文档库 最新最全的文档下载
当前位置:文档库 › 初中数学常见解题模型及思路(中考数学难题破解自有定理)

初中数学常见解题模型及思路(中考数学难题破解自有定理)

初中数学常见解题模型及思路(中考数学难题破解自有定理)
初中数学常见解题模型及思路(中考数学难题破解自有定理)

初中数学压轴题常见解题模型及套路(自有定理)

A . 代数篇:

1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。

设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S=

108

999

余例仿此—— 2.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y ;x-y ;xy ;

22x y + 中,知二求二。

222222()2()2x y x y x y x y x y x y

+=++?+=

+-

2222()2()4x y x y x y x y x y

-=+-=+- 加减配合,灵活变型。

3.特殊公式

22

1

1

2x x x x ±=+±2

()的变型几应用。 4.立方差公式:3322a b a b a ab b ±=±+m ()()

5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+222+2017的和。三种方法举例:略

6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。

例.求1+2+4+8+16+32+2222n 令S=1+2+4+8+16+32+222+2n (1)

两边同乘2得: 2S=2+4+8+32+64+222+2n +12n + (2) (2)-(1)得:2S-S=12n +- 1 从而求得S 。 7.

11n m m n --=mn 的灵活应用:如:1111

62323

==-?等。 8.用二次函数的待定系数法求数列(图列)的通项公式f (n )。 9.韦达定理求关于两根的代数式值的套路:

⑴.对称式:变和积。22221111

x y x y x y

+++22;;;xy +x y 等(x 、y 为一元二次方程方程的两

根)

⑵.非对称式:根的定义—降次—变和积(一代二韦)。 10. 三大非负数:三大永正数;

11.常用最值式:2

x y ±±()正数 等(非负数+正数)

。 12.换元大法。

13.自圆其说加减法与两肋插刀法。代数式或函数变型(如配方)只能加一个数,同时

减去同一个数;如果是方程则只需要两边同时加上或者减去同一个数即可。 14.拆项法;配方法。原理同上。 15.十字相乘法。

16.统计概率:两查(抽样;普查);三事(必然;不可能;随机);四图(折线;

条形;扇形;直方);三数;三差;两频(频数、频率)一率(概率)等。 17.一元二次方程应用题:每每问题套路;利率问题套路;握手、送花问题套路。 18. |a|=|b|,则a=±b 在动点问题中的巧妙应用(避免烦琐的因为点的相对位置变化

起的符号变化问题(平面直角坐标系中动态问题之“坐距互变”时巧施绝对值的代数解法)。

19.四个角的正切值:22.5度的正切值为: 根号2-1 67.5度的正切值为根号2+1 75度的正切值为2+根号3 15度的正切值为2-根号3

B . 几何篇:

1.两套:等线套;等角套。

①等角套(如图所示):条件 : ∠AOB =∠COD 结论:∠AOC =∠BOD 说明:

O

A

C

D

O

A

C

B

D

②可以视做由旋转产生的“共点等角”

等线套(如图所示):条件:AB=CD 结论:AC=BD 说明:可以看做由平移产生。

D

A

B

C

D

2.两条平行线夹一角。一角=两旁角的和。 条件:AB ∥CD 结论:∠P =∠AEP +∠PFC

A

B

C D

E

P

F

3.平行线夹等(同)底三角形:面积相等。同底三角形面积相等,则过顶点的直线与

底所在直线平行。

C

m

A n

D

B

若:m ∥n 则ABC ABD S S =V V 反之:若 ABC ABD S S =V V 则:m ∥n (反比例模型中的

“垂平”模型的证明用之)

4.已知三角形两边定一边的范围。“大于两边的差,小于两边的和”。 5.三角形的角分线角:

⑴两内角平分线交角:∠I=902A

∠+

⑵一内一外角分线交角:∠I=2A

⑶两外平分线交角:∠I=902

A

∠-

5.三角形的角平分线:

两边的比=分线段(第三边)的对应比。

A

B

C

I

A

B

C

I

I

A

B

C

D

条件:AD 为角平分线 结论:

A B B D

A C D C

= 6.三角形中线性质定理;三中线交点分中线为1

23

3

和两部分。 条件:AD 、BE 、CF 为中线

结论:AK=2KD=23AD BK=2KE=23

BE 。

CK=2KF=2

3

CF

7.大名鼎鼎的等面积法:底与高的积相等。三高造相似。三高造辅助圆。 条件:AD 、BE 、CF 为三角形的高—— 结论:AD 2BC=BE 2AC=CF 2AB △ADB ∽△CFB 等。

B 、

C 、E 、F 、四点共圆等。

8.高与角分线的夹角等于另外两角差的一半。(两中线垂直的三角形叫做:中垂三角形—— 2225a b c +=其中a 、b 为中线所在的边) ①条件:AD 、AE 分别为三角形的角平分线和高, (AB ≠AC )。

结论:∠DAE=

2

C B

∠-∠ ②条件:BE 、CF 为三角形的中线,且BE ⊥CF

结论:2225a b c += 22

2

5A C B C A B

+= ③如图:∠D=∠A+∠B+∠C A

B

C

D

E

F

k

A

B

C

D

F

E A

C

B

D E

C

A B

E

F

A

B

C

D

9.三角形一分为二面积的比及其推广到蝴蝶面积。 ①在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,

那么 ::ABO ACO S S BD DC ??=.

②任意四边形中的比例关系(“蝶形定理”):

1243::S S S S =或者1324S S S S ?=? ()()1243::AO OC S S S S =++

10.等腰三角形三线合一的逆定理:两线合一亦等腰;;一垂两等变等腰;一垂三等变

等直。等腰三角形存在性常用公式:底角的余弦=

底边的一半

■重要推论:已知三角形中一个角的余弦:这个角的一边3这个角的余弦=另一边

的一半,此三角形为等腰三角形(一边为腰,另一边为底)。

如图:cos 2

BC

AB B ABC ?=

?V 为等腰三角形(BC 为底) ■“两线一圆模型”:已知线段AB (两定点A 、B ), 在平面内找一点C ,使三角形ABC 为等腰三角形。

这样的点C 的集合在以A 、B 为圆心,AB 为半径的圆和AB 的垂直平分线上(与

A 、

B 共线的点除外) (等腰三角形存在性问题)

