文档库 最新最全的文档下载
当前位置:文档库 › 后过渡金属催化剂的研究进展

后过渡金属催化剂的研究进展

后过渡金属催化剂的研究进展
后过渡金属催化剂的研究进展

《高等无机化学》课程论文文献综述

综述题目后过渡金属催化剂

的研究进展

作者所在系别理学院

作者所在专业无机化学

作者姓名吕海涛

作者学号12S007005

导师姓名唐冬雁

导师职称教授

完成时间2013 年 4 月

哈尔滨工业大学材料化学教研室制

说明

1.文献综述各项内容要实事求是,文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。

2.学生撰写文献综述,阅读的主要参考文献应在10篇以上。本课程的相关教材也可列为参考资料,但必须注明参考的具体页码。

3.文献综述的撰写格式按撰写规范的要求,字数在2000字左右。

后过渡金属催化剂的研究进展

1 后过渡金属催化剂的进展

后过渡金属催化剂是近年来受到广泛关注的一种新型催化剂,是对聚合催化剂的又一重要革新。它开辟了一个完全崭新的催化领域,将成为继茂金属催化剂之后的又一研究开发热点。后过渡金属( 铁、钴、镍、钯等) 配合物用于烯烃催化研究可追溯至上世纪70年代,其研究结果发展成了SHOP( Shell higher olefin process) 催化体系(1987)[1],被广泛用于工业生产线性A烯烃。然而,由于后过渡金属容易导致B氢消除反应,影响了乙烯聚合催化的发展。直到上世纪90 年代中期,Brookhart研究组发现了A—二亚胺镍、钯配合物能催化乙烯聚合制得高分子量聚乙烯(1995)[2],后过渡金属配合物催化乙烯聚合的重要性才真正为人们所认识。

研究后过渡金属催化剂卓有成效的世界著名大公司有Du Pont、Shell、BP 、BF Goodrich和W.R.Grace 公司等(1996)[3]。他们在该技术领域投人了大量精力,深入研究,取得令人瞩目的成就,其中有的研究已接近于工业化。shell公司于1996年在英国的Carringtion开始运转了一套使用后过渡金属把基络合物催化剂的聚酮装置,生产能力约1.5万t/a ,这种商品名为Carilon的聚酮产品已经销售到了欧洲和美国。该公司目前正对第二套聚酮装置的地点和生产能力进行评估, 准备扩大生产规模。BP公司在英国的Grangemouth也有采用钯基催化剂的CO/烯烃共聚物中试装置运行。

后过渡金属催化烯烃以及环烯烃聚合的研究在近年来取得了重大进展, 已经能够设计合成具有特殊微观结构的聚烯烃;实现了乙烯与极性单体、乙烯与环烯烃的共聚;催化机理的研究也日益完善。这些结果将为新型催化体系的设计及新型功能材料的合成起到一定的指导作用。在后过渡金属烯烃催化剂的合成过程中, 近年来开始出现了一些新的方法和技术。例如高通量筛选方法( high throughput screening, HTS) 的应用(2002)(2003)[4,5],其优点在于, 在相同的时间段内合成和试验数个甚至数十个配体和配合物, 极大地加速了高效催化剂的筛选, 节省了大量时间, 降低了药品的消耗。相信这一技术将大大促进催化剂合成与筛选的速度。

2 后过渡金属催化剂的特点

后过渡金属(铁、钴、镍、钯等)配合物催化剂由于具有稳定性高、易于合成和耐受杂原子和极性基团的能力,具有与前过渡系催化剂明显不同的性能(2009)(2003)[6,7]为烯烃齐聚、聚合及共聚研究提供了新的发展空间。其主要特点有:(l) 聚合活性极高。这种新型络合物均相催化剂无论与传统高效Ziegler催化剂或茂金属催化剂相比, 都显示出异常高的活性, 高达11x106gPE/mol·h。

(2)聚合能力强,聚合单体范围广。可以接受官能化的极性单体,用于全范围的单体聚合及共聚合,合成种类繁多的新型聚烯烃树脂和特种性能树脂等。

(3) 双功能催化剂的作用。用于乙烯聚合时,可以仅用乙烯原料原位制取支链PE,而且可以通过改变配体种类以及反应温度、压力调节聚合物支链的数量及长度。

(4) 实现聚合物微观结构及树脂性能的分子设计。由于是单活性中心的均相催化剂,因而合成的聚合物链结构及性能均一,而且可以进行聚合物链的预设计。

(5) 价格较低,合成工艺灵活。

3 后过渡金属催化剂中值得研究的问题及展望

烯烃聚合的后过渡金属催化剂的研究近几年虽然获得了突破性的进展,但毕竟该研究尚属起步阶段,还有一系列的问题有待研究。

(1),如何通过催化剂的后过渡金属活性中心和配体的设计,来实现聚烯烃分子设计和反应机理的研究。虽然现已提出了一些反应机理来解释该类催化剂的作用,但在很大程度上还是依赖于对该类反应的传统认识,进一步了解其作用机理才能指导催化剂的设计。

(2),后过渡金属催化剂在催化烯烃聚合工艺方面的问题。目前,后过渡金属催化剂的研究采用的聚合方法主要为溶液聚合,而要使后过渡金属催化剂能在以后聚烯烃生产中推广应用,必须能适合先进的气相聚合工艺。解决此问题,关键是要解决催化剂载体化以及相关的工程技术问题。Boussie等人(1999)[8]报道过将后过渡金属催化剂负载在交联的聚苯乙烯上进行研究,但效果不佳。发展后过渡金属催化剂与传统的Z—N催化剂组成复合型催化剂应用于气相聚合工艺,则是发展的重要途径。

(3),后过渡金属催化剂在控制聚烯烃的立体几何构型方面的问题。虽然后过渡金属催化剂能象茂金属催化剂一样进行分子设计,通过改变催化剂的结构而获得不同结构、不同性能的聚合物,但象茂金属催化剂那样控制聚合物的立体几何构型还需要进一步探讨。

(4)到目前为止,镍配合物较好的乙烯齐聚催化性能,将其与茂金属组成二元复合催化聚合体系(2001)[9],通过改变两个催化剂的加入次序,可以调控聚乙烯产物的结构。所得聚烯烃往往含有多个分子量分布区,但过低或过高的分子量分布区都将影响聚烯烃产物的加工和应用。对此的改进同样需要关注。

后过渡金属催化烯烃以及环烯烃聚合的研究在近年来取得了重大进展,已经能够设计合成具有特殊微观结构的聚烯烃;实现了乙烯与极性单体、乙烯与环烯烃的共聚;催化机理的研究也日益完善。这些结果将为新型催化体系的设计及新型功能材料的合成起到一定的指导作用。后过渡金属催化剂初步实现了催化乙烯与环烯烃的共聚,目前还难以控制催化剂的活性以及所得共聚物的结构,尤其是如何通过催化剂结构或聚合条件的设计控制聚合反应进程,合成出符合要求的环烯烃共聚物,仍然是今后研究的课题。

4 结束语

后过渡金属催化剂由于具有稳定性高、易于合成和耐受杂原子和极性基团的能力,为烯烃齐聚、聚合及共聚研究提供了新的发展空间;也给人们在生产工艺和新材料开发方面带来更多的选择机会;同时对现有的生产技术、工艺提出了挑战。这对于中国聚烯烃催化剂研究人员无疑是一次难得的机遇。可以预测,随着研究的进一步深人,后过渡金属催化剂会在高分子材料制备和生产中得到推广和应用。

