文档库 最新最全的文档下载
当前位置:文档库 › 奥氏体不锈钢与低碳钢、低合金钢焊接

奥氏体不锈钢与低碳钢、低合金钢焊接

奥氏体不锈钢与低碳钢、低合金钢焊接
奥氏体不锈钢与低碳钢、低合金钢焊接

C

O

P Y

南京化学工业有限公司化工机械厂标准

通用工艺规程 Q/NH04/J0601.14-1999 第14部分

奥氏体不锈钢与低碳钢低合金钢焊接

1 范围

本标准规定了钢制压力容器中奥氏体不锈钢与低碳钢低合金钢(包括低合金高强度钢珠光体耐热钢)焊接的基本要求

本标准适用于钢制压力容器和元件的手工电弧焊氩弧焊

2 引用标准

下列标准所包含的条文通过在本标准中引用而构成为本标准的条文在标准出版时所示版本均为有效所有标准都会被修订使用本标准的各方应探讨使用下列标准最新版本的可能性 GB150-1998 钢制压力容器

JB4708-92 钢制压力容器焊接工艺评定 JB4730-94 压力容器无损检测

3 焊接材料

3.1 焊接材料包括焊丝焊条气体电极和衬垫等

3.2 焊接材料应符合国家标准或行业标准选用的焊接材料应保证焊缝金属的力学性能和抗裂性能一般推荐采用铬镍含量较奥氏体不锈钢母材高的焊接材料当焊接接头的使用温度在350以上且承受较高的应力时,应选用高镍奥氏体或镍基焊接材料,必要时通过试验确定

3.3 常用的奥氏体不锈钢与低碳钢低合金钢相焊推荐选用的焊接材料见表1和表2

4 焊接工艺评定和焊工资格

4.1 施焊下列每一类焊缝的焊接工艺应按JB4708

评定合格 a) 受压元件焊缝

b) 与受压元件相焊的焊缝 c) 上述焊缝的定位焊缝

4.2 施焊下列每一类焊缝的焊工应按锅炉压力容器焊工考试规则的规定考试合格且同时具备焊接 碳素钢低合金钢及奥氏体不锈钢的相应资格对使用镍基焊条焊丝的焊工应取得镍基焊条焊丝的相应资格

a)

受压元件焊缝

b) 与受压元件相焊的焊缝 c) 熔入永久焊缝的定位焊缝

5 工艺要求

5.1 坡口的制作尽可能采用机加工V 型坡口的角度一般比同钢号相焊时的坡口角度大5

母材厚度超过20 mm 的对接坡口宜选用U 型或双U 型坡口

5.2 奥氏体不锈钢坡口侧100 mm 范围内应刷涂料以防止沾附焊接飞溅 5.3 焊条应按二级库管理制度进行烘烤 5.4 焊接环境要求按GB150-1998中10.3.1

5.5 气体保护焊或气体保护焊的打底焊应采用填丝的方式.

5.6 手工电弧焊应采用直线运条法多层多道焊控制熔池的宽度不大于焊条直径的3倍每层焊道的厚度不大于3 mm

5.7 预热温度按低碳钢或低合金钢的要求选用且比其同钢号焊接时的预热温度低50100 5.8 奥氏体不锈钢与低碳钢低合金钢的焊接接头一般不作焊后热处理当要求热处理时可采用在低碳钢低合金钢侧坡口表面堆焊隔离层的工艺措施隔离层堆焊后推荐进行热处理隔离层的厚度如图1和图2所示隔离层的堆焊推荐采用手工电弧焊焊接材料按表1选用隔离层的焊接尽可能采用小规范进行,以减少母材对隔离层的稀释采用隔离层后焊缝的焊接材料应根据相应的奥氏体不锈钢母材选用当隔离层采用镍基焊接材料时焊缝亦应采用镍基焊接材料

图1 不易淬火钢堆焊层厚度

图2 易淬火钢堆焊层厚度

C

O

B

5.9 热处理要求见焊接工艺文件 5.10 焊缝的检验

a 焊缝外观应成形优良不允许有咬边

b 焊缝表面应按JB4730进行100 %渗透检测级为合格

c 当图样有规定时焊缝应进行射线检测

B

-------------------------------

奥氏体不锈钢的焊接工艺

奥氏体不锈钢的焊接工艺 奥氏体不锈钢的焊接工艺 一、焊接方法 由于奥氏体不锈钢具有优良的焊接性,几乎所有的熔焊方法和部分压焊方法都可以焊接。但从经济、实用和技术性能方面考虑,最好采用焊条电弧焊、惰性气体保护焊、埋弧焊和等离子焊等。 1. 焊条电弧焊 厚度在2mm以上的不锈钢板仍以焊条电弧焊为主,因为焊条电弧焊热量比较集中,热影响区小,焊接变形小;能适应各种焊接位置与不同板厚工艺要求;所用[wiki]设备[/wiki]简单。但是,焊条电弧焊对清渣要求高,易产生气孔、夹渣等缺陷。合金元素过度系数较小,与氧亲和力强的元素,如钛、硼、铝等易烧损。 2. 氩弧焊 有钨极弧焊和熔化极氩弧焊两种,是焊接奥氏体不锈钢较为理想的焊接方法。因氩气保护效果好,合金元素过度系数高,焊缝成分易于控制;由于热源较集中,又有氩气冷却作用,其焊接热影响区较窄,晶粒长大倾向小,焊后不需要清渣,可以全位置焊接和[wiki]机械[/wiki]化焊接。缺点是设备较复杂,一般须使用直流弧焊电源,成本较高。 TIG有手工和自动两种,前者较后者熔敷率低些。TIG最适于3mm以下薄板不锈钢焊接,在奥氏体不锈钢[wiki]压力容器[/wiki]和管道的对接和封底焊等广为应用。对于厚度小于0.5mm的超薄板,要求用10~15A电流焊接,此时电弧不稳,宜用脉冲TIG焊。厚度大于3mm有时须开坡口和采用多层多道焊,通常厚度大于13mm,考虑制造成本,不宜再用TIG焊。 3. 等离子弧焊 是焊接厚度在10~12mm以下的奥氏体不锈钢的理想方法。对于0.5mm以下的薄板,采用微束等离子弧焊尤为合适。因为等离子弧热量集中,利用小孔效应技术可以不开坡口,不加填充金属单面焊一次成形,很适合于不锈钢管的纵缝焊接。 焊接工艺参数的选择 焊接时,为保证焊接质量,必须选择合理的工艺参数,所选定的焊接工艺参数总称为焊接工艺规范。例如,手工电弧焊的焊接工艺规范包括:焊接电流、焊条直径、焊接速度、电弧长