11.直角三角形斜高的求法。斜高=

两直角边的乘积

斜边

■直角三角形存在性之“两线一圆模型”: 已知线段AB (两定点A 、B ), 在平面内找一点C ,使三角形ABC 为等腰三角形。

O

F

E D

C

B

A

S 4

S 3

S 2

S 1O D

C

B

A A

B

C

A

B

满足条件的C 的集合在:过A 、B 做线段AB 的垂线及以AB 为直径的圆上的除

A 、

B 两点的任意点都可与A 、B 组成直角三角形。(所谓的“两线一圆”)。

12

.等边三角形面积的求法。2

4

S a =边长为a 的等边三角形 13.求面积的套路:

⑴.复杂图形:一拆用加;二放用减。

⑵.三角形:①面积公式;②两边与夹角正弦的

积的一半(遇钝变补);③铅垂线法(宽高法)

④等边三角形的面积。⑤利用:相似比的平方 =面积比(借助面积可求的三角形的面积和 相似比求解)。⑥让出去:化归。

3)平行四边形面积=两邻边与其夹角的正弦的乘积;菱形的面积=边长的平方与一个

内角的正弦的乘积;梯形的面积=两对角线与其夹角的正弦的乘积的一半。 (4).共(有一个角相等)角三角形:面积的比等于等角两边乘积的比(鸟头定理)。

两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.

如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =??△△

E

D

A

E

D

A

A

B

14.三大蝴蝶: ⑴一线两等边。

条件:△ABC 、△ECD 为等边三角形,B 、C 、D 共线 则有:△BCE ≌△ACD

△DCG ≌△ECF △BCF ≌△ACG

旋转60°形成的全等三角形!!! ∴△CGF 也是等边三角形。 还有:AB ∥CE DE ∥AC 等结论成立!

∠AKB=60° CK 平分∠BKD ∠BKC=60°=∠DKC K 、F 、C 、G 四点共圆。 ⑵一个三角形两等边(费马点:见课件)。 条件:以△ABC 的两边AB 、AC 为边向外作

等边三角形ADB 和等边三角形ACE 则有:△ADC ≌△ABE (SAS )∴CD=BE

∠DGB=60°∠DGE=120° 又ADC ABE S S V 分别作高AM 、AN ,

则AM=AN (面积相等,底等,则高等), ∴AG 是∠DGE 的平分线! ∠DGA=∠EGA=60°

⑶一个三角形两个正方形。 条件:四边形GBAF 和正方形ACDE

结论:FC=BE FC ⊥BE AH 是∠FHE 的

角平分线(∠FHA=∠EHA=45°)

A 、F 、

B 、F 四点共圆。 A

B

C D

E

G

M

N

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

K

15.平行四边形的面积关系。平行四边形的对角顶点到过对称中心的任意一条直线(一

般找平行于两轴的直线)的距离相等。 ①1

2

AED ABCD S S =

V 平行四边形 ②平行四边形的对角顶点到过对称中心的任意一条直线(一般找平行于两轴的直线)的距离相等。

16.平行四边形对角线平方的和等于四边平方的和:222222AC BD AB BC CD DA +=+++ 17.矩形一边上任意一等到对角线距离的和 =

?长宽

对角线

18.矩形内任意一点到对角顶点距离的平方和相等。 如图:矩形ABCD 内任意一点P ,则有:

2222PA PC PB PD +=+

19.矩形精典对折图。

如图:矩形ABCD 沿对角线,BD 对折,C 点到了 E 点,则一对全等(小直角三角形)一对相似,两 个等腰。例AE :BD=3:5则AB :BC=4:8=1:2 这是因为相似比为3:5,所以EF :FB=3:5, 因此ED=4(勾股)而AD=DF+FA=5+3=8!!

20.正方形垂等图。垂直?相等 横平竖直;改斜归正的辅助线方法。

A

B

C

D

O

E

B

C

D

A

B

C

D

F

A

B

C

D

E F

G

M

N

21.正方形三兄弟成面积图 = 中正方形之面积。 三个正方形,如图摆放:AN 正好过E 点。 技巧:AC ∥EC ∥FN (对角线平行:此题题眼) △ AGN 的面积=△AGE 的面积+△EGN 的面积 △AGE 的面积=△ECG 的面积

△EGN 的面积=△EGF 的面积 ∴结论成立! 22.两正方形垂直相等图。

如图,ABCD 、CGFE 是正方形: ① △DCG ≌CBCE ; ②BE ⊥DG 。

③BE=GD ④A 、B 、M 、D 四点共圆(双歪八)

∠ADB =∠AMB=∠AMD=45° △ADK ∽△AMD (斜射影)2

AD AK AM =?

③若2

DM ME MA =? 则:BD=BG △BDG 为等腰三角形。(∠GDC=∠DAM=∠DBM=∠MBG ) 此时:MA=MB

④若MA=ME ,也能推出③中的结论。

23,正方形内含半角(其中产生的两个双八字相似和

等腰直角三角形)——邻边相等的圆内接四边形

内含半角图。

条件:正方形ABCD 中,∠EBF=45° 结论:①EF=AE+FC

②△DEF 的周长=正方形周长的一半。 ③∠DCA=∠EBF=45°∴B 、C 、F 、H

四点共圆(双八字)!!∠BHF=90° ∴△BHF 为等腰直角三角形!!! ④同上:∠DAC=∠EBF=45°B 、K 、E 、A 四点共圆(双八字), ∠BKE=90°△BKE 为等腰直角三角形!

A

B

C

D

E

F

G

H

K

A

B

C

D E

F

G

M

M

条件:三个正方形,A

B

C D E

F

G

M

N

H

AN 恰好过E 点结论:三角形AGN 的面积=正方形

ECGF 的面积

24.正方形内含半角模型的推广及等腰直角三角形内含半角图。

①正方形内含45°模型推广到圆内接四边形(对角互补的四边形),有一组邻边相

等,且相等的邻边的夹角内含半角。 条件:四边形ABCD 中,BA=BC ∠ABC +∠D =90°∠EBF=12

ABC ∠

结论:EF=AE+CF (其余根据已推导)

②等腰直角三角形内含45°

条件:等腰直角三角形ABC ,∠FBE=45°

222E F A F

C E

=+ ③其他特殊的等腰三角形“顶角”内含半角图。(根据上述模型类比解决:用三角比找到相关边的关系)。

25.正方形互补型(互补型): ①对称中心有直角:OE=OF ②直角顶点在对角线上:PB=PQ (图①图②两种情况都成立) C

D

B

C

A

E

F

F

A

B

C

E

F

③ 小结

26.正方形123成135度。

点E 是正方形ABCD 内的一点, 连接AE ,BE ,CE ,将△ABE

绕点B 顺时针旋转90°到△CBE′的位置.