参考文献

[1]Keim W, Kowaldt F H, Goddard R. Angew. Chem. Int. Ed. Engl. , 1978,17(6):466-468

[2]Johnson L K, Killian C M, Brookhart M. J. Am. Chem. Soc. ,1995, 117 (23):6414-6415

[3]Chemical Week, 1996,11(20):56

[4]Jones D J,Gibson V C,Green S M,Maddox P J. Chem. Commun.,2002, 1038- 1039

[5]boussie T R,Diamond G M,Goh C,et al. Am. Chem. Soc.,2003,125(14):4306-4317

[6]Zhang Min,Xiao Tianpengfei,Sun Wenhua.Acta Polymerica Sinica,2009,(7):600-612

[7]Gibson V C,Spitzmesser S K. Chem Rev,2003,103:283-315

[8]Boussie T R,Murphy V,Hall K A,et al. Tetrahedron,1999,55:11 699

[9]Li Z,Zhu N,Sun W H,et al. Polym. Int. ,2001,50:1275-1278

高分子金属配合物催化剂的合成(合成化学报告)解析

高分子金属配合物催化剂的合成 摘要:催化剂可以分为均相催化剂和多相催化剂。均相催化剂如金属配合物、有机金属配合物在最近几十年内受到催化科学界的广泛关注。新的均相催化体系的应用使得一些新的生产工艺应运而生。这些工艺操作条件温和,选择性高。然而,在大规模生产中均相催化剂存在着难回收、不稳定、有腐蚀性的缺点。大多数的多相催化剂在高温、高压下才能较好地发挥催化作用,并且其选择性、活性较弱。因此,人们开始设想通过高分子负载的方法转化均相催化剂使之兼具二者的优点。本文主要介绍高分子金属催化剂的合成、高分子效应及其应用。 关键词:催化剂;配合物;高分子;合成;高分子效应 1、简介 近几十年来,均相催化剂由于其较高的催化活性受到了科学界和工业界的广泛重视与应用,但均相反应的催化剂一般来说存在价格昂贵、易流失、较难回收操作等缺点;另一方面,均相催化剂往往要使用重金属离子,这样既会对产物和反应后处理过程造成污染,又使得反应的催化剂难于回收,导致均相催化剂在有机合成和工业上的应用受到了很大的限制。多相催化剂虽然回收简单,但是,机理研究比价复杂,选择性和活性较低。因此寻找能够重复使用且回收操作简单的催化剂成为有机催化反应领域的研究热点之一。1963年,Merrifield和Letstinger等人[1, 2]首次将聚苯乙烯引入到多肽和低聚糖的合成中,开创了高分子化合物在有机合成中应用的先例。近年来,高分子负载型催化剂得到了迅猛发展。高分子催化剂集合了多相催化剂、均相催化剂的优点[3]。其具有较高的催化活性、立体选择性、较好的稳定性和重复使用性能,并且后处理简单,在反应完成后可方便地借助固-液分离方法将高分子催化剂与反应体系中其他组分分离、再生和重复使用,可降低成本和减少环境污染[4]。杨小暾与江英彦[3]指出,若将多相催化剂、均相催化剂视为第一代、第二代催化剂,那么高分子金属络合物催化剂就是第三代催化剂。 研究表明高分子不仅是负载金属催化剂的惰性载体,而且还可以对催化剂的活性中心进行修饰,并使催化剂的结构发生变化,形成通常在小分子配合物中很难看到的特殊结构,从而影响催化剂的催化反应过程,即同种金属使用不同的载体所得到的化剂其催化活性可能相差很大。此为高分子的基体效应。本文主要介绍高分子金属催化剂的合成、

后过渡金属催化剂综述

后过渡金属催化剂综述 1催化剂的意义 催化剂是可以加速化学反应的物质。化学反应若要发生,则反应物分子之间必须有足够能量的发生碰撞以形成活性复合物或过渡态复合物,这个能量就是活化能。而催化剂能够提供一个较低的活化能,因此加速了化学反应的发生。和未添加催化剂的反应的一步实现原理相比,催化反应包含了许多种化合物与过渡态复合物[1]。 催化技术对于目前乃至未来的能源、化学反应、环境工业、石化工业都是至关重要的。原油、煤和天然气向燃料和化学原料的转化,大量石油化工和化学产品的生产,以及CO、NO、碳氢化合物排放物的控制,全都依赖于催化技术。此外,催化剂还是燃料电池电极的必要组分——无论电极使用的是固体氧化物离子还是聚合物质子电解液[2]。催化技术的发展、催化剂的改进和新催化剂的成功开发, 往往会带动已有工艺的改进和新工艺的诞生。据统计,85%以上的化学反应都与催化反应有关。目前工业上采用的催化剂大多为金属、金属盐和金属氧化物等多相催化剂, 其优点是催化性能较稳定, 使用温度广, 容易回收重复使用, 但催化活性较低, 反应常常需要高温、高压条件, 而且副反应较多。最近几十年, 发展了以有机金属络合物为主的均相催化剂, 为化学工业带来革命性进步。这种催化剂分散度高, 活性中心均一, 结构明确, 催化剂活性和选择性都较高, 反应可以在很温和的条件下进行[3]。 2后过渡金属催化剂的性质 聚烯烃工业的发展是一个国家石化工业发展的重要标志。Ziegler - Natta催化剂、茂金属催化剂和后过渡金属催化剂仍然是烯烃聚合催化剂研发的3个主要方向[4]。 90年代,美国北卡罗来纳大学的Brookhart等人[5]报道了利用适当的配体, 可使元素周期表中的第Ⅷ族中Ni和Pd的配合物用来引发烯烃聚合, 从而由单一烯烃可获得高分子量的、有各种支化度的聚合物, 并能实现与极性单体的共聚。他们将这一类催化剂称为烯烃聚合后过渡金属催化剂。后过渡金属催化剂中金属元素的种类涉及到第Ⅷ族中的元素, 目前研究得比较多的为Fe、Co、Ni、Pd4种金属元素[6]。 这类金属配合物的亲氧性相对较弱,对空气和水分不太敏感,特别是催化烯烃以及环烯烃聚合的活性很高[7],而且对比茂金属催化剂, 后过渡金属催化剂具有稳定性好、生产费用低、能生产新品种聚烯烃以及能合成带有官能团的新型聚合物等优点。再加上后过渡金属催化剂合成相对简单, 产率较高,因而其成本远低于茂金属催化剂, 而且聚合时助催化剂用量比较低, 一般与负载的茂金属催化剂相当, 因此成为烯烃聚合用催化剂的新的研究热点[8]。 3 后过渡金属催化剂的种类 后过渡金属烯烃聚合催化剂是指以镍( Ⅱ) 、钯( Ⅱ) 、铁( Ⅱ) 、钴( Ⅱ) 、钌( Ⅱ)等后过渡金属原子为活性中心的一类金属配合物烯烃聚合催化剂。 3.1 镍系 镍系包括双亚胺类、P - O类和N - O类等。双亚胺类镍系烯烃聚合催化剂是指以双亚胺为配体的一类平面型镍(Ⅱ)阳离子配合物。当采用甲基铝氧烷(MAO)作助催化剂时,二溴化双亚胺合镍的衍生物具有很高的催化活性。这类催化剂在Lewis酸如MAO 的作用下形成阳