奥氏体不锈钢焊接简介

奥氏体不锈钢焊接简介 一、奥氏体不锈钢的焊接性 金属材料的焊接性不仅取决于金属本身的成分与组织,同时与焊接的热作用直接相关。焊接性并不是金属材料的固有性能,而是随焊接技术的发展而变化的。金属材料的焊接性可分为工艺焊接性和使用焊接性: (1)工艺焊接性是指金属材料对各种焊接方法的适应能力。它不仅取决于金属本身的成分与性能,而且与焊接热源的性质、保护方式、预热及后热等工艺措施有关。 (2)使用焊接性是指焊接接头或整体结构,满足技术条件中所规定的使用性能的能力。显然,使用焊接性与产品的工作条件有密切关系。奥氏体不锈钢的焊接性工艺焊接性方面,很容易获得无缺陷的焊接接头,也不需要采用特殊的工艺措施即结合性能良好。 使用焊接性方面,如果处在腐蚀的介质中,焊接接头常常沿晶界被腐蚀,即使用性能不好。奥氏体不锈钢由于具有较高的变形能力并不可淬硬,所以总的来说焊接性能良好。 二、奥氏体不锈钢的焊接缺陷 奥氏体不锈钢虽用的最为广泛,但是焊接材料或焊接工艺不正确时,会出现以下缺陷:﹙1﹚晶间腐蚀,引起金属机械性能和耐腐蚀性能的下降。对应措施:选用合适焊条;减少危险温度范围停留时间;接触介质的那面焊缝最后焊接;焊后固溶 处理要妥当。 ﹙2﹚应力腐蚀开裂。相对应的处理措施:合理制定成型加工和组装工艺;合理选择焊材;采取合适的焊接工艺;采取合理的焊接顺序;焊后正确热处理。 ﹙3﹚焊缝成形不良,易造成表面成型不良。防治措施:对于焊缝成形不良及焊接热影响区的晶间腐蚀问题,可以通过焊接工艺来加以解决。 ﹙4﹚奥氏体不锈钢的焊接技术注意点 根据上述不锈钢的焊接特点,为保证接头的质量,应当采用以下焊接工艺:①焊前准备。做好焊条及焊缝的清洁工作。②焊接薄板和拘束度较小的不锈钢件,可选用氧化钛型药皮焊条。③对于立焊和仰焊位置,应采用氧化钙型药皮焊条。④气体保护焊和埋弧自动焊时,应选用锰铬含量比母材高的焊丝,以补偿焊接过程中合金元素的烧毁。⑤在焊接过程中,必须将焊件保持较低的层间温度,最好不超过150℃⑥手工电弧焊时,应在焊条说明书规定的电流范围内选择焊接电流。⑦在操作技术上应采用窄焊道技术,焊接时尽量不摆动焊条,在保持良好熔合的前提下,尽可能提高焊接速度。⑧不锈钢罕见焊接后一般不作消除应力处理。通过采用以上焊接工艺,可提高奥氏体不锈钢的焊接质量。 三、奥氏体不锈钢的焊接工艺 ①、焊接方法 由于奥氏体不锈钢具有优良的焊接性,几乎所有的熔焊方法和部分压焊方法都可以焊接。但从经济、实用和技术性能方面考虑,最好采用焊条电弧焊、惰性气体保护焊、埋弧焊和等离子焊等。 1. 焊条电弧焊 厚度在2mm以上的不锈钢板仍以焊条电弧焊为主,因为焊条电弧焊热量比较集中,热影响区小,焊接变形小;能适应各种焊接位置与不同板厚工艺要求;所用[wiki]设备[/wiki]简单。但是,焊条电弧焊对清渣要求高,易产生气孔、夹渣等缺陷。合金元素过度系数较小,