若AE =1,BE =2,CE =3,则∠BE′C =__ 135__度.

27.相似模型:

⑴.正A 、歪A ;正八、歪八;正射影、歪射影;正K 、歪K (一线三等角)。 射影图中:两直角边平方的比等于其在斜边上的射影的比!(细讲:自画图) ⑵.双八字(共圆图之一)。

条件:∠BAC =∠BDC (同弦对等角)

结论:B 、C 、D 、A 四点共圆 三角形①∽三角形②

三角形③∽三角形④ (相交弦定理的逆定理:同样可得前面的结论) 其中AB 、BC 、CD 、DA 四条弦所对的四对圆周角相等。

A

B

C D

①②③

⑶.线束定理:两平行线被过一点的

三线所截得的四条“横线”

对应成比例 —— 条件:直线 m ∥n 结论:

AB BC

DE EF

等比例 ⑷.平行于一边的线段截得的图形(三角形、四边形)面积之间的关系。 条件:DE ∥BC

结论:图形中“对应”线段的比,相关面积

的比,知一求它!烂熟于心!

⑸.三角形内叉叉型:知两比求其它比。

BE :EC 、CD :DA 、 AF :FE 、 BF :FD

知二求二(过已知比的节点做平行线)

⑹.四线六点型:过其中的三条线组成的被标记的一个三角形的一个顶点,做不过这个

顶点的直线的平行线(有两条),问题迎刃而解。

技巧:过A 、B 、C 中一点,做不过这点的直线

的平行线,问题就能得到解决!如过C 点可做 AB 或者DE 的平行线!善于初纷繁复杂的图形 中找到这样的“模型”是关键。

O

A

B C

D

E

F

m

n

A

B

C

D

E O

A

B

D

E

F

A

B

C

D

E

F

⑺.歪A :下面的四边形为圆内接四边形(歪八):歪A 生歪八,歪八补型得歪A 。

条件:∠①=∠②

结论:下面的四边形为圆内接四边形(歪八):

歪A 生歪八,歪八补型得歪A (对角互补的四边形 补型〖延长BD 、CE 相交于点A 〗可得歪A )。

28.解直角三角形;解斜三角形(双勾股)。

⑴.直角三角形:内高型;外高型;双高型(梯形);单高型(直角梯形)。

口诀:角优先、多求边;造模型;设表列。

⑵.任意三角形:知三求三(三边;两角一边;两边及夹角)——尽量不破坏已知的边

和角(内高;外高)。

29.解三角形之:角优先,套模型:内高型;外高型;双高型;单高型(直角梯形)

(附加模型:坡度;坡角;斜率;仰角;府角;方向角——图略)

A

B

C

D

E

内高外高

单高双高

30.手拉手模型:

31.三平三交造平四(两对对角顶点横、纵坐标的和分别相等)。万能公式 —— 条件:平行四边形ABCD

公式:A C B D A

C B

D x x x x y y y y +=+??+=+?

用中点或平移动两种思路都可推理 —

32.共圆图:

⑴.共边两等角(直角) —— 见27②“双八字”;“相交弦定理”的逆定理。 ⑵.对角互补(对角有两直角);外角等于内对角。图略。等腰梯形四顶点永远共圆。 33.垂径图;弦切图;双切图;切割图;双割图;相交弦定理(对顶三角形相似);平

行弦;圆内共点等弦所成角被过这点的直径(半径)平分。

A A A (x ,y )

B B B (x ,y )

C C C (x ,y )

D D D (x ,y )

垂径图

双切图

平行弦图

弦切图+切割图双割图

共点等弦图

相交弦+对顶三角形相似

A

B

C

D

E

F

G

34.等腰直角三角形斜边上的中点为顶点的直角构造全等。

如上图所示——

条件:AB=AC ∠BAC=90°,D 为BC 之中点,∠EDF=90°

结论:△ADF ≌△BDE 12

ABC AEDF S S =V 四边形 △EDF 为等腰直角三角形 E 、D 、F 、A 四点共圆 22DE DF DG DA ==? AE+AF=AB=AC AD+AE+AF=12

ABC V 的周长

35.相似+公共边比例中项(平方:共边相似+勾股定理)。

37.方程思想设表列;几何勿忘角优先;以角定边找关系;比例已知用负元。 38.两边分别平行或相等的两个角相等或互补。

39.中点四边形口诀:对垂为矩;对等为菱。菱矩互变;任四为平。平正自变。 40.正A 面积大比法(知一比求全比)—— 见27之④

42.三角形内十字叉:知二比求全比(六个比知二求四) ——见27之⑤

43.捆绑旋转大法;矩形大法(横平竖直大法);改斜归正法(过直角三角形的各顶点)。 44.平行四边形之三定一动破解大法(对角顶点横、纵坐标之和不变)。 45.平行四边形之两定两动破解决大法(利用各种全等) 注意:44、45已经合并为一种方法(方程法) 46.角分线、等腰、平行知二推一。

47.用数轴法确定多动点的临界点。找拐点—定对应参数值—分段—确定分类范围。

48.等腰直角三角形的面积=2211

42

=斜边直角边

49.动点问题的解题套路:

⑴.相似三角形的存在性:调包计。

⑵.等腰三角形的存在性(两点间距离公式;余弦大法;几何法)

⑶.直角三角形存在性:射逆;勾逆;斜中逆;一线三直角之逆;直线垂直交轨大法。

⑷.面积的函数关系及最值:正弦大法;铅垂线法;拆放法;相似比转化法。

⑸.将军饮马问题:线段和最小、差最大;动点变定线段怎么办;两路一村;两路两村

⑹.平行四边形的存在性:三定一动(相对顶点横、纵坐标和相等);两动两定(按照

定点之间线段分别做对角线及边分类:平行四边形相关的全等性质求坐标)。

最终用一个公式全部搞定。

⑺.其它问题:化归大法。

⑻.几何法(思路难,计算简);代数法(思路简,计算难);代几混合法(取长补段更

优越)