前过渡金属催化剂的现状及进展

前过渡金属催化剂的现状及进展 摘要:介绍了非茂前过渡金属催化剂作为高效烯烃聚合催化剂的发展和应用领域。根据催化剂中配位原子的性质将非茂前过渡金属催化剂分为配位原子为0、配位原子为N、硼苯类、类茂类等四大类进行讨论。在分述前过渡金属催化剂类型的同时,详细介绍了各类催化剂的特点,综述了各大聚烯烃公司的研究情况。最后时前过渡金属催化剂当前进展和未来发展趋势进行了总结和展望。 关键词:前过渡金属;非茂;催化剂;进展 纵观聚烯烃工业的发展过程,其进步无不与新型催化剂及工艺技术的开发有关。因此新型催化剂的开发应用是聚烯烃工业中研究的焦点。茂金属催化剂有很多优点,如催化体系具有单活性中心、聚合物相对分子质量可调、聚合活性高等。但茂金属催化剂成本较高,制得树脂的加工性差且专利纠纷不断,致使与茂金属催化剂性能相似,而成本较低的非茂单中心催化剂成为研究开发的新热点。非茂前过渡金属催化剂(简称前过渡金属催化剂)是指不含环戊二烯基,金属中心包括前过渡金属元素有机金属配合物,具有与茂金属催化剂相似的特点,可以根据需要定制聚合物,而且成本较低,专利发展空间相对较大,具有巨大的发展潜力。 1 前过渡金属催化剂分类及进展 1.1 含氧类配体 Kakugo等首先报道了烷氧基钛在MAO助催化作用下对丙烯有较好的聚合催化活性,并发现联二酚类衍生物与钛形成的配合物具有很好的烯烃聚合催化活性,如2,2 硫代双(6 一特丁基一4一甲基苯酚)与钛((TBP)TiCl )的配合物在MAO助催化作用下能获得超高相对分子质量的聚合物,如聚乙烯相对分子质量可达4.2×1O。、聚丙烯则高达8×1O 以上。这类催化剂不仅能够使烯烃均聚,而且能够使a烯烃共聚合。(TBP)TiC1:还可催化苯乙烯间规聚合,所得聚苯乙烯的间规度高达98%以上。这是人们第一次将非茂催化剂成功应用于苯乙烯间规聚合。而且,这种催化剂还能催化苯乙烯与乙烯共聚。 Schavorien等进一步扩展了联二酚类衍生物的研究[2]。他们在考察不同取代基对烯烃聚合的影响时发现,只有硫桥基的联二酚配合物具有高催化活性,而其它桥基或非桥联的联二酚的催化活性较低。该类催化体系对长链烯烃及二烯烃也有很好的催化活性。其后,相继又有β-酮与钛及锆形成的配合物应用于烯烃聚合催化的报道,其中β-二酮-锆配合物在MAO助催化作用下对乙烯聚合具有较高的催化活性。而β-二酮-钛配合物则对苯乙烯聚合有较高的催化活性,所产生的聚苯乙烯具有间规结构,间规度达98%以上,与单茂钛催化剂

第六章金属催化剂催化作用讲解

第六章金属催化剂催化作用 章节分配 一、金属催化剂重要类型及重要催化反应示例 二、乙烯环氧化催化作用 1. 乙烯环氧化工业催化剂 2. 乙烯环氧化反应机理 3. 乙烯环氧化中助催剂、促进剂的作用及新型催化剂 三、氨合成催化剂催化作用 1. 合成氨催化剂简况 2. 熔铁催化剂的结构 3. 各种助剂的作用及含量的最佳值范围 4. 氨合成铁催化剂活性中心模型及其作用机理 四、烃类催化重整催化剂作用原理 1. 催化重整反应及重整催化剂 2. 烃类在过渡金属上的吸附态及烃类脱氢 3. 催化重整作用机理 五、其他重要类型金属催化剂简介 1. 镍系催化剂 2. 裂解气中炔烃选择加氢催化剂 六、金属催化剂的电子迁移、d空穴与催化活性 七、多位理论的几何因素与能量因素 八、对多位理论及电子理论的评价 金属催化剂是固体催化剂中研究得最早、最深入,同时也是获得最广泛应用的一类催化剂,例如,氨的合成(Fe)和氧化(Pt),有机化合物的加氢(Ni,Pd,Pt,等)、氢解(Os, Ru,Ni,等)和异构(Ir,Pt,等),乙烯的氧化(Ag),CO的加氢(Fe,

Co,Ni,Ru,等)以及汽车尾气的净化(Pt,Pd,等)等等。其主要特点是具有很高的催化活性和可以使多种键发生开裂。 (1) 自从上世纪P.Sabatier发现金属镍可催化苯加氢生成环己烷以来,迄今除金属催化剂以外,尚未发现过能催化这一反应的其它类型催化剂.又如,乙烷氢解对金属催化剂来说并非难事.然而除金属催化剂之外,也末发现可使乙烷加氢分解的别种催化剂,另外,如众所周知,F—T合成也只有在金属催化剂上才能进行等等.那么,金属催化剂之所以具有这种高的活性,其内在因素是什么? (2)所有金属催化剂几乎都是过渡金属,而且,金属催化剂的功能又都和d 轨道有关,这是为什么? (3)当过渡金属催化剂按其活性排列时,对每个反应都有自己独有的序列,即使对每类反应,至今也未发现它们有相同的序列,什么是决定这种序列的内在因素? (4)对一个反应来说,为什么同类金属又常常有明显不同的选择性? (5)对某些反应来说,单位表面积的催化活性决定于金属的晶面、金属晶粒的大小(如果金属是负载着的),载体以及制法,为什么对活性有这种差别?又怎样和反应相联系? (6)由两种金属制成的合金催化剂,其催化功能随组分有强大变化,而且又明显地取决于所研究的反应,产生这些效果的原因是什么? 表6-1 金属催化剂类型(按制备方法划分)