低合金高强钢的焊接性

低合金高强钢的焊接性 钢铁研究总院田志凌 1 前言 低合金高强(HSLA)钢的焊接性主要包括两个方面,其一是裂纹敏感性,其二是焊接热影响区的力学性能。过去40年,在钢材焊接性的研究方面,我国几代科技工作者进行了卓有成效的工作[1-5]。 在过去的40年,HSLA钢取得了显著进展,精炼技术、微合金钢技术、控轧控冷技术、形变热处理(TMCP)等一些先进技术的应用,使得现代HSLA钢的焊接性大大改善,尤其是HAZ冷列裂纹敏感性大大降低,粗晶区韧性大幅度提高,高效率、大线能量焊接工艺得以应用。然而,新的问题也伴随着出现,如母材的低碳当量高强度化使得冷裂纹从HAZ转移到焊缝金属中,多层焊接头中的局部脆性区问题等。本文将论述HSLA钢制造技术的进步给焊接性带来的变化,以及技术发展趋势。 2 HSLA钢的技术进步及其对焊接性的改善 过去40年,低成本、高性能是钢铁行业技术进步的主要发展方向,从焊接性的角度来看,影响最大的是精炼技术和轧制技术。 2.1 精炼技术的影响 焊接热裂纹、液化裂纹曾经是低碳钢、低合金钢焊接的一个重要问题,随着铁水预处理、碱氧炉炼钢、钢包精炼、真空精炼等精炼技术的采用,钢中S、P等杂质元素的含量越来越低,热裂纹、液化裂纹发生的频率已降得非常低。 以管线钢为例,目前的超纯净冶炼技术能够达到如下水平: P≤20ppm, S≤5ppm, N≤20ppm, O≤10ppm, H≤1.0ppm 此外,上世纪80年代以来,模铸已逐渐被连铸所代替,2001年我国的连铸比已超过90%,高均匀性连铸技术的应用,大大降低了铸坯中间偏析。 一方面,S、P等杂质元素的含量越来越低,另一方面,杂质元素的偏析程度越来越小,因此,HSLA钢焊接性评定中已不再进行热裂纹、液化裂纹敏感性评定。 2.2 轧钢技术和微合金化的影响 在上世纪五、六十年代,最广泛应用的结构钢就是C-Mn钢,钢材的强度主要靠提高C 的含量和合金元素的含量来实现,强度越高,冷裂纹敏感性就越大。 控制轧制的应用始于六、七十年代,控制轧制与正火处理相结合,能够降低钢的碳当量,提高钢材的抗裂性能,同时HAZ的韧性也得到了一定程度的提高。然而,生产力的发展要求采用大线能量焊接,如造船业,焊接效率是加快制造进度、降低成本的关键因素,而对于轧制原有状态和正火状态钢而言,大线能量焊接使得HAZ晶粒变得粗大,同时在粗晶区形成韧性很差的上贝氏体组织,针对这一技术问题,确立了Ti处理技术(1975年之前):根据钢中存在的氮(N)量,适当加入Ti,使TiN成细粒状均匀分布,TiN能够抑制奥氏体晶粒长大,促进晶内铁素体的形核。基于同一机理,微合金化技术得以发展,利用Nb, V, Ti 等微量元素形成细小的碳氮化物生产的细晶粒钢,能够适应较大线能量焊接,图1为Nb, V, Ti三种微合金元素形成的第二相粒子的溶解曲线,由此可见TiN对晶粒长大的阻力最大,Nb(CN)次之,VC最小。

奥氏体不锈钢管道焊接工艺规程

奥氏体不锈钢管道焊接工艺规程 浙江华业电力工程股份有限公司企业标准 E n t er p ri s e S ta nd a rd f or zh e ji an g H u ay e Po w er En gi n ee r in g Co.,l t d HYDBP401-2004 奥氏体不锈钢管道焊接工艺规程 2004—04—01 发布 2004—04—01实施 浙江华业电力工程股份有限公司发布

前言 本标准主要起草人:仲春生 本标准审核人:朱文杰、周丰平、刘浩、王新宇 本标准批准人:沈银根 本标准自2004年04月01日发布,04月01日起在全公司范围内试行。本标准由公司工程部负责解释。

奥氏体不锈钢管道焊接工艺规程 1 范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB50235—97 《工业金属管道工程施工及验收规范》 GB/T 983—95 《不锈钢焊条》 DL/T869-2004 《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004《压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004《压力管道安装工程焊接材料管理程序》 HYDBP013-2004《压力管道安装工程材料设备储存管理程序》 HYDBP012-2004《压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004《压力管道安装工程计量管理手册》 HYDBP007-2004《压力管道安装工程检验和试验控制程序》 HYDBP010-2004《压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3 先决条件

2205双相不锈钢的焊接工艺规程完整

1 绪论 随着工业技术的日益发展,一般奥氏体不锈钢难以满足应力腐蚀、点腐蚀和缝隙隧洞式腐蚀的要求。为此,冶金工作者进行了大量研究,研制出奥氏体—铁素体型不锈钢,即双相不锈钢。 传统的奥氏体不锈钢在晶间腐蚀、应力腐蚀、点腐蚀和缝隙腐蚀等局部腐蚀方面的抗力不足,尤其是应力腐蚀引起的断裂,其危害性极大。双相不锈钢是近二十年来开发的新钢种。通过正确控制各合金元素比例和热处理工艺使其固溶组织中铁素体相和奥氏体相各约占50%,从而将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。 所谓双相不锈钢是在其固溶组织中铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。在含C较低的情况下,Cr含量在18%-28%,Ni含量在3%-10%。有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间副食和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢类。 上世纪30年代就已在瑞典的试验室中研制出双相不锈钢(3RE60、Uranus50等),但是双相不锈钢真正产业化还是在上世纪60年代以后,其发展经历了3代历程。 1.1 我国双相不锈钢的应用 双相不锈钢是根据石油化工中强酸强碱造成的局部点蚀、应力腐蚀以及孔穴式腐蚀现象,一般不锈钢难以胜任的容器、管道以及零部件等而研制的,但由于