50.圆内接四边形(对角互补)的补形大法:补形构造大A型(歪A)全等三角形。

(特别注意:双勾股的用法)。

51.被“误解”和“冤枉”的SSA:两边和一边的对角相等,且第三边所对的角不互补,则这两个三角形全等。

C.函数篇

51.平面内两点间的距离:

⑴横平(平行于x轴的直线上两点间的距离)=|横坐标之差| = 右-左

⑵竖直(平行于y轴的直线上两点间的距离)=|纵坐标之差| = 上-下

⑶平面内任意两点间的距离:开方式(求距离);平方式(列方程)。

⑷横纵坐标的绝对值:点到两轴的距离。

52.中点坐标公式:横和取半;纵和取半。

53.函数图象平移规律:上加下减;左加有减。

54.交轨大法:交点坐标?方程组的解 (代数法出发点)。

55.代数(函数)

??????→设横表纵,坐距互变

几何(图形) 56.函数与图象的对应关系:两数对一点;一点对两距。一式对一线,一线对一式。 57.已知一点和一条直线,求这点关于这条直线的对称点的坐标(垂直定K ,点K

定关系式,交轨大法求垂足,中点坐标公式得结论。

58.求点到直线的距离:垂直定K ,点K 定关系式,交轨大法求垂足,两点间距离

公式得结论。

59.一次函数y=kx+b (k ≠0):

⑴.三点:与两轴的两个交点;图象上的动点(m ,km+b )

⑵.一K 三比一角:|k|=坡度=坡角的正切(以k 定比、定角;以比、以角定k );

k 的特殊求法:竖:横;

21

21

y y x x --;横竖大法秒杀关系式;根据一次函数的关系式确定一个三边的比确定的基本三角形。

1;k =±.(45 — 135;60 — 120;30 — 150)

。 ⑶.两直线平行?k 相等;两直线垂直?k 的 积为-1。

⑷.两条直线(一次颔首)关于x 轴(含平行于x 轴的直线对称)或y 轴((含平行

于y 轴的直线对称),则:其斜率的和为零(互为相反数)。 ⑷最值的确定:关系式+图象+自变量取值范围。 60.二次函数:2(0)y ax bx c a =++≠解题模型及套路

⑴.二次函数的信息题的破解套路:系数的意义+不等式+等式+判别式+根与系数的

关系+最值的意义+123特殊值+三特值定关系式法。 ⑵.二次函数比大小:远近法(对称轴大法)。

⑶.一式三型;一轴三法;五定一动:五个死点、一个活点。

⑷.针对活点:设横表纵,一线冲天,横平竖直,坐距互变——改斜归正也。

⑸.解题套路(四列):

列点——求定点,设动点,找关系。

列线——改斜归正,以点定线定式。

列角——以式(直线:一次函数的关系式中的K确定对应的角及其基本三角形中三边的比和三角比)。

列式——方程(交轨大法)求解;函数关系式(对应的性质)求解。

⑺.三大函数最值的求法。其中二次函数分三种情况。

61.轨迹的思想:确定动点运动轨迹的形状:设动点的坐标——找二者之间的关系——列出二元一次方程——化为函数——一式定型。

62.解提策略篇:确定的,一定是可解的!抓住不变量和特殊点(特殊性+特事特办)!

找到破题点(题眼)!化归法;交轨大法;矩形大法;横平竖直;改斜归正!做数学题就蛇玩条件的:把题中的每个条件充分利用一遍基本就有思路了!63.三交法确定函数关系式。若函数图象与两轴有三个交点,且交点坐标已知,则用韦达定理列方程求a、b、c较容易。

64.应用举例——共点等角(等角套);等线套的应用:

16.如图,已知正方形ABCD,点E是BC上一点,以AE为边作正方形AEFG.

(1)连接GD,求证:△ADG≌△ABE;

(2)连接FC,求证:∠FCN=45°;

(3)请问在AB边上是否存在一点Q,使得四边形DQEF是平行四边形?若存在,请证明;若不存在,请说明理由.

(2)过F作BN的垂线,设垂足为H,∵∠BAE+∠AEB=90°,∠FEH+∠

∴∠BAE=∠HEF,

中考数学压轴题破解策略专题9《费马点》

专题9《费马点》 破解策略 费马点是指平面内到三角形三个顶点距离之和最小的点,这个最小的距离叫做费马距离. 若三角形的内角均小于120°,那么三角形的费马点与各顶点的连线三等分费马点所在的周角;若三角形内有一个内角大于等于120°,则此钝角的顶点就是到三个顶点距离之和最小的点. 1.若三角形有一个内角大于等于120°,则此钝角的顶点即为该三角形的费马点 如图在△ABC中,∠BAC≥120°,求证:点A为△ABC的费马点证明: 如图,在△ABC内有一点P延长BA至C,使得AC=AC,作∠CAP=∠CAP,并且使得AP =AP,连结PP 则△APC≌△APC,PC=PC 因为∠BAC≥120° 所以∠PAP=∠CAC≤60 所以在等腰△PAP中,AP≥PP 所以PA+PB+PC≥PP+PB+PC>BC=AB+AC 所以点A为△ABC的费马点 2.若三角形的内角均小于120°,则以三角形的任意两边向外作等边三角形,两个等边三角形外接圆在三角形内的交点即为该三角形的费马点.

如图,在△ABC中三个内角均小于120°,分别以AB、AC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点为O,求证:点O为△ABC的费马点 证明:在△ABC内部任意取一点O,;连接OA、OB、OC 将△AOC绕着点A逆时针旋转60°,得到△AO′D连接OO′则O′D=OC 所以△AOO′为等边三角形,OO′=AO 所以OA+OC+OB=OO′+OB+O′D 则当点B、O、O′、D四点共线时,OA+OB+OC最小 此时ABAC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点即为点O 如图,在△ABC中,若∠BAC、∠ABC、∠ACB均小于120°,O为费马点,则有∠AOB=∠BOC =∠COA=120°,所以三角形的费马点也叫三角形的等角中心

中考数学经典难题

1、已知:如图,O 是半圆的圆心,C、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD=∠PDA=150. 如图,已知四边形ABCD、A1B1C1D1都是正方形, CC1、DD1的中点. 求证:四边形A2B2C2D2 是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD=BC,M、N 分别是AB、CD的中点,AD、BC 的延长线交MN 于E、F.求证:∠DEN=∠F. 求证:△PBC 是正三角形.(初二) 3、 B C A2、 M