负载过渡金属催化剂上低碳烃选择催化还原氮氧化物的研究进展

3收稿日期:2008-01-14 作者简介:潘华,博士研究生,从事大气污染控制技术研究;施耀 (通讯作者),教授,博导,从事大气污染控制技术研究,shiyao @https://www.wendangku.net/doc/f412595347.html, 。 基金项目:浙江省自然科学基金项目(Y 507720) 文章编号:100926094(2008)0420036206 负载过渡金属催化剂上低碳烃选择催化还原氮氧化物的研究进展3 潘 华,张燕婷,李 伟,施 耀 (浙江大学环境与资源学院环境污染控制技术 研究所,杭州310028) 摘 要:氮氧化物(NO x )是形成酸雨和光化学烟雾的主要物种和引发物,消除氮氧化物污染是环境保护中的重点和难点。目前负载过渡金属催化剂上低碳烃选择催化还原NO x 研究是各国环境研究工作者的研究热点。本文综述了近年来负载过渡金属催化剂上低碳烃选择催化还原氮氧化物的研究进展,着重分析了该反应体系中催化剂的研究状况。探讨了目前比较公认的低碳烃选择催化还原NO x 的反应机理:1)NO 首先被氧化为NO 2;2)含氮有机中间体的生成;3)有机中间物种对NO x 的捕捉和生成N 2。总结了提高该体系中NO x 转化率的方法:1)改进催化剂的制备方法;2)添加助剂;3)等离子体结合催化还原。最后指出了现在研究中存在的主要问题,并提出开发新型催化剂、探索新催化剂制备技术以及引入新实验手段是低碳烃选择还原 NO x 今后的研究方向。 关键词:环境工程;低碳烃;氮氧化物;选择催化还原;过渡金属中图分类号:O643 文献标识码:A 0 引 言 氮氧化物(NO x )是形成酸雨和光化学烟雾的主要物种和引发物,可使人类患发肺气肿和支气管炎等疾病[1,2]。大气中的NO x (包括NO ,NO 2等)主要来自移动源(机动车)和固定源(主要为火力发电厂、工业燃烧装置)2个方面,在发达国家,移动源和固定源对NO x 的贡献约各占50% [3] 。美国学者 S treets 等[4]报道中国1995年NO x 排放总量为112×10-7t ,其 中固定源占76%,移动源占12%,并预测到2020年NO x 排放总量为2166×10 -7 t ,其中固定源占7812%,移动源占1311%。 面对氮氧化物排放量的日益增多以及由此引起对环境与人类生活的严重危害,世界各国政府先后制定了具体的NO x 排放法规[2];企业和科研人员则致力于开发高效率、低成本的脱硝(DeNO x )工艺和技术,其中选择性催化还原NO x 技术 (NO -SCR )已在全世界范围引起了广泛关注。 1 DeN O x 技术的发展 DeNO x 技术可分为燃烧过程控制和尾气控制2大类。燃 烧过程控制主要是通过新型燃烧器的设计和改变炉内燃烧条件而实现,但采用低NO x 燃烧技术最多仅能降低约50%的 NO x 排放[5]。因此目前防治NO x 污染的主要技术是尾气控 制,该法可分为干法和湿法2大类。干法脱硝包括选择催化还原[6,7]、非催化还原法[8]、金属氧化物吸附转化法[9]和等离子法[10,11];湿法脱硝包括酸吸收[12]、碱吸收[12,13]、氧化吸收[13]和化学吸收-生物还原法[14,15]。 目前在国际上仅NH 3的选择催化还原(NH 3-SCR )技术得到了工业化应用[16],该技术转化率高、选择性好、实用性 强。但该技术也存在如下缺点[17] ,1)NH 3是一种有毒腐蚀性气体,存储和输运麻烦,对管路设备要求高,造价昂贵;2)在该过程中,NH 3需要计量控制加入量,容易泄漏或反应不完全而造成二次污染;3)NH 3与烟道气中的S O 2反应,形成腐蚀性的NH 4HS O 4,易使催化剂中毒;4)工作温度范围窄。因此,寻找一种还原剂可以取代NH 3具有十分重要的意义。1990年,日本学者I wam oto 等[6]报道了在含氧气氛下,烯烃在 Cu -ZS M -5催化剂上以高选择性地还原NO 。从此,烃类选 择催化还原NO x 的研究受到了各国学者的广泛关注。英国学者Burch 等[18]介绍了金属氧化物和贵金属铂催化剂上烃类选择还原NO x 的研究进展。国内学者孔科[19]和张涛[20]分别介绍了烃类和甲烷选择还原NO x 的研究进展。在烃类选择还原NO x 的研究中,贵金属催化剂具有活性高和低温特性好的特点,因此成为人们研究的一个热点[21,22],但其产物中含 有较多N 2O (约占产物的50%),对N 2的选择性低[21]。近年来,负载过渡金属(特指第四周期的过渡金属:T i ,V ,Cr ,Mn ,Fe ,C o ,Ni ,Cu 和Zn )催化剂由于活性高、成本较贵金属催化剂低廉而受到了研究者的广泛关注。此外低碳烃(含碳原子数小于3)储量丰富,分布广泛、易得。因此负载过渡金属催化剂上低碳烃选择还原NO x 具有更加广阔的实用前景和经济价值。本文将介绍近几年负载过渡金属催化剂上低碳烃选择还原NO x 的研究进展。 2 负载过渡金属催化剂上低碳烃选择还原N O x 催 化剂的研究进展 近年来关于负载过渡金属催化剂上低碳烃选择还原NO x 的研究有很多。通过SCI 检索统计发现,从2002年到2007年发表的有关负载过渡金属催化剂上低碳烃选择还原NO x 的论文约有90篇(见图1),占这段时期烃类选择催化还原NO x (HC -SCR )论文的约60%,占这段时期选择催化还原NO x (NO -SCR )论文的约20%,充分表明人们对这方面工作关注 的程度。总结10年(尤其近6年) 来用于负载过渡金属催化 图1 2002—2007年间SCI 收录的有关负载金属催化剂 上低碳烃选择还原N O x 的文章 Fig.1 The numbers of documents on N O -SCR with low er hydrocarbon over transition metal b ased catalysts indexed by SCI during 2002-2007 第8卷第4期2008年8月 安全与环境学报Journal of Safety and Environment V ol.8 N o.4  Aug ,2008

后过渡金属催化剂的研究进展-哈尔滨工业大学教师个人主页

《高等无机化学》课程论文文献综述 综述题目后过渡金属催化剂 的研究进展 作者所在系别理学院 作者所在专业无机化学 作者姓名吕海涛 作者学号12S007005 导师姓名唐冬雁 导师职称教授 完成时间2013 年 4 月 哈尔滨工业大学材料化学教研室制

说明 1.文献综述各项内容要实事求是,文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 2.学生撰写文献综述,阅读的主要参考文献应在10篇以上。本课程的相关教材也可列为参考资料,但必须注明参考的具体页码。 3.文献综述的撰写格式按撰写规范的要求,字数在2000字左右。

后过渡金属催化剂的研究进展 1 后过渡金属催化剂的进展 后过渡金属催化剂是近年来受到广泛关注的一种新型催化剂,是对聚合催化剂的又一重要革新。它开辟了一个完全崭新的催化领域,将成为继茂金属催化剂之后的又一研究开发热点。后过渡金属( 铁、钴、镍、钯等) 配合物用于烯烃催化研究可追溯至上世纪70年代,其研究结果发展成了SHOP( Shell higher olefin process) 催化体系(1987)[1],被广泛用于工业生产线性A烯烃。然而,由于后过渡金属容易导致B氢消除反应,影响了乙烯聚合催化的发展。直到上世纪90 年代中期,Brookhart研究组发现了A—二亚胺镍、钯配合物能催化乙烯聚合制得高分子量聚乙烯(1995)[2],后过渡金属配合物催化乙烯聚合的重要性才真正为人们所认识。 研究后过渡金属催化剂卓有成效的世界著名大公司有Du Pont、Shell、BP 、BF Goodrich和W.R.Grace 公司等(1996)[3]。他们在该技术领域投人了大量精力,深入研究,取得令人瞩目的成就,其中有的研究已接近于工业化。shell公司于1996年在英国的Carringtion开始运转了一套使用后过渡金属把基络合物催化剂的聚酮装置,生产能力约1.5万t/a ,这种商品名为Carilon的聚酮产品已经销售到了欧洲和美国。该公司目前正对第二套聚酮装置的地点和生产能力进行评估, 准备扩大生产规模。BP公司在英国的Grangemouth也有采用钯基催化剂的CO/烯烃共聚物中试装置运行。 后过渡金属催化烯烃以及环烯烃聚合的研究在近年来取得了重大进展, 已经能够设计合成具有特殊微观结构的聚烯烃;实现了乙烯与极性单体、乙烯与环烯烃的共聚;催化机理的研究也日益完善。这些结果将为新型催化体系的设计及新型功能材料的合成起到一定的指导作用。在后过渡金属烯烃催化剂的合成过程中, 近年来开始出现了一些新的方法和技术。例如高通量筛选方法( high throughput screening, HTS) 的应用(2002)(2003)[4,5],其优点在于, 在相同的时间段内合成和试验数个甚至数十个配体和配合物, 极大地加速了高效催化剂的筛选, 节省了大量时间, 降低了药品的消耗。相信这一技术将大大促进催化剂合成与筛选的速度。 2 后过渡金属催化剂的特点 后过渡金属(铁、钴、镍、钯等)配合物催化剂由于具有稳定性高、易于合成和耐受杂原子和极性基团的能力,具有与前过渡系催化剂明显不同的性能(2009)(2003)[6,7]为烯烃齐聚、聚合及共聚研究提供了新的发展空间。其主要特点有:(l) 聚合活性极高。这种新型络合物均相催化剂无论与传统高效Ziegler催化剂或茂金属催化剂相比, 都显示出异常高的活性, 高达11x106gPE/mol·h。 (2)聚合能力强,聚合单体范围广。可以接受官能化的极性单体,用于全范围的单体聚合及共聚合,合成种类繁多的新型聚烯烃树脂和特种性能树脂等。