奥氏体不锈钢304焊接性评定实验报告

奥氏体不锈钢304焊接性评定试验报告 奥氏体不锈钢304具有非常好的塑性和韧性,这决定了它具有良好的弯折、卷曲和冲压成型性,因而便于制成各种形状的构件、容器或管道;奥氏体型不锈钢304的耐腐蚀性能特别优良,是它获得最为广泛应用的根本原因。也正是这样,在评价焊接质量时必然特别强调焊接接头的开裂倾向、焊接缺陷敏感性和耐晶间腐蚀等的能力。 本报告结合奥氏体不锈钢304的焊接特点,进行了手工钨极氩弧焊评定性试验,现就试验结果作一介绍 一、奥氏体不锈钢的焊接特点: 奥氏体不锈钢韧性、塑性好,焊接时不会发生淬火硬化,尽管其线膨胀系数比碳钢大得多,焊接过程中的弹塑性应力应变量很大,却极少出现冷裂纹;尽管有很强的加工硬化能力,由于焊接接头不存在淬火硬化区,所以,即使受焊接热影响而软化的区域,其抗拉强度仍然不低。304钢的热胀冷缩特别大所带来的焊接性的问题,主要有两个:一是焊接热裂纹,这与奥氏体不锈钢的晶界特性和对某些微量杂质如硫、磷等敏感有关;二是焊接变形大。 1、焊接接头的热裂纹及其对策 1.1焊接接头产生热裂纹的原因 单相奥氏体组织的奥氏体型不锈钢焊接接头易发生焊接热裂纹,这种裂纹是在高温状态下形成的。常见的裂纹形式有弧坑裂纹、热影响区裂纹、焊缝横向和纵向裂纹。就裂纹的物理本质上讲,有凝固裂纹、液化裂纹和高温低塑性裂纹等多种。奥氏体型不锈钢易产生焊接接头热裂纹的主要原因有以下几点: 1)焊缝金属凝固期间存在较大的拉应力,这是产生凝固裂纹的必要条件。由于奥氏体型不锈钢的热导率小,线膨胀系数大,在焊接区降温(收缩)期焊接接头必然要承受较大的拉应力,这也促成各种类型热裂纹的产生。 2)方向性强的焊缝柱状晶组织的存在,有利于有害杂质的偏析及晶间液态夹层的形成。 3)奥氏体不锈钢的品种多,母材及焊缝的合金组成比较复杂。含镍量高的合金对硫和磷形成易熔共晶更为敏感,在某些钢中硅和铌等元素,也能形成有害的易熔晶间层。 1.2避免奥氏体型不锈钢焊接热裂纹的途径。 (1)冶金措施 1)焊缝金属中增添一定数量的铁素体组织,使焊缝成为奥氏体-铁素体双相组织,能很有效地防止焊缝热裂纹的产生。这是由于铁素体能够溶解较多的硫、磷等微量元素,使其在晶界上数量大大减少;同时由于奥氏体晶界上的低熔点杂质被铁素体分散和隔开,避免了低熔点杂质呈连续网状分布,从而阻碍热裂纹的扩展和延伸。常用以促成铁素体的元素有铬、钼、钒等。 2)控制焊缝金属中的铬镍比,对于304型不锈钢来说,当焊接材料的铬镍比小于1.61时,就易产生热裂纹;而铬镍比达到2.3~3.2时,就可以防止热裂纹的产生。这一措施的 实质也是保证有一定量的铁素体的存在。 3)在焊缝金属中严格限制硼、硫、磷、硒等有害元素的含量,以防止热裂纹的产生。对于不允许存在铁素体的纯奥氏体焊缝,可以加入适当的锰,少许的碳、氮,同时减少硅的含量。 (2)工艺措施 1)采用适当的焊接坡口或焊接方法,使母材金属在焊缝金属中所占的分量减少(即小的熔合比)。与此同时,在焊接材料的化学成分中加入抗裂元素,且其有害杂质硫、磷的含

奥氏体不锈钢焊接

奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体。奥氏体不锈钢具有优良的焊接性能,但由于其特殊的成分和组织,相对于普碳钢,其焊接又有很多不同之处,本文就奥氏体不锈钢的焊接进行分析。 一、奥氏体不锈钢的焊接特点 奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,其焊接性能良好,但在焊接过程中也容易产生不少问题,主要表现为以下几种: 晶间腐蚀 奥氏体不锈钢焊接件容易在焊接接头处发生晶间腐蚀,根据贫铬理论,其原因是焊接时焊缝和热影响区在加热到450~850℃温度范围停留一定时间的接头部位,在晶界处析出高铬碳化物(Cr23C6),引起晶粒表层含铬量降低,形成贫铬区,在腐蚀介质的作用下,晶粒表层的贫铬区受到腐蚀而形成晶间腐蚀。这时被腐蚀的焊接接头表面无明显变化,受力时则会沿晶界断裂,几乎完全失去强度。 为防止和减少焊接接头处的晶间腐蚀,一般采取的防止措施有:(1)采用低碳或超低碳的焊材,如A002等,或采用含钛、铌等稳定化元素的焊条,如A137、A132等;(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制4-12%);(3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度;(4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。 焊接热裂纹 热裂纹产生的主要原因是焊缝中的树枝晶方向性强,有利于S、P等元素的低熔点共晶产物的形成和聚集。另外,此类钢的导热系数小(约为低碳钢的1/3),线胀系数大(比低碳钢大50%),所以焊接应力也大,加剧了热裂纹的产生。其防止的办法是: (1)选用含碳量低的焊接材料,采用含适量Mo、Si等铁素体形成元素的焊接材料,使焊缝形成奥氏体加铁素体的双相组织,减少偏析; (2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。 应力腐蚀开裂 应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。 应力腐蚀开裂防止措施:(1)采取合适的焊接工艺,保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平;(2)合理选择焊材,焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等;(3)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。 焊缝金属的低温脆化 对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。此时,焊缝组织中的铁素体的存在总是恶化低温韧性。一般可以通过选用纯奥氏体焊材和调整焊接工艺获得单一的奥氏体焊缝的方法来防止焊缝金属的低温催化。