1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于 M . 1)求证:AH =2OM ; 2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及 D 、E ,直线 EB 及 CD 分别交 MN 于 P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题: 设 MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC 、 DE ,设 CD 、 EB 分别交 MN 于 P 、Q . 求证:AP =AQ .(初二) 如图,分别以△ABC 的 AC 和 BC 为一边,在△ABC 的外侧作正方形 ACDE 和正方形 CBFG ,点P 是 EF 的中点. 4、 G N

求证:点P 到边AB的距离等于AB的一半. F

1、如图,四边形ABCD 为正方形,DE∥AC,AE=AC,AE与CD相交于F. 求证:CE=CF.(初二) 3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE. 求证:PA=PF.(初二) 4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于 B、D.求证:AB=DC,BC=AD.(初三)E 2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证: AE=AF.(初二)

中考数学经典难题解答集锦

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 连接BC1和AB1分别找其中点F,E.连接C2F 与A2E 并延长相交于Q 点, 连接EB2并延长交C2Q 于H 点,连接FB2并延长交A2Q 于G 点, 由A2E= A1B1= B1C1= FB2 ,EB2= AB= BC=FC1 ,又∠GFQ+∠Q=900和 ∠GEB2+∠Q=900,所以∠GEB2=∠GFQ 又∠B2FC2=∠A2EB2 , 可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 , 又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 , 从而可得∠A2B2 C2=900 , 同理可得其他边垂直且相等, 从而得出四边形A2B2C2D2是正方形。 A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1

4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 求∠DEN ,不是吧,这求不出来的吧,是不是求证:∠DEN =∠MFC . 连接AC,取AC 中点G,连接MG,NG ∵N,G 是CD,AC 的中点 ∴GN ‖AD,GN=0.5DA ∴∠GNM=∠DEN 同理,∠NMG=∠MFC,MG=0.5BC ∵AD=BC ∴MG=NG ∴∠GMN=∠GNM ∴∠DEN =∠MFC 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: B

中考数学经典难题

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 . 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

中考数学压轴题破解策略专题中点模型

专题19《中点模型》 破解策略 1.倍长中线 在△ABC中.M为BC边的中点. 图1 图2 (1)如图1,连结AM并延长至点F,使得ME=AM.连结CE.则△ABM≌△ECM. (2)如图2,点D在AB边上,连结DM并延长至点E.使得MF=DM.连结CE,则△BDM ≌△CEM, 遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法. 2.构造中位线 在△ABC中.D为AB边的中点, 图1 图2 (1)如图1,取AC边的中点E,连结DE.则DE∥BC,且DF=1 2 B C. (2)如图2.延长BC至点F.使得CF=B C.连结CD,AF.则DC∥AF,且DC=1 2 AE. 三角形的中位线从位置关系和数量关系两方面将将图形中分散的线段关系集中起来.通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线, 3.等腰三角形“三线合一” 如图,在△ABC中,若AB=A C.通常取底边BC的中点D.则AD⊥BC,且AD平分∠BA C.事实上,在△ABC中:①AB=AC;②AD平分∠BAC;③BD=CD,④AD⊥B C. 对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.4.直角三角形斜边中线 如图,在△ABC看,∠ABC=900,取AC的中点D,连结BD,则有BD=AD=CD=1 2 AC. 反过来,在△ABC中,点D在AC边上,若BD=AD=CD=1 2 AC,则有∠ABC=900

例题讲解 例1 如图,在四边形ABCD 中,E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连结AG 、BG 、CG 且∠AGD =∠BGC ,若AD 、BC 所在直线互相垂直,求AD EF 的值 解 由题意可得△AGB 和△DGC 为共顶点等顶角的两个等腰三角形, 所以△AGD ≌△BGC ,△AGD ∽△EGF . 方法一:如图1,连结CE 并延长到H ,使EH =EC ,连EH 、AH ,则 AH ∥BC ,AH =BC ,而AD =BC ,AD ⊥BC 所以AD =AH ,AD ⊥AH ,连结DH ,则△ADH 为等腰直角三角形,又因为E 、F 分别为CH 、CD 的中点,所以=12 AD AD EF DH = 方法二:如图2,连结BD 并取中点H ,连结EH ,FH .则EH = 12AD ,且EH ∥AD ,FH =12BC , 而AD =BC ,AD ⊥BC ,所以△EHF 为等腰直角三角形,所以2=AD EH EF EF = 例2 如图,在△ABC 中,BC =22,BD ⊥AC 于点D ,CE ⊥AB 于E ,F 、G 分别是BC 、DE 的中点,若ED =10,求FG 的长. 解:连结EF 、DF ,由题意可得EF 、DF 分别为RT △BEC ,RT △BDC 斜边的中线,所以DF =EF = 12 BC =11,而G 为DE 的中点,所以DG =EG =5,FG ⊥DE ,所以RT △FGD 中,FG = 例3 已知:在RT △ACB 和RT △AEF 中,∠ACB =∠AEF =900 ,若P 是BF 的中点,连结PC 、PE (1)如图1,若点E 、F 分别落在边AB 、AC 上,请直接写出此时PC 与PE 的数量关系. (2)如图2,把图1中的△AEF 绕着点A 顺时针旋转,当点E 落在边CA 的延长线上时,上述结论是否成立若成立,请给予证明;若不成立,请说明理由. (3)如图3,若点F 落在边AB 上,则上述结论是否仍然成立若成立,请给予证明;若不成立,请说明理由. 解(1)易得PC =PE =12 BF ,即PC 与PE 相等. (2)结论成立.理由如下:

初中三年数学常用公式定理大全

初中数学定理、公式汇编 第一篇数与代数 第一节数与式 一、实数 1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,等;无限不环循小数叫做无理数. 如:π,,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数. 2.数轴:规定了原点、正方向和单位长度的直线叫数轴。实数 和数轴上的点一一对应。 3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值, 记作∣a∣。正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。如:丨-_丨=;丨3.14-π丨=π- 3.1 4. 4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。 a的相反数是-a,0的相反数是0。 5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末 一个数字止,所有的数字,都叫做这个近似数的有效数字. 如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整 数),这种记数法叫做科学记数法. 如:407000=4.07× 105,0.000043=4.3×10-5. 7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的 反而小。