氨合成铁系催化剂

氨合成熔铁催化剂 氨合成熔铁催化剂,目前合成氨工业中普遍使用的主要是以铁为主体的多成分催化剂,又称铁触媒。 1、组成 1.1组成 主要成分是Fe3O4,含量在90%左右。 助催化剂为K2O、Al2O3、CaO、MgO等,含量小于催化剂总质量的9%,低压催化剂还增加了CoO(A201等)。其按作用不同分为两类,一类是结构型助剂,如Al2O3、Cr2O3、ZrO2、TiO2、MgO、CaO、SiO2等难熔氧化物。另一类是电子型助剂,如K20。每种类型助剂都有各自的最佳添加量,一般均在0.6%~1.0%范围。 1.2 物理结构 氧化态催化剂主体是磁铁矿,其化学计量式是FeO.Fe2O3或Fe3O4。晶体结构类似于尖晶石(MgAl2O4)的结构(90%以上是具有反尖晶石结构、不均匀复杂体系的磁铁矿)。是四面体和八面体结构的堆积结果。其中形成两种间隙:四面体间隙和八面体间隙。三价的金属离子占据四面体间隙的一半和八面体间隙的一半,二价的铁离子占据八面体间隙(Fe3+(Fe2+,Fe3+))。磁铁矿的一个单胞(晶体的最小结构单元)由32个氧离子和24个铁离子所组成,即8(Fe3O4)。按结晶学原理,32个氧原子按照面心立方堆积的每一单胞,有64个四面体间隙和32个八面体间隙。如上所述,除了24个被铁离子占据以外,其余大部分是空的,因此可加入助催化剂占据这些空隙形成间隙固溶体。而且化学式相近的物质,结构类型相同且质点(离子、原子或分子)半径近于相等的物质,可以发生同晶取代,生成置换固溶体,例如三价铝即可置换部分三价铁,形成置换固溶体。(含量小于4%时主要生成置换固溶体。若三氧化二铝全部取代氧化铁则生成FeOAl2O3) 1.3 化学特点 铁触媒在500 ℃左右时的活性最大,这也是合成氨反应一般选择在500 ℃左右进行的重要原因之一。但是,即使是在500 ℃和30 MPa时,合成氨平衡混合物中NH3的体积分数也只为26.4%,即转化率仍不够大。在实际生产中,还需要考虑浓度对化学平衡的影响等,例如,采取迅速冷却的方法,使气态氨变成液氨后及时从平衡混合气体中分离出去,以促使化学平衡向生成NH3的方向移动。 2、应用及用途 2.1 催化类型 熔铁催化剂一般用于氧化还原反应。 2.2 应用 主要用于合成氨厂的氨合成过程,催化的反应为 N2+3H2→2NH3 目前国内大型合成氨厂主要使用A103、A110系列和ICI47-1型号,而其他型号主要用于中、小型合成氨厂。 此类催化剂也可用于冶金工业、电子工业中催化氨分解制纯氢和纯氮气体。A106主要用于冶金工业、电子工业使氨分解为纯净的H2和N2。NH4分解温度650℃,常压下空速1000~2000 h-1。A110-4在低温下有较高活性,是一种理想的合成氨催化剂,用于冶金、电子工业中是氨分解为纯净的H2和N2,亦可用于H2,N2混合气中脱除CO,CO2。另外此催化剂暴露在空气中会迅速燃烧失去活性。 3、制备方法 制法基本为熔融法。将磁铁矿(Fe3O4)砂精选,然后与氧化铝、石灰石、硝酸钾一起混合,若有其他助剂也同时混入。混合均匀后置于电炉中,再加一定量金属铁,通电使这些物料熔融。待完全熔化后,倾出至铁盘中,待冷却后破碎、磨角、过筛分级,即得无规则形状

新型后过渡金属烯烃聚合催化剂—镍系烯烃聚合催化剂

新一代聚烯烃催化剂 ———后过渡金属催化剂 苏 宇 杨海滨(中山大学高分子研究所,广州 510275) 摘 要 本文综述了以α2二亚胺为配体的Ni(Ⅱ)基和Pd(Ⅱ)基、以三吡啶二亚胺为配体的Fe(Ⅱ)基和Co(Ⅱ)基后过渡金属催化剂,包括催化剂的组成、对烯烃聚合及共聚合的性能和聚合机理。 关键词 后过渡金属,镍,钯,烯烃,聚合,催化剂 NOVE L OL EFIN POLYMERIZATION CATALYSTS Su Yu Yang Haibin (Institute of Polymer Science,Zhongshan University,Guangzhou510275) Abstract This paper introduces about Ni(Ⅱ)、Pd(Ⅱ)、Fe(Ⅱ)、Co(Ⅱ)2based novel late transi2 tion metal catalysts,and the composition of catalysts,properties of olefin homopolymerization and copolymerization and mechanism of polymerization reaction are given. K ey w ords late transition metal,Palladium,Nickel,olefin,polymerization,catalyst 全球对聚烯烃的市场需求日益增大。据美国Chem System公司预测[1],到2003年,世界对乙烯的需求量为10500万t,年均增长率为515%;而对丙烯的需求量为6700万t,比1998年增加1600万t。这惊人的数字说明了聚烯烃的生产及改良是市场客观要求的必然。而聚烯烃树脂性能的改进与聚合催化剂密切相关。Ziegler催化剂的开发和改进大大提高了线型聚乙烯的性能,茂金属催化剂的出现使聚烯烃发生了革命性的变革。与此同时,新型非茂金属———后过渡金属催化剂(又称Brookhart催化剂)的开发研究更引人注目,它为制备更宽范围的聚烯烃树脂提供了可能。1995年,Brookhart等人[2]用大体积α2二亚胺配体形成的Ni(Ⅱ)和Pd (Ⅱ)基络合物,成功地实现了促进链增长的目标,成为第一个能够生产高分子量的后过渡金属催化体系。最近2年,伦敦Imperial大学的G ibson研究小组[3]和美国Brookhart研究小组[4]独立发现了Fe (Ⅱ)基和Co(Ⅱ)基催化体系,这种新催化体系不仅在活性和聚合物性能控制方面具有茂金属催化剂的很多优点,而且具有成本低、可生产更宽范围聚合材料的潜力。本文即对后过渡金属催化剂作一综述。 1 后过渡金属催化剂的特点 与传统Ziegler-Natta催化剂及茂金属作比较,后过渡金属催化剂的主要特点是: (1)它选择了Ni、Pd、Fe、Co等后过渡金属,而不是通常茂金属所采用的Ti、Zr等前过渡金属,所制备的催化剂也是单活性中心均相催化剂,因此可按预定目的精确控制聚合物的链结构; (2)聚合能力强,可用于烯烃和极性单体共聚。根据共聚单体特点和反应条件及催化剂种类,极性树脂中共聚单体含量约为013%~12%; (3)用于烯烃均聚(乙烯、丙烯、己烯等)。Ni (Ⅱ)和Pd(Ⅱ)基催化剂可用于生产带支链的聚合 后过渡金属催化剂之前的催化剂的特点

