和最低稳定转速所要求的汽车最大爬坡能力、驱动轮与路面间的附着力、主减速比和驱动轮的滚动半径以及所要求达到最低稳定性是车速等。目前乘用车的传动比范围在~之间,总质量轻些的商用车在~之间,其他商用车则更大。 本设计根据已给条件,最高挡挡选用超速挡,传动比为i1=,i2=,i3=,i4=,i5=,iR=(倒挡) 所给相邻挡位间的传动比比值在以下,利于换挡。

A K 中心距A 对中间轴式变速箱,变速箱中心距是指中间轴与第二轴轴线之间的距离。它是一个基本参数,其大小不仅对变速箱的外形尺寸、体积和质量大小有影响,而且对齿轮的接触有轻度有影响。中心距越小,齿轮的接触应力越大,齿轮寿命越短;变速箱的中心距取的越小,会使变速箱长度增加,并因此而使轴的刚度被削弱和使齿轮的啮合状态破坏。 中间轴式变速箱中心距A (mm )的确定,可根据对已有变速箱的统计而得出的经验公式初定: (3-1) 式中:KA ——中心距系数。对轿车,K A =~;对货车,K A =~;对多挡主变速箱,K A =~11; I max T ——变速箱处于一挡时的输出扭矩(此处意为最大转矩)。 故可得出初始中心距:A=,圆整取A 为67mm 。 外形尺寸 变速箱的横向外形尺寸,可根据齿轮直径以及倒挡中间齿轮和换挡机构的布置初步确定。 乘用车四挡变速箱壳体的轴向尺寸~。商用车变速箱壳体的轴向尺寸与挡数有关: 四挡~A 五挡~A 六挡~A 当变速箱选用的挡数和同步器多时,中心距系数K A 应取给出系数的上限。为检测方便,A 取整。 本设计为五速手动变速箱,其壳体的轴向尺寸是3x67=201mm 。

汽车变速箱的基本工作原理(图)

汽车变速箱的基本工作原理(图) 变速箱的基本工作原理 一、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现。比如,发动机最大功率出现在5500转。变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速箱应具有灵活的变速比。无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。 二、CVT 无级变速箱有着连续的变速比。其一直因为价格、尺寸及可靠性的关系而没有大量装备汽车。现在,改进的设计使得CVT的使用已比较普遍。 下图为国产AUDI 2.8 CVT 汽车变速箱的基本工作原理 汽车变速箱的基本工作原理 变速箱通过离合器与发动机相连,这样,变速箱的输入轴就可以和发动机达到同步转速 下为奔驰C级Sport Coupe 6速手动变速箱

汽车变速箱的基本工作原理 一个5档的变速箱提供5种不同的变速比,在输入轴和输出轴间产生转速差。见下表: 汽车变速箱的基本工作原理 三、简单的变速箱模型 为了更好的理解变速箱的工作原理,下面让我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的:

汽车变速箱的基本工作原理 输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。 轴和齿轮(红色)叫做中间轴。它们一起旋转。轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了。轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。车轮转动会带着花键轴一起转动。 齿轮(蓝色)在花键轴上自由转动。在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色)。 1档 挂进1档时,套筒就和右边的齿轮(蓝色)啮合。见下图:

仪表速比计算方法

一、车速里程表的结构及工作原理 机械式车速里程表 车速表主要由与主动轴固定在一起的U形永久磁铁、带有转轴与指针6的铝罩、罩壳、固定在车速里程表外壳上的刻度盘5等组成。主动轴由变速器或分动器传动蜗杆经软轴驱动。 不工作时,盘形弹簧4使指针6处于刻度盘的零位。当汽车行驶时,变速箱上蜗轮组件中的蜗杆带动里程表软轴旋转,再由软轴带动主动轴旋转,从而使主动轴上的永久磁铁1跟着旋转。由于蜗杆与软轴及车速里程表主动轴紧密连接在一起,它们的转速相同。永久磁铁的磁力线在铝罩上产生涡流,涡流产生的磁场与旋转的永久磁铁磁场相互作用产生转矩,使铝罩克服盘形弹簧的弹力向永久磁铁1旋转的方向旋转,直至与盘形弹簧弹力相平衡。车速越高,永久磁铁1旋转越快,转矩越大,使铝罩2带动指针6偏转的角度越大,车速的指示值越高。里程表由蜗轮蜗杆机构和数字轮组成。汽车行驶时,主动轴经3对蜗轮蜗杆驱动里程表最右边的第一数字轮,使第一数字轮上和数字显示1/10Km。从第一数字轮向左,每两个相邻的数字轮之间,又通过本身的内齿和进位数字轮传动齿轮,形成1:10的传动比。当第一数字轮转动一周,由9转到0时,由内传动齿拔动左侧第二个数字轮转动1/10圈,形成1Km数递增;当第二数字轮转动一周,由9转到0时,其左侧第三个数字轮转动1/10,以10Km数递增。其余数字轮由低位到高位的显示,计数方式均依次类推,即可显示汽车行驶里程数。 电子式车速里程表 车速表由车速传感器(安装在车轮上变速箱蜗轮组件的蜗杆上,有光电耦合式和磁电式)、微机处理系统和显示器组成。由传感器传来的光电脉冲或磁电脉冲信号,经仪表内部的微机处理后,可在显示屏上显示车速。里程表则根据车速以及累计运行时间,由微机处理计算并显示里程。 二、组合仪表速比的计算方法 速比的定义 对机械式或传感器安装在变速器上的蜗轮组件的车速表来说,所指示车速与变速器蜗杆的转速之比即为速比。例如,车速表上的读数为60Km/h之时, 变速器蜗杆的转速为36000r/h,则仪表速比为60:3600=1:600。也就是说,当车速表上的读数显示为1Km/h之时,变速箱蜗杆的转速必须为600 r/h。 求组合仪表的理论速比 理想状态下,即车速表上显示的读数与实测速度相等的情况下,所计算出来的速比称为理论速比, 其计算公式为K=1:[(k1/k2)×1000/(2πR)],K为理论速比,k1为后桥主减速比,k2为变速箱蜗轮组件的传动比,R为轮胎的滚动半径。以下举一个例子来说明如何计算组合仪表的理论速比: 某轿车相关参数为:后桥主减速比5.125,变速箱蜗轮组件的传动比(即蜗轮转速与蜗杆转速之间的比值)14/3,轮胎型号为165/70R13LT 8PR 90/88Q,查《汽车标准汇编第五卷转向车轮其它》中的《GB/T2978-1997 轿车轮胎系列》得轮胎滚动半径为273mm=0.273 m。K=1:[(k1/k2)×1000/(2πR)]=1:[(5.125/(14/3))×1000/(2×3.14×0.273)]=1:640.6 ,该速比即为所求的理论速比。 求组合仪表的实际速比 如果按照理论速比来设计组合仪表,车速表往往会出现速度超差的现象,导致实测速度V2大于车速表读数V1,这是安全法规所不允许的。根据《GB7258-20004 机动车安全运行技术条件》中的4.12条,车速表指示车速V1(单位:Km/h)与实测车速V2(单位:Km/h)之间应符合下列关系式:0 ≤V1-V2 ≤(V2/10)+4,由此公式可得符合条件的实测速度值如下表所示:

变速箱的基本工作原理(图)

变速箱的基本工作原理(图) 一、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现。比如,发动机最大功率出现在5500转。变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速箱应具有灵活的变速比。无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。 二、CVT 无级变速箱有着连续的变速比。其一直因为价格、尺寸及可*性的关系而没有大量装备汽车。现在,改进的设计使得CVT的使用已比较普遍。 此主题相关图片如下: 此主题相关图片如下:

变速箱通过离合器与发动机相连,这样,变速箱的输入轴就可以和发动机达到同步转速奔驰C级Sport Coupe 6速手动变速箱 一个5档的变速箱提供5种不同的变速比,在输入轴和输出轴间产生转速差。见下表: 此主题相关图片如下: 三、简单的变速箱模型为了更好的理解变速箱的工作原理,下面让我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的: 此主题相关图片如下: 输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。轴和齿轮(红色)叫做中间轴。它们一

起旋转。轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了。轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。车轮转动会带着花键轴一起转动。齿轮(蓝色)在花键轴上自由转动。在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色)。1档挂进1档时,套筒就和右边的齿轮(蓝色)啮合。见下图: 此主题相关图片如下: 如图所示,输入轴(绿色)带动中间轴,中间轴带动右边的齿轮(蓝色),齿轮通过套筒和花键轴相连,传递能量至驱动轴上。在这同时,左边的齿轮(蓝色)也在旋转,但由于没有和套筒啮合,所以它不对花键轴产生影响当套筒在两个齿轮中间时(第一张图所示),变速箱在空挡位置。两个齿轮都在花键轴上自由转动,速度是由中间轴上的齿轮和齿轮(蓝色)间的变速比决定的。 四、真正的变速箱 如今,5档手动变速箱应用已经很普遍了,以下是其模型。 此主题相关图片如下:

相关文档
相关文档 最新文档