8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果 叫幂。 9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这 个数a就叫做x的平方根(也叫做二次方根式)。一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身; 负数没有平方根. 10.开平方:求一个数a的平方根的运算,叫做开平方. 11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0. 13.开立方:求一个数a的立方根的运算叫做开立方. 14.平方根易错点:(1)平方根与算术平方根不分,如 64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)4的平方根是士2,误认为4平方根为士 2,知道4=2. 15.二次根式: (1)定义:形如a(a≥0)的式子叫做二次根式. 16.二次根式的化简: 17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式. 18.同类二次根式:几个二次根式化成最简二次根式以后,如果被

中考数学几何经典难题

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

(完整版)中考数学压轴题破解策略专题18《弦图模型》

专题18《弦图模型》 破解策略 1.内弦图 如图,在正方形ABCD中,BF⊥CG,CG⊥DH,DH⊥AE,AE⊥BF,则△ABE≌△BCF≌△CDG≌△DAH.证明因为∠ABC=∠BFC=90° 所以∠ABE+∠FBC=∠FBC+∠FCB-90°. 所以∠ABE=∠FC B. 又因为AB=B C.所以△ABE≌△BCF, 同理可得△ABE≌△BCF≌△CDG≌△DAH. D C 2.外弦圈 如图,在正方形ABCD中,点M,N,P,Q在正方形ABCD边上,且 四边形MUPQ为正方形,则△QBM≌△MCN≌△NDP≌△PAQ. 证明因为∠B=∠QMN=∠C=90°, 所以∠BQM+∠QMB=∠QMB+∠NMC=90°, 所以∠BQM=∠NM C. 又因为QM=MN,所以△QBM≌△MCN. 同理可得△QHM≌△MCN≌△NDP≌△PAQ. N Q D A 3.括展 (1)如图,在Rt△ABH中.∠ABH=90°,BE⊥AH于点E.所以 △A BE≌△BHE≌△AH B. (2)如图,在Rt △QBM和Rt△BLK中,QB=BL,QM⊥BK,所以 △QBM≌△BLK.

证明因为∠BLK=90°,QM⊥BK, 所以∠KBL+∠QMB=∠KBI十∠K=90° 所以∠QMB=∠K, 又因为QB=BL. 所以△QBM≌△BLK. 例题讲解 例1四边形ABCD是边长为4的正方形,点E在边AD所在的直线上,连结CE,以CE 为边,作正方形CEFG(点D,F在直线CE的同侧),连结BF.当点E在线段AD上时,AE =1,求BF的长. G 解如图,过点F作FH⊥AD交AD的延长线于点H, 延长FH交BC的延长线于点K. 因为四边形ABCD和四边形CEFG是正方形, 根据“弦图模型”可得△ECD≌△FEH,所以FH=ED=AD-AE=3,EH=CD=4.因为CDHK为矩形,所以HK=CD=4,CK=DH=EH-ED=1. 所以FK=FH十HK=7,BK=BC+CK=. 5. 所以BF

(完整版)初中数学常用公式和定理大全

初中数学常用公式定理 1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数. 2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14. 3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5. 5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+ b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab. 6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n. ⑥a-n=1 n a ,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9, (-3)-1=-,5-2==,()-2=()2=,(-3.14)o=1,(-)0=1. 7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如: ①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念) 8、一元二次方程:对于方程:ax2+bx+c=0: ①求根公式是x= 24 b b ac -±- ,其中△=b2-4ac叫做根的判别式. 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根. ②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2). ③以a和b为根的一元二次方程是x2-(a+b)x+ab=0. 9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点. 10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反. 11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体

最新中考数学经典难题

3eud 教育网 https://www.wendangku.net/doc/fa6068702.html, 百万教学资源,完全免费,无须注册,天天更新! 13eud 教育网 https://www.wendangku.net/doc/fa6068702.html, 教学资源集散地。可能是最大的免费 教育资源网!经典难题(一) 1 2 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,3 EG ⊥CO . 4 求证:CD =GF .(初二) 5 6 7 8 9 10 11 12 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 13 求证:△PBC 是正三角形.(初二) 14 15 16 17 18 19 20 21 22 23 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是24 AA 1、BB 1、CC 1、DD 1的中点. 25 求证:四边形A 2B 2C 2D 2是正方形.(初二) 26

23eud 教育网 https://www.wendangku.net/doc/fa6068702.html, 教学资源集散地。可能是最大的免费 教育资源网! 28 29 30 31 32 33 34 4、已知:如图,在四边形ABCD 中,AD CD 35 的中点,AD 、BC 的延长线交 MN 于E 、F . 36 求证:∠DEN =∠F . 37 38 39 40 41 42 43 44 经典难题(二) 45 46 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于47 M . 48 (1)求证:AH =2OM ; 49 (2)若∠BAC =600,求证:AH =AO .(初二) 50 51 52 53 54 55

初中数学(中考数学)常见解题模型及思路(初中数学自有定理)

初中数学压轴题常见解题模型及套路(自有定理) A . 代数篇: 1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。 设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S= 108 999 余例仿此—— 2.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y ;x-y ;xy ; 22x y + 中,知二求二。 222222()2()2x y x y x y x y x y x y +=++?+= +- 2222()2()4x y x y x y x y x y -=+-=+- 加减配合,灵活变型。 3.特殊公式 22 1 1 2x x x x ±=+±2 ()的变型几应用。 4.立方差公式:3322a b a b a ab b ±=±+m ()() 5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+222+2017的和。三种方法举例:略 6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。 例.求1+2+4+8+16+32+2222n 令S=1+2+4+8+16+32+222+2n (1) 两边同乘2得: 2S=2+4+8+32+64+222+2n +12n + (2) (2)-(1)得:2S-S=12n +- 1 从而求得S 。 7. 11n m m n --=mn 的灵活应用:如:1111 62323 ==-?等。 8.用二次函数的待定系数法求数列(图列)的通项公式f (n )。 9.韦达定理求关于两根的代数式值的套路:

初中数学几何公式大全

初中数学几何公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 错角相等,两直线平行 11 同旁角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,错角相等 14 两直线平行,同旁角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形角和定理三角形三个角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