第六章 金属催化剂催化作用

第六章 金属催化剂催化作用 章节分配 一、金属催化剂重要类型及重要催化反应示例 二、乙烯环氧化催化作用 1. 乙烯环氧化工业催化剂 2. 乙烯环氧化反应机理 3. 乙烯环氧化中助催剂、促进剂的作用及新型催化剂 三、氨合成催化剂催化作用 1. 合成氨催化剂简况 2. 熔铁催化剂的结构 3. 各种助剂的作用及含量的最佳值范围 4. 氨合成铁催化剂活性中心模型及其作用机理 四、烃类催化重整催化剂作用原理 1. 催化重整反应及重整催化剂 2. 烃类在过渡金属上的吸附态及烃类脱氢 3. 催化重整作用机理 五、其他重要类型金属催化剂简介 1. 镍系催化剂 2. 裂解气中炔烃选择加氢催化剂 六、金属催化剂的电子迁移、d空穴与催化活性 七、多位理论的几何因素与能量因素 八、对多位理论及电子理论的评价 金属催化剂是固体催化剂中研究得最早、最深入,同时也是获得最广泛应用的一类催化剂,例如,氨的合成(Fe)和氧化(Pt),有机化合物的

加氢(Ni,Pd,Pt,等)、氢解(Os, Ru,Ni,等)和异构(Ir,Pt,等),乙烯的氧化(Ag),CO的加氢(Fe,Co,Ni,Ru,等)以及汽车尾气的净化(Pt,Pd,等)等等。其主要特点是具有很高的催化活性和可以使多种键发生开裂。 (1) 自从上世纪P.Sabatier发现金属镍可催化苯加氢生成环己烷以来,迄今除金属催化剂以外,尚未发现过能催化这一反应的其它类型催化剂.又如,乙烷氢解对金属催化剂来说并非难事.然而除金属催化剂之外,也末发现可使乙烷加氢分解的别种催化剂,另外,如众所周知,F—T合成也只有在金属催化剂上才能进行等等.那么,金属催化剂之所以具有这种高的活性,其内在因素是什么? (2)所有金属催化剂几乎都是过渡金属,而且,金属催化剂的功能又都和d轨道有关,这是为什么? (3)当过渡金属催化剂按其活性排列时,对每个反应都有自己独有的序列,即使对每类反应,至今也未发现它们有相同的序列,什么是决定这种序列的内在因素? (4)对一个反应来说,为什么同类金属又常常有明显不同的选择性? (5)对某些反应来说,单位表面积的催化活性决定于金属的晶面、金属晶粒的大小(如果金属是负载着的),载体以及制法,为什么对活性有这种差别?又怎样和反应相联系? (6)由两种金属制成的合金催化剂,其催化功能随组分有强大变化,而且又明显地取决于所研究的反应,产生这些效果的原因是什么? 表6-1 金属催化剂类型(按制备方法划分) 催化剂类型催化剂用金属制造方法特点 还原型Ni, Co, Cu, Fe金属氧化物以H2还原 甲酸型Ni, Co金属甲酸盐分解析出金属 Raney型Ni, Co, Cu, Fe金属和铝的合金以NaOH处理,溶提去 铝

过渡金属催化的碳氢键活化

过渡金属催化的碳氢键活化 应用化学,涂适,1132236,135******** 碳-氢(C-H)键的转化和碳-碳(C-C)键的连接是有机化学中最重要、最基础的研究内容之一。作为自然界最基本、最普遍的惰性化学键和结构单元,C-H键广泛存在于各种有机化合物当中(如简单的碳氢化合物、复杂有机分子、生物体内组织,工业多聚物材料等)。而通过直接活化和诱导C-H键形成新的官能团(特别是新的C-C键)无疑是一条极具吸引力的反应策略,它集中体现了原子经济性、步骤经济性、环境友好等特征,近年来已发展成有机化学中最活跃的研究领域之一。 早在上世纪初,人们就发现通过一些特定的方法可以对一些惰性C-H键进行直接的官能团化,但如何在活化过程中对各类形形色色的C-H键进行识别和区分,并有目的性的对特定的位置进行定向官能团衍生,一直是有机合成领域的研究难点。随着过渡金属化学的迅猛发展,一系列新反应、新试剂陆续被发现和合成,并在有机合成中得到了广泛的应用。而过渡金属在C-H活化领域的应用,使得对一些C-H键定向的活化和官能团化成为可能,相关的研究近10年来已取得了令人瞩目的成绩,特别是钌、铑、钯、铱等传统过渡金属催化的一些具有高化学选择性的C-H活化反应已经逐渐发展成熟,并且在有机合成中得到了越来越多的应用。 最近,过渡金属促进的有机反应研究的主要聚焦于两类过渡金属上。一类是以铂、金、银为代表的贵重过渡金属,传统上这几种金属普遍被认为具有惰性及稳定性,通常很少参与有机反应,但近期的研究发现,这些金属往往具有独特的反应性,其在C-H活化领域的应用令人期待。另一类是以铜、铁等为代表的过渡金属化合物,这类金属在地球中储量丰富,具有价格低廉,环境友好等特征。用更经济、更绿色的铜、铁催化剂代替传统稀有过渡金属(如钌、铑、钯等)催化活化碳-氢键实现碳-碳键的构筑是金属有机化学发展的又一热点。 现阶段,各种新的策略和机理被提出并被广泛采用,以下爱是对过渡金属催化的碳氢活化发展及其研究进展的一些介绍。 碳氢活化反应既可以发生在分子内进行,也可以发生在分子间。分子内的碳氢活化反应由于体系对反应位置自由度的限制使得反应具有区域选择性。 分子间碳氢活化反应由于催化剂和C-H键反应的时候具有更大的自由度使得该类型反应有更大的挑战性。影响分子间碳氢活化反应的区域选择性的主要因素有:一、官能团化得芳环的电性(例如,芳基亲电取代发生在供电子基取代的邻对位);

茂金属催化剂的合成资料

本科课程论文 《茂金属催化剂的合成简述》 课程名称高等有机化学 姓名梁腾辉 学号 1014122020 专业高分子材料科学与工程 任课教师程琳 开课时间 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:年月日