不锈钢焊接工艺规程

奥氏体不锈钢管道焊接工艺规程 1适用范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB5023—97《工业金属管道工程施工及验收规范》 GB/T 983—95《不锈钢焊条》 DL/T869-2004《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004〈压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004〈压力管道安装工程焊接材料管理程序》 HYDBP013-2004压力管道安装工程材料设备储存管理程序》 HYDBP012-200《〈压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004<压力管道安装工程计量管理手册》 HYDBP007-2004<压力管道安装工程检验和试验控制程序》 HYDBP010-2004〈压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3先决条件 3.1 环境 3.1.1 施工环境应符合下列要求: 3.1.1.1 风速:手工电弧焊小于8M/S,氩弧焊小于2M/S

3.1.1.2 焊接电弧在1m范围内的相对湿度小于90%环境温度大于0C。 3.1.1.3 非下雨、下雪天气。 3.1.2 当环境条件不符合上述要求时,必须采取挡风、防雨、防寒等有效措施。 3.2奥氏体不锈钢管道焊接控制流程图 见图1。 图1奥氏体不锈钢管道焊接控制流程图 3.3 焊接材料 3.3.1 奥氏体不锈钢管道焊接材料的采购和入库(一级库)由公司物资部负责,按《物资采购控制程序》和《焊接材料保管程序》执行。 3.3.2 奥氏体不锈钢管道焊接材料入二级库的保管、焊剂、烘干、发放、回收由各项目负责,按《焊接材料保管程序》执行

最新1奥氏体不锈钢管道焊接工艺规程

1奥氏体不锈钢管道焊接工艺规程

精品好文档,推荐学习交流 浙江华业电力工程股份有限公司企业标准 E n t er p ri s e S ta nd a rd f or zh e ji an g H u ay e Po w er En gi n ee r in g Co.,l t d HYDBP401-2004 奥氏体不锈钢管道焊接工艺规程 2004—04—01 发布 2004—04—01实施 浙江华业电力工程股份有限公司发布

前言 本标准主要起草人:仲春生 本标准审核人:朱文杰、周丰平、刘浩、王新宇 本标准批准人:沈银根 本标准自2004年04月01日发布,04月01日起在全公司范围内试行。本标准由公司工程部负责解释。

奥氏体不锈钢管道焊接工艺规程 1 范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB50235—97 《工业金属管道工程施工及验收规范》 GB/T 983—95 《不锈钢焊条》 DL/T869-2004 《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004《压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004《压力管道安装工程焊接材料管理程序》 HYDBP013-2004《压力管道安装工程材料设备储存管理程序》 HYDBP012-2004《压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004《压力管道安装工程计量管理手册》 HYDBP007-2004《压力管道安装工程检验和试验控制程序》 HYDBP010-2004《压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3 先决条件

奥氏体不锈钢焊接要求

奥氏体不锈钢组对及焊接要求 概述: 科莱恩17000T化工助剂项目中有304L和316奥氏体型不锈钢管道,奥氏体型不锈钢是现代化工行业中采用的比较多的材质,奥氏体不锈钢具有良好的可焊性,但是焊接材料或焊接工艺不正确时,会出现晶间腐蚀,热裂纹,应力腐蚀开裂,焊缝成形不良。 为保证焊接质量中核中原项目部所有管工以及焊工必须按照以下的《奥氏体不锈钢焊接工艺作业指导书》进行不锈钢的组对以及焊接工作。 不锈钢焊接工艺作业指导书 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2. 编制依据 2.1. 设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3. 焊接准备 3.1. 焊接材料 焊丝:母材为304L材质和母材为316L时均采用ER316L焊丝 焊丝直径:φ1.6,φ2.0、φ2.5 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.99%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶内余压不得低于0.5MPa ,以保证充氩纯度。 3.3. 焊接工具 3.3.1. 采用直流高频电焊机。 3.3.2. 选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 3.3.3. 输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 3.4. 其它工器具 焊工应备有:焊渣锤、扁铲、锉刀、不锈钢钢丝刷、电磨工具等,以备清渣和消缺。 4.工艺参数

不锈钢焊接工艺

焊接工艺指导书 一氩弧焊接 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。2. 编制依据 2.1. 设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3. 焊接准备 3.1. 焊接材料 焊丝:H1Cr18Ni9Ti φ1、φ1.5、φ2.5、φ3 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.95%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶内余压不得低于0.5MPa ,以保证充氩纯度。 3.3. 焊接工具 3.3.1. 采用直流电焊机,本厂用WSE-315和TIG400两种型号焊机。 3.3.2. 选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 3.3.3. 输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 3.4. 其它工器具 焊工应备有:手锤、砂纸、扁铲、钢丝刷、电磨工具等,以备清渣和消缺。 4.工艺参数 不锈钢焊接工艺参数选取表 表一 壁厚mm 焊丝直 径mm 钨极 直径 mm 焊接电流 A 氩气流 量 L/min 焊接 层次 喷嘴 直径 mm 电源 极性 焊缝 余高 mm 焊缝 宽度 mm 1 1.0 2 30-50 6 1 6 正接 1 3 2 1.2 2 40-60 6 1 6 正接 1 4 3 1.6-2. 4 3 60-90 8 1-2 8 正接1-2. 5 5 4 1.6-2.4 3 80-100 8 1-2 8 正接1-2.0 6 5 1.6-2.4 3 80-130 8 2-3 8 正接1-2.5 7-8 6 1.6-2.4 3 90-140 8 2-3 8 正接1-2.0 8-9