初中数学解题模型专题讲解30---矩形大法

初中数学解题模型专题讲解 初中数学解题模型专题讲解 30 矩形大法 专题30 矩形大法 矩形大法 主要从三个方面和大家交流: 一:“矩形大法”的提出背景 二:“矩形大法”的基本构造 三:“矩形大法”的实例应用 一、矩形大法”的提出背景 问题:我们如何刻画一个角大小呢? 是的,角的大小有两种刻画方法:一种是传统的、人人皆知的度数刻画法;另一种是常被我们忽略的边长刻画法(即三角函数值)。 如果两个角的大小是用度数体现的,那么这两个角的和与差的度数能够非常容易地计算出来。 但如果两个角的大小是采用边长(即三角函数值)刻画的,那么两个角的和或差的大小是多少呢? 自然,这两个角和与差的大小也只能采用三角函数值刻画。 也许学习数学的人第一反应是马上想到高中的两角和与差的三角公式。 但现在讨论的背景是初中数学教学因此我们要回避用高中数学知识。 首先要提的就是南通2014年的28题第三问:

不知大家第一次看到这道题的第一反应是什么? 能否在短时间中用传统方法解决? 看到两角和差关系这样的条件想到什么? 本题它有比较巧妙的求法,但要发现,还是需要一定的时间的。 这里涉及到两角和差关系,需要说明的是,命题人员绝非希望你采用高中“两角和与差的三角公式”去解决问题,这是由于: ⑴他们当初没有意识到采用这样的思考方法是合理的,而且只要方法得当,的确能够解决问题。 ⑵即使意识到了,他们认为因为初中不具备这样的知识,有这样的想法却因为不具备的能力,从而无法解决原问题。 ⑶最关键的原因是,由于命题人员想出了构思极为巧妙,常人很难想到的解法。 于是,这样的考题在不知不觉中出现了,而且通常情况下,这样的考题必定处于试卷中的难题位置.那如果我们能有比较好的方法去破解这个和差关系,那不就可以不花多少时间直接攻破此题了呢! 再譬如今年盐城的中考题第3问:

人教版初中数学公式、定理大全

初中数学公式、定理大全 1、一元二次方程根的情况 △=b2-4ac(前提必须化成一般形式ax2+bx+c=0) 当△>0时,一元二次方程有2个不相等的实数根 当△=0时,一元二次方程有2个相等的实数根; 当△<0时,一元二次方程没有实数根 2、平行四边形的性质 ①两组对边分别平行的四边形叫做平行四边形。 ②平行四边形不相邻的两个顶点连成的线段叫它的对角线。 ③平行四边形的对边相等并且平行,对角相等,邻角互补。 ④平行四边形的对角线互相平分。 菱形: ①一组邻边相等的平行四边形是菱形 ②领形的四条边相等,对边平行,两条对角线互相垂直平分,每一组对角线平分一组对角。 ③判定条件:定义、对角线互相垂直的平行四边形、四条边都相等的四边形。 矩形与正方形 ②矩形的对角线相等且平分,四个角都是直角。 ③对角线相等的平行四边形是矩形。 ④正方形具有平行四边形,矩形,菱形的所有性质。

⑤一组邻边相等的矩形是正方形,有一个角是直角的 菱形是正方形。 多边形: ①n边形的内角和等于(n-2)180° ②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的 外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的外 角和 多边形的外角和都等于360度 二、基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线与已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,那么这两条直线也互相平行 9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180° 18、推论1xx的两个锐角互余 19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等 全等三角形的判定方法 22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、

中考数学最新经典动点问题-十大题型

1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与 CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

2、直线与坐标轴分别交于两点,动点同时从点出发, 同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出 与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. 3 64 y x =-+A B 、P Q 、O A Q OA P O B A A B 、Q t OPQ △S S t 48 5 S = P O P Q 、、 M

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是 正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A

初中数学模型解题法

初中数学模型解题法 解答题 1. (2001江苏苏州6分)如图,已知AB是半圆O的直径,AP为过点A的半圆的切线。在上任取一点C(点C与A、B不重合),过点C作半圆的切线CD交AP于点D;过点C 作CE⊥AB,垂足为E.连接BD,交CE于点F。 (1)当点C为的中点时(如图1),求证:CF=EF; (2)当点C不是的中点时(如图2),试判断CF与EF的相等关系是否保持不变,并证明你的结论。 【答案】解:(1)证明:∵DA是切线,AB为直径,∴DA⊥AB。 ∵点C是的中点,且CE⊥AB,∴点E为半圆的圆心。 又∵DC是切线,∴DC⊥EC。 又∵CE⊥AB,∴四边形DAEC是矩形。 ∴CD∥AO,CD=AD。∴,即EF= AD= EC。 ∴F为EC的中点,CF=EF。 (2)CF=EF保持不变。证明如下: 如图,连接BC,并延长BC交AP于G点,连接AC, ∵AD、DC是半圆O的切线,∴DC=DA。 ∴∠DAC=∠DCA。 ∵AB是直径,∴∠ACB=90°。∴∠ACG=90°。 ∴∠DGC+∠DAC=∠DCA+∠DCG=90°。 ∴∠DGC=∠DCG。 ∴在△GDC中,GD=DC。 ∵DC=DA,∴GD=DA。 ∵AP是半圆O的切线,∴AP⊥AB。 又∵CE⊥AB,∴CE∥AP。∴△BCF∽△BGD,△BEF∽△BAD。 ∴。 ∵GD=AD,∴CF=EF。 【考点】探究型,圆的综合题,切线的性质,矩形的判定和性质,平行线分线段成比例定理,等腰三角形的判定,相似三角形的判定和性质。 【分析】(1)由题意得DA⊥AB,点E为半圆的圆心,DC⊥EC,可得四边形DAEC是矩形,即可得出,即可得EF与EC的关系,可知CF=EF。 (2)连接BC,并延长BC交AP于G点,连接AC,由切线长定理可得DC=DA,∠DAC=∠DCA,由角度代换关系可得出∠DGC=∠DCG,即可得GD=DC=DA,由已知可得CE∥AP,所以,即可知CF=EF。 2. (2001江苏苏州7分)已知一个三角形纸片ABC,面积为25,BC的长为10,∠B、∠C都为锐角,M为AB边上的一动点(M与A、B不重合),过点M作MN∥BC交AC于点N,设MN=x。 (1)用x表示△AMN的面积; (2)△AMN沿MN折叠,使△AMN紧贴四边形BCNM(边AM、AN落在四边形BCNM 所在的平面内),设点A落在平面BCNM内的点A′,△A′MN与四边形BCNM重叠部分的面积为y。 ①用的代数式表示y,并写出x的取值范围; ②当x为何值时,重叠部分的面积y最大,最大为多少?