茂金属催化剂的合成简述 摘要简要介绍了几种茂金属催化剂的有机合成以及其催化机理。 关键词茂金属催化剂合成催化 1 前言 烯烃聚合用茂金属催化剂通常指由茂金属化合物作为主催化剂和一个路易斯酸作为助催化剂所组成的催化体系,其催化聚合机理现已基本认同为茂金属与助催化剂相互作用形成阳离子型催化活性中心。茂金属催化剂一般指由过渡金属元素(如IV B 族元素钛、锆、铪)或稀土金属元素和至少一个环戊二烯或环戊二烯衍生物作为配体组成的一类有机金属配合物。茂金属催化剂具有极高的活性特别是茂锆催化剂含一克锆的均相茂金属催化剂可以催化100t的乙烯聚合但同时助催化剂的用量也是相当大的甚至Al/Zr>2000这在生产中意义不大。因此必须想法设法得倒活性高助催化剂用量少的茂金属催化剂[1]错误!未找到引用源。。 2 茂金属催化机理 均相茂金属催化剂主要分为非桥联单茂金属催化剂、非桥联双茂金属催化剂、桥联型茂金属催化剂、限制几何构型茂金属催化剂以及双核茂金属催化剂等。若茂金属催化剂以烷基铝氧烷为助催化剂,其催化机理是一个形成单一阳离子活性中心的机理。在茂金属催化体系中,一般要求助催化剂MAO必须达到一定的浓

度,以便能够引发催化反应的进行[2]错误!未找到引用源。。其机理如下图所示:3 茂金属的合成 金属有机化合物的制备和处理操作都采用Schlenk 技术,在氮气氛围条件下进行无水无氧操作,所用玻璃反应容器都进行真空烘烤干燥。四氢呋喃、乙醚、甲苯,在氮气氛围下以钠、钾合金/二苯甲酮回流至溶液变成紫色,并在氮气保护下蒸出,封口备用。二氯甲烷、正已烷、石油醚(60 ~ 90°C),在氮气保护下与CaH粉末混合,搅拌回流两天后,在氮气氛围下蒸入安瓶中封口备用[3]错误!未找到引用源。。 3.1 非桥联五甲基环戊二烯水杨醛亚胺铬化合物的合成(非桥联单茂) 此类催化剂结构特征是有一个茂环作为配体:Cp.MR3(CP.=取代环戊二烯基等;M=Zr,Ti,Hf,Cr等;R=卤素、烷基、Oar、RNAr等)这类催化剂具有较大的配位空间,有利于具有较大位阻的烯烃单体的配位插入,但对于构型的控制一般较差[3]。 3.2二甲基二茂锆化合物(1,2-Phz-4-MeCp)2 ZrMe2的合成 两个茂环与中心金属原子配位,从而形成夹心结构,即所谓的非桥联双茂金属催化剂。该系列催化剂用于催化乙烯聚合,由于乙烯配位插入时不存在潜手性α

过渡金属催化理论知识

过渡金属催化剂有二大特点:Ⅰ、在反应气氛如H2、O2气下,过渡金属是以金属晶体存在。Ⅱ、最适合用于金属催化剂的活性组份是那些最外层有1~2个S电子,次外层为d电子,d电子为大部分充满状态的元素。 金属催化作用与d电子性质、金属晶体、表面结构有关。 3d带电子填充量为94%,若平均到每个Ni原子上时,d轨道的电子填充量为9.4个电子。即Ni金属晶体中的Ni 原子d轨道中还差0.6个电子就可被完全充满,使d轨道能量或d带能量处于

最低,因而有很强的能力去获得电子,我们把这个电子差额称之为d孔穴。 20、25、36、38、40、42、46、59、61、93-102、104-106、110、144、148、149(很重要)、153、159、172(不错)、173(非常好)、177、180(以及后面连续的几页都比较重要)页有重要信息 几何论和能量匹配论包括两个方面: Ⅰ、吸附物分子与活性位空间结构的几何对应关系。Ⅱ、吸附物分子与活性位之

间的能量对应关系。 EFGH晶面的Miller指数:(100)ABC晶面的Miller指数:(222) 金属结构的应用在于: 形成合金:当原子半径相近,而晶胞结构又相同的一些金属可以相互取代,形成结构不被破坏的合金,如,Pd—Au,Pt—Re,Cu—Ni 等合金催化剂。 低Miller指数晶面上晶格原子排布整齐,高能量的边、角原子少,原子密度高,故其表面剩余能低,稳定性高。 高Miller指数晶面则晶格排布

有不规整的地方,处于高能态的边、角原子多,原子密度低,表面剩余能高,稳定性差。 表面以下面几种方式来降低晶体的总表面能: 1.尽量减少向外暴露的表面积。 2.暴露表面以低表面能的晶面为主。 3.改变金属晶体外露的表面几何结构。 4.增强金属与载体间的相互作用。 改变外露的表面几何结构以减少表面能表面松弛与重构(Relaxation & Reconstruction of

高分子反应研究方法-后过渡金属催化剂

高分子反应研究方法 —二亚胺后过渡金属催化剂催化乙烯聚合的机理与动力学研究

目录 高分子反应研究方法 (1) 一、前言 (1) 1.1 历史 (1) 1.2 催化反应机理与实验 (2) 1.2.1 催化反应机理 (2) 1.2.2 聚乙烯高分子链形态 (3) 二、 -二亚胺Ni/Pd催化乙烯聚合机理研究中使用的研究方法 (4) 三、聚乙烯微结构、构象和形态的Monte Carlo模拟 (4) 3.1 二亚胺Ni催化乙烯聚合产物结构模拟[6] (4) 3.1.1 模型与算法 (4) 3.1.2 结果与分析 (7) 3.2 温度和压力对二亚胺Ni催化乙烯聚合产物微结构影响模拟[7] (7) 3.3 二亚胺Pd催化乙烯聚合产物构象与形态模拟[8] (8) 3.3.1 模型 (9) 3.3.2 结果与讨论 (10) 四、二亚胺Ni催化乙烯聚合反应动力学模型[9] (12) 4.1 模型 (12) 4.1.1 聚合速率模型 (12) 4.1.2 链转移和分子量模型 (13) 4.1.3 分子量分布模型 (14) 4.1.4 链行走和支化密度模型 (15) 4.2 结果与讨论 (19) 参考文献 (21)