不锈钢管道焊接工艺规程(1)

奥氏体不锈钢管道焊接工艺规程 1范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB5023—97《工业金属管道工程施工及验收规范》 GB/T 983—95《不锈钢焊条》 DL/T869-2004《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDBP006-2004〈压力管道安装工程焊接、热处理过程控制程序》 HYDBP018-2004〈压力管道安装工程焊接材料管理程序》 HYDBP013-2004压力管道安装工程材料设备储存管理程序》 HYDBP012-200《〈压力管道安装工程材料设备搬运管理程序》 HYDBP008-2004<压力管道安装工程计量管理手册》 HYDBP007-2004<压力管道安装工程检验和试验控制程序》 HYDBP010-2004〈压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3先决条件 3.1 环境 3.1.1 施工环境应符合下列要求:

3.1.1.1 风速:手工电弧焊小于8M/S,氩弧焊小于2M/S 3.1.1.2 焊接电弧在1m范围内的相对湿度小于90%环境温度大于0C。 3.1.1.3 非下雨、下雪天气。 3.1.2 当环境条件不符合上述要求时,必须采取挡风、防雨、防寒等有效措施。 3.2奥氏体不锈钢管道焊接控制流程图 图1奥氏体不锈钢管道焊接控制流程图

碳钢及普通低合金钢的焊接

碳钢及普通低合金钢的焊接 1.什么是碳素钢?常用的有哪几种? 答:碳素钢也叫碳钢。常用焊接的有低碳钢(含C≤0.25%)和中碳钢 (含C=0.25%--0.60%);优质碳素结构钢(08、10、15、20、25、30、35、40、45)2.为什么叫普通低合金钢?它们是如何分类的? 答:在普通低合金钢中,除碳以外,还含有少量其他元素,如:锰、硅 、钒、钼、钛、铝、铌、铜、硼、磷、稀土等,性能发生变化,得到比一般碳钢更优良的性能,如:高强度钢、耐蚀钢、低温钢、耐热钢等。 3.什么是金属材料的机械性能? 答:强度、硬度、朔性、韧性、耐疲劳和蠕变性能等。 4.什么是钢材的工艺性能? 答:钢材承受各种冷热加工的能力,如:可切削性、可锻性、可铸性和可焊接性等。 5.什么是金属的焊接性? 答:在一定的焊接工艺条件下获得优质焊接接头的难易程度。包括两方面的内容: 一是接合性能,又称工艺可焊性;二是使用性能,又称使用可焊性。 6.为什么ER50-6实心焊丝使用十分普遍?它适合哪些钢材? 答:ER50-6实心焊丝(如:唐山神钢MG-51T)适合的钢材有: 〈1〉普通碳素结构钢:Q215 Q235 Q255 Q275 〈2〉优质碳素结构钢: 08 10 15 20 25 30 35 40 45 15Mn 20Mn 25Mn 30Mn 35Mn 〈3〉碳素铸钢:ZG200-400H ZG230-450H ZG275-485H 〈4〉压力容器用碳素钢: 20R 〈5〉锅炉用碳素钢: 20g 〈6〉桥梁用碳素结构钢: 16q 〈7〉核压力容器用碳素钢: 20HR 〈8〉汽车制造用碳素结构钢: 08Al 15Al 〈9〉普通低合金高强度结构钢:Q295 (09MnV、09MnNb、09Mn2) Q345 (14MnNb、16Mn、16MnRE)Q390 (15MnV、15MnTi、16MnNb) Q420 (15MnVN、14MnVTiRE) 〈10〉船体用低合金高强度结构钢 AH32 DH32 EH32 AH36 〈11〉压力容器用低合金高强度结构钢 16MnR 15MnVR 15MnVNR 〈12〉锅炉用低合金高强度结构钢 16Mng 19Mng 22Mng 〈13〉桥梁用低合金高强度结构钢 16Mnq(16MnCuq)15MnVq 15MnVNq 〈14〉石油天然气管道用低合金高强度结构钢 S290 S315 S360 S380 S415 7.为什么低合金高强钢会出现裂纹?有哪些影响因素? 答:随含碳量和合金元素的增加,产生冷裂纹的敏感性增加。产生冷裂纹的三要素是:〈1〉焊接接头中产生淬硬的马氏体组织〈2〉焊接接头中扩散氢〔H〕含量高 〈3〉焊接接头中有较高的残余应力 8.为什么防止冷裂纹要采取工艺措施? 答:防止冷裂纹要采取的工艺措施有: 〈1〉建立低氢的焊接环境 〈2〉制定合理的焊接工艺和焊接顺序

奥氏体不锈钢焊接

奥氏体不锈钢焊接公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体。奥氏体不锈钢具有优良的焊接性能,但由于其特殊的成分和组织,相对于普碳钢,其焊接又有很多不同之处,本文就奥氏体不锈钢的焊接进行分析。 一、奥氏体不锈钢的焊接特点 奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,其焊接性能良好,但在焊接过程中也容易产生不少问题,主要表现为以下几种: 晶间腐蚀 奥氏体不锈钢焊接件容易在焊接接头处发生晶间腐蚀,根据贫铬理论,其原因是焊接时焊缝和热影响区在加热到450~850℃温度范围停留一定时间的接头部位,在晶界处析出高铬碳化物(Cr23C6),引起晶粒表层含铬量降低,形成贫铬区,在腐蚀介质的作用下,晶粒表层的贫铬区受到腐蚀而形成晶间腐蚀。这时被腐蚀的焊接接头表面无明显变化,受力时则会沿晶界断裂,几乎完全失去强度。 为防止和减少焊接接头处的晶间腐蚀,一般采取的防止措施有:(1)采用低碳或超低碳的焊材,如A002等,或采用含钛、铌等稳定化元素的焊条,如A137、A132等;(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制4-12%);(3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度;(4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。