初中(中考)数学常见解题模型及思路(压轴题题眼全覆盖)

初中数学常见解题模型及思路(自有定理) A . 代数篇: 1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。 设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S= 108 999 余例仿此—— 2.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y ;x-y ;xy ; 22x y + 中,知二求二。 222222()2()2x y x y x y x y x y x y +=++?+= +- 2222()2()4x y x y x y x y x y -=+-=+- 加减配合,灵活变型。 3.特殊公式 22 1 1 2x x x x ±=+±2 ()的变型几应用。 4.立方差公式:3322a b a b a ab b ±=±+m ()() 5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+222+2017的和。三种方法举例:略 6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。 例.求1+2+4+8+16+32+2222n 令S=1+2+4+8+16+32+222+2n (1) 两边同乘2得: 2S=2+4+8+32+64+222+2n +12n + (2) (2)-(1)得:2S-S=12n +- 1 从而求得S 。 7. 11n m m n --=mn 的灵活应用:如:1111 62323 ==-?等。 8.用二次函数的待定系数法求数列(图列)的通项公式f (n )。 9.韦达定理求关于两根的代数式值的套路:

人教版初中数学中考经典好题难题有答案

数学难题 一.填空题(共2小题) 1.如图,矩形纸片ABCD中,AB=,BC=.第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;O1D的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,….按上述方法折叠,第n次折叠后的折痕与BD 交于点O n,则BO1=_________,BO n=_________. 2.如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线C n(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为_________;抛物线C8的顶点坐标为_________. 二.解答题(共28小题) 3.已知:关于x的一元二次方程kx2+2x+2﹣k=0(k≥1). (1)求证:方程总有两个实数根; (2)当k取哪些整数时,方程的两个实数根均为整数. 4.已知:关于x的方程kx2+(2k﹣3)x+k﹣3=0. (1)求证:方程总有实数根; (2)当k取哪些整数时,关于x的方程kx2+(2k﹣3)x+k﹣3=0的两个实数根均为负整数? 5.在平面直角坐标系中,将直线l:沿x轴翻折,得到一条新直线与x轴交于点A,与y轴交于点B,将抛物线C1:沿x轴平移,得到一条新抛物线C2与y轴交于点D,与直线AB交于点E、点F. (1)求直线AB的解析式; (2)若线段DF∥x轴,求抛物线C2的解析式; (3)在(2)的条件下,若点F在y轴右侧,过F作FH⊥x轴于点G,与直线l交于点H,一条直线m(m不过△AFH的顶点)与AF交于点M,与FH交于点N,如果直线m既平分△AFH的面积,又平分△AFH的周长,求直线m的解析式. 6.已知:关于x的一元二次方程﹣x2+(m+4)x﹣4m=0,其中0<m<4. (1)求此方程的两个实数根(用含m的代数式表示); (2)设抛物线y=﹣x2+(m+4)x﹣4m与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,﹣2),且AD?BD=10,求抛物线的解析式; (3)已知点E(a,y1)、F(2a,y2)、G(3a,y3)都在(2)中的抛物线上,是否存在含有y1、y2、y3,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由. 7.点P为抛物线y=x2﹣2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点. (1)当m=2,点P横坐标为4时,求Q点的坐标; (2)设点Q(a,b),用含m、b的代数式表示a; (3)如图,点Q在第一象限内,点D在x轴的正半轴上,点C为OD的中点,QO平分∠AQC,AQ=2QC,当QD=m时,求m的值. 8.关于x的一元二次方程x2﹣4x+c=0有实数根,且c为正整数. (1)求c的值; (2)若此方程的两根均为整数,在平面直角坐标系xOy中,抛物线y=x2﹣4x+c与x轴交于A、B两点(A在B 左侧),与y轴交于点C.点P为对称轴上一点,且四边形OBPC为直角梯形,求PC的长; (3)将(2)中得到的抛物线沿水平方向平移,设顶点D的坐标为(m,n),当抛物线与(2)中的直角梯形OBPC只有两个交点,且一个交点在PC边上时,直接写出m的取值范围. 9.如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FD2=FB?FC. 10.如图,AD是△ABC的角平分线,EF是AD的垂直平分线.

中考数学压轴题破解策略专题19《中点模型》

专题19《中点模型》破解策略 1.倍长中线 在△ABC中.M为BC边的中点. M E C B A E M C A B D 图1 图2 (1)如图1,连结AM并延长至点F,使得ME=AM.连结CE.则△ABM≌△ECM.(2)如图2,点D在AB边上,连结DM并延长至点E.使得MF=DM.连结CE,则△BD M≌△CEM, 遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法. 2.构造中位线 在△ABC中.D为AB边的中点, A B D E C C F A B D 图1 图2 (1)如图1,取AC边的中点E,连结DE.则DE∥BC,且DF=1 2 B C. (2)如图2.延长BC至点F.使得CF=BC.连结CD,AF.则DC∥AF,且DC=1 2 A

E. 三角形的中位线从位置关系和数量关系两方面将将图形中分散的线段关系集中起来.通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线, 3.等腰三角形“三线合一" 如图,在△ABC中,若AB=A C.通常取底边BC的中点D.则AD⊥BC,且AD平分∠BA C.事实上,在△ABC中:①AB=AC;②AD平分∠BAC;③BD=CD,④AD⊥B C.对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”. A B D C 4.直角三角形斜边中线 如图,在△ABC看,∠ABC=900,取AC的中点D,连结BD,则有BD=AD=CD=1 2 AC. 反过来,在△ABC中,点D在AC边上,若BD=AD=CD=1 2 AC,则有∠ABC=900 例题讲解 例1 如图,在四边形ABCD中,E、F分别是AB、CD的中点,过点E作AB的垂线,过点F 作CD的垂线,两垂线交于点G,连结AG、BG、CG且∠AGD=∠BGC,若AD、BC所在直 线互相垂直,求AD EF 的值 解由题意可得△AGB和△DGC为共顶点等顶角的两个等腰三角形, 所以△AGD≌△BGC,△AGD∽△EGF. 方法一:如图1,连结CE并延长到H,使EH=EC,连EH、AH,则 AH∥BC,AH=BC,而AD=BC,AD⊥BC 所以AD=AH,AD⊥AH,连结DH,则△ADH为等腰直角三角形,又因为E、F分别为CH、CD的中

相关文档
相关文档 最新文档