焊接热裂纹 热裂纹产生的主要原因是焊缝中的树枝晶方向性强,有利于S、P 等元素的低熔点共晶产物的形成和聚集。另外,此类钢的导热系数小(约为低碳钢的1/3),线胀系数大(比低碳钢大50%),所以焊接应力也大,加剧了热裂纹的产生。其防止的办法是: (1)选用含碳量低的焊接材料,采用含适量Mo、Si等铁素体形成元素的焊接材料,使焊缝形成奥氏体加铁素体的双相组织,减少偏析; (2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C 等的含量。 应力腐蚀开裂 应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。 应力腐蚀开裂防止措施:(1)采取合适的焊接工艺,保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平;(2)合理选择焊材,焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等;(3)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。 焊缝金属的低温脆化 对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。此时,焊缝组织中的铁素体的存在总是恶化低温韧性。一般

碳素结构钢及低合金高强钢焊接方法一

真理惟一可靠的标准就是永远自相符合--- 碳素结构钢及低合金高强钢焊接方法(一))焊接(编者按:本文原为高力生教授、潘际銮院士和闫炳义高级技师 后的一个书”参加三峡总公司召开的“三峡工程金属结构焊接专家咨 询会面意见。编者将其节录整编成文予以发表,以期对三峡工程金属 结构焊接技术的提高有所裨益。本文已经原作者审阅1 可焊性好的钢种,其160Q216MnR和摘要:三峡工程压力钢管选用焊 接方法首选气保焊。设为首页在预制厂应推广实心焊丝气保焊,在实 验基础上推广药芯焊丝气保焊,推广气电立焊;在工地安装立足于手 工焊的基础上推广气保护焊。这些方法必将带来巨大的效益。 三峡工程目前正在施工的重要结构主要有电站压力钢管、水轮机座和 船闸门,其中水轮机座的施工工艺质量由国外公司负责,其余两项由 国内制造商和施工单位承包,闸门制造多由国内知名船厂承担,具焊

接工艺比较成熟,相对船体制造的没备和工艺已不是什么难事;由于材料的低合金钢,所以今后的主要问题是工地安装时,(Q345)为强度级别较低如何提高效率,降低成本。14压力钢管的制作和安装将成为主要矛盾,工程前期共有压力钢管低合金高强610U2,上段为由于材料复杂22500t条,约,(16MnR下段为 真理惟一可靠的标准就是永远自相符合--- ,安装位(φ12499mm)58mm),特别是管道直径大钢),板厚度大(最厚达置复杂,因此不同于常规管道的制作和安装。三峡工程金属此次有幸参加了三峡开发总公司工程建设部组织的“,受益匪浅,但由于时间太短,会前对几个承结构焊接技术专家咨询会”包单位的工作和试验资料未及仔细学习,所以有些意见未能允分表达,现对有些观点加以说明。1.三峡工程压力钢管的选材思想和实践是成功2 都是可焊性60kg级的610U2的上段选用16MnR、下段选日本NKK(CF

奥氏体不锈钢焊接

?奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体。奥氏体不锈钢具有优良的焊接性能,但由于其特殊的成分和组织,相对于普碳钢,其焊接又有很多不同之处,本文就奥氏体不锈钢的焊接进行分析。 一、奥氏体不锈钢的焊接特点 ?奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,其焊接性能良好,但在焊接过程中也容易产生不少问题,主要表现为以下几种: ? 1.1 晶间腐蚀 ?奥氏体不锈钢焊接件容易在焊接接头处发生晶间腐蚀,根据贫铬理论,其原因是焊接时焊缝和热影响区在加热到450~850℃温度范围停留一定时间的接头部位,在晶界处析出高铬碳化物(Cr23C6),引起晶粒表层含铬量降低,形成贫铬区,在腐蚀介质的作用下,晶粒表层的贫铬区受到腐蚀而形成晶间腐蚀。这时被腐蚀的焊接接头表面无明显变化,受力时则会沿晶界断裂,几乎完全失去强度。 ?为防止和减少焊接接头处的晶间腐蚀,一般采取的防止措施有:(1)采用低碳或超低碳的焊材,如A002等,或采用含钛、铌等稳定化元素的焊条,如A137、A132等;(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制4-12%);(3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度;(4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。 ? 1.2 焊接热裂纹 ?热裂纹产生的主要原因是焊缝中的树枝晶方向性强,有利于S、P等元素的低熔点共晶产物的形成和聚集。另外,此类钢的导热系数小(约为低碳钢的1/3),线胀系数大(比低碳钢大50%),所以焊接应力也大,加剧了热裂纹的产生。其防止的办法是: ?(1)选用含碳量低的焊接材料,采用含适量Mo、Si等铁素体形成元素的焊接材料,使焊缝形成奥氏体加铁素体的双相组织,减少偏析; ?(2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。 ? 1.3 应力腐蚀开裂 ?应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。 ?应力腐蚀开裂防止措施:(1)采取合适的焊接工艺,保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平;(2)合理选择焊材,焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等;(3)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。 ? 1.4 焊缝金属的低温脆化 ?对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。此时,焊缝组织中的铁素体的存在总是恶化低温韧性。一般可以通过选用纯奥氏体焊材和调整焊接工艺获得单一的奥氏体焊缝的方法来防止焊缝金属的低温催化。 ? 1.5 焊接接头的σ相脆化 ?焊件在经受一定时间的高温加热后会在焊缝中析出一种脆性的σ相,导致整个接头脆化,塑性和韧性显著下降。σ相的析出温度范围650-850℃。在高温加热过程中,σ相主要由铁素体转变而成。加热时间越长,σ相析出越多。 ?防止措施: ?(1)限制焊缝金属中的铁素体含量(小于15%),采用超合金化焊接材料,即高镍焊材; ?(2)采用小规范,以减小焊缝金属在高温下的停留时间; ?(3)对已析出的σ相在条件允许时进行固溶处理,使σ相溶入奥氏体。 二、奥氏体不锈钢的焊条选用原则

不锈钢焊接工艺

1?目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2.编制依据 2丄设讣图纸 2.2.《手工钩极氮弧焊技术及实应用》 2.3.《焊工技术考核规程》 3?焊接准备 3.1.焊接材料 焊丝J HlCrl8Ni9Ti l. (1>1?5、2.5. 4>3 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊线在使用前应清除油锈及实他污物,露出金属光泽。 3.2.氮气 氮气瓶上应贴有岀厂介格标签,英纯度>99.95%,所用流量6?9升/分钟,气瓶中的氮气不能用尽,瓶内余压不得低于O.SMPa ,以保证充氮纯度0 33焊接工具 3.3.1.采用宜流电焊机,本厂用WSE-315和TIG400两种型号焊机。 3?32 选用的氮气减压流量计应开闭自如,没有漏气现象。切记不可先开流量讣、后开气瓶,造成高压气流宜冲低压,损坏流量讣:关时先关流量讣而后关氮气瓶。 333.输送氮气的胶皮管,不得与输送集它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 3A其它工器具 焊工应备有:手锤、砂纸、扁铲、钢幺幺?刷、电糖工具等,以备淸渣和消缺。 4.工艺参数 不锈钢焊接工艺参数选取表

5.工序过程 5.1.焊工必须按照“考规‘‘规泄经相应试件考试合格后,方可上岗位焊接。 52 严禁在被焊件表而随意引燃电弧、试验电流或焊接临时支撑物等。 5.3.焊工所用的氮弧焊把、氮气减压流应经常检査,确保在氮弧焊封底时氮气为层流状态。 54 接口前应将坡口表而及母材内、外壁的油、漆、垢锈等淸理干净,直至发出金属光泽,淸理范用为每侧齐为10-15mm,对口间隙为2.5?3?5mm. 5.5?接口间隙要匀直?禁止强力对口,错口值应小于壁厚的10%.且不大于1mm. 56 接口局部间隙过大时,应进行修整,严禁在间隙内添加塞物。 5.7.接口合格后,应根据接口长度不同点4-5点,点焊的材料应与正式施焊相同,点焊长度10-15mm> 厚度 3-4mm.z 5.8.打底完成后,应认貞?检査打底焊缝质量,确认合搭后再进行氮弧焊盖而焊接。 5.9.引弧、收弧必须在接口内进行,收弧要填满熔池,将电弧引向坡口熄弧。 5.10.点焊、氯弧焊、盖而焊,如产生缺陷,必须用电磨工具氏等除后,再继续施焊,不得用重复熔化方法消除缺陷. 5.ir 应注意接头和收弧质量,注意接头熔合应良好,收弧时填满熔池。为保证焊缝严密性。 5A2.孟面完毕应及时淸理焊缝表而熔渣、飞溅。 6?质量标准: 6.1.质量按Q/ZB74-73焊接通用技术条件和机械结构用不锈钢焊接管(GBZn2770—2002) 标准检验。 6.2.缺陷种类、原因分析及改进方法 氮弧焊焊接产生缺陷的原因及防止方法

史上最全的不锈钢焊接工艺

史上最全的不锈钢焊接工艺 不锈钢焊接工艺技术要点不锈钢焊管是在焊 管成型机上,由不锈钢板经若干道模具碾压成型并经焊接而成。由于不锈钢的强度较高,且其结构为面心立方晶格,易形成加工硬化,使焊管成型时:一方面模具要承受较大的摩擦力,使模具容易磨损;另一方面,不锈钢板料易与模具表面形成粘结(咬合),使焊管及模具表面形成拉伤。因此,好的不锈钢成型模具必须具备极高的耐磨和抗粘结(咬合)性能。我们对进口焊管模具的分析表明,该类模具的表面处理都是采用超硬金属碳化物或氮化物覆层处理。激光焊接、高频焊接与传统的熔化焊接相比具有焊接速度快、能量密度高、热输入小的特点,因此热影响区窄、晶粒长大程度小、焊接变形小、冷加工成形性能好,容易实现自动化焊接、厚板单道一次焊透,其中最重要的特点是Ⅰ形坡口对接焊不需要填充材料。焊接技术主要应用在金属母材上,常用的有电弧焊,氩弧焊,CO2保护焊,氧气-乙炔焊,激光焊接,电渣压力焊等多种,塑料等非金属材料亦可进行焊接。金属焊接方法有40种以上,主要分为熔焊、压焊和钎焊三大类。熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后

形成连续焊缝而将两工件连接成为一体。在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。焊接时形成的连接两个被连接体的接缝称为焊缝。焊缝的两侧在焊接时会受到焊接热作用,而发生组织和性能变化,这一区域被称为热影响区。焊接时因工件材料焊接材料、焊接电流等不同,焊后在焊缝和热影

相关文档
相关文档 最新文档