一、前言 1.1 历史 1995年Brookhart Maurice 发现了α-二亚胺Ni/Pd 催化剂[1] (图1),这类催化剂可以催化乙烯聚合获得高分子量的聚乙烯,并且其活性比拟甚至超过茂金属催化剂。只需简单地调节温度、压力等参数就可以用乙烯一种原料获得从线性聚乙烯、支化聚乙烯甚至高度支化聚乙烯或超支化聚乙烯。如果说前过渡金属烯烃聚合催化剂最显著的特点是控制立体规整性,那么后过渡金属烯烃聚合催化剂最显著的特点是控制聚合物分子链的形态[2] 和较强的极性单体耐受性。 R 1 R 2 N N R 3 R 3 R 3 M X Y R 3 图1 Brookhart 型二亚胺Ni/Pd 催化剂 事实上,在α -二亚胺Ni/Pd 催化剂发现之前,SHOP 工艺所使用的催化剂与此类似。在 SHOP 工艺所使用催化剂的基础上,利用催化剂结构设计理论,合成出了能够得到高分子量聚乙烯的α-二亚胺Ni/Pd 催化剂。 高分子的形态是指单体单元在高分子中的几何排列,如线性、高度支化、超支化、 树枝状等(图2)。其它的术语如微结构、织构也常用来描述具有不同结构的聚合物。微结构常用来描述高分子局部区域的结构,它不能充分表征高分子的全局形态。而聚合物织构广泛用于描述聚合物结构类型,如星形、嵌段、接枝等不同类型的支化形式和不同整规度的聚合物。而形态(topology )是指构造高分子的单元相同但几何排列不同。例如对于聚乙烯来说,有如下几种形态: 线性聚乙烯 高度支化聚乙烯 超支化聚乙烯树枝状聚乙烯 图2 聚乙烯分子链的常见形态 高分子的形态是决定其物理性质和应用的一个非常重要的参数。人们迫切希望能直接将现有的简单单体聚合来控制所得高分子的形态。链行走催化剂是最吸引人的选择之一。其控

过渡金属催化

化工与材料工程学院 毕业论文开题报告 钯催化C-H键、C-C键活化反应的研究

1.课题来源及选题意义 人类在新世纪面临俩大危机,一是资源的不断枯竭,而是生态环境的日益恶化。目前世界上工业制造出的化合物的数量大约在2万到3万之间。这些数目巨大的化合物只是由很少数目的原料来制备的,并且碳的来源几乎都是化石物质,即石油,天然气和煤。石油、天然气以及煤中的主要成分是含有惰性的C-H键、C-C键的烷烃类化合物,这些宝贵的化石燃料的利用至今仍主要局限于将其燃烧提供能源。因此,惰性的C-C、C-H键的活化首先可以大幅度的提高资源的利用效率。 早在上个世纪初,人们就发现一些特定的方法可以对一些惰性C-H、C-C键进行直接的官能团的活化,但如何在活化过程中对个形形色色的C-C、C-H键进行识别和区分,并有目的性的对特定位置进行定向官能团的衍生,一直是有机合成领域的一个难点。随着过渡金属化学的迅速发展,一系列新反应、新试剂陆续被发现和合成,并在有机合成中得到广泛的应用。 碳氢(C-H)键的转化和碳碳键的连接是有机化学中最重要、最基础的研究内容之一。作为自然界最简单、最普遍的惰性化学键和结构单元,C-C键与C-H键广泛存在各种有机化合物中(如简单的碳氢化合物、复杂有机分子、生物体内组织,工业多聚物材料等)。而通过活化和诱导C-H键形成新的化合物(特别是新的C-C键)无疑是一条既具有吸引力的反应策略。通过活化C-C键促进芳烃的交叉偶联反应,集中体现了原子经济性、步骤经济性。

C-H键具有较高的电能,并且碳原子和氢原子的电负性相近。因此,C-H键的基本特点是稳定坚固且极性很小,反应活性很小,没有官能团活化的情况下是很难发生化学反应的。所以在C-H键反应过程中遇到的第一个问题是活性,其次的一个问题是反应的选择性。由于大部分情况下是有机分子中含有多个化学性质相似的C-H键,如何对这些形色各异的C-C、C-H键进行识别和催化,并按照预期设想的结果进行反应,就成了催化活化C-C、C-H键最为根本并待于解决的问题。 过渡金属中很多都可以实现C-C、C-H键的活化,而过渡金属的参与为了这一领域的发展带来了无限的机遇,成功的解决了这一类相关研究的难题。 各种过渡金属化合物对于碳氢键、碳碳键的识别和活化的机制各不相同,金属钯是银白色的过渡金属,化学性质不活泼,常温下在空气和潮湿环境中稳定。钯能耐氢氟酸、磷酸、高氯酸、盐酸、硫酸蒸汽的侵蚀。在1803年,英国化学家武拉斯顿从铂矿中发现的。它可以通过催化中环钯化的过程实现对于临近的各类碳氢键的活化。钯催化剂是以钯为主要活性组分,使用钯黑或把钯黑载于氧化铝、沸石等载体上。以钠、镉、铅等的盐为助催化剂。并且,选择钯这种过渡元素可实现有机化合物之间高效,高选择性,且条件温和的转化,是实现绿色化学的重要内容。可实现在环境友好的反应条件下的催化活化,是对于资源的高效的利用。 2.国内外的发展及前景 2.1国外发展状况

金属配合物催化剂催化苯乙烯的聚合研究开题报告

开题报告 题目:金属配合物催化剂催化苯乙烯的聚合 研究

1 毕业设计(论文)综述 1.1题目背景及研究意义 有机镍化合物如烯丙基镍化合物、二茂镍化合物、单茂镍化合物、乙酰丙酮镍、α-二亚胺镍化合物在烯烃聚合中起着重要的作用。镍作为后过渡金属,亲氧性较小,对官能团中的氧原子和其它杂原子性能稳定,所以镍催化剂不但可以用作乙烯、丙烯、苯乙烯、二烯烃、环烯烃等非极性单体的齐聚及聚合催化剂,还可用作甲基丙烯酸甲酯、己内酯、降冰片烯等极性单体的聚合催化剂,以及它们的共聚。镍催化剂的活性、立体选择性决定于其周围配体的电子性及空间位阻的大小。 烯丙基镍化合物(P-C4H7NiCl)2、(P-C3H5NiBr)2、(P-C3H5NiI)2不但可以催化乙烯[1]、丙烯聚合,还可以催化空间位阻较大的二烯烃、环烯烃的均聚及共聚[2]。与传统的Ziegler-Natta催化剂不同,烯丙基镍化合物催化乙烯聚合得到的是相对分子质量分布很窄的高支化聚乙烯,催化环烯烃聚合得到晶形聚合物[3]。而Ziegler-Natta催化剂催化乙烯聚合得到线性聚乙烯,催化环烯烃得到无定形聚合物并且相对分子质量较低。 二茂镍的活性较低,在MAO出现以前,容易通过β-H消除反应发生链转移,因而二茂镍催化烯烃聚合一般只能得到低相对分子质量的齐聚物。二茂镍化合物(V-IX)多用作烯烃的齐聚催化剂,MAO的发现使得二茂镍的催化活性大大提高,Longo等[4]报道了二茂镍化合物V和VI可催化乙烯聚合得到高相对分子质量的线性聚乙烯。MAO或mMAO活化的二茂镍化合物对乙烯、异丙烯、苯乙烯、甲基丙烯酸甲酯及丁二烯、环烯烃聚合具有很好的催化活性和立体选择性。二茂镍/MAO催化体系催化烯烃聚合的活性比乙酰丙酮镍/MAO的催化活性小,但其立体选择性较乙酰丙酮镍/MAO 催化体系高。(TMS-Cp)2Ni和(1,3-TMS2-Cp)2Ni/MAO催化甲基丙烯酸甲酯聚合所得到的聚合物的相对分子质量分布很窄。另外反应条件如温度、铝镍比等对催化剂的聚合活性、相对分子质量大小,相对分子质量分布及聚合物的微观结构影响很大。 与二茂镍化合物相比,单茂镍化合物(X-XII)的一个环戊二烯基被卤素取代而多了一个辅助配体。通过改变周围配体可以调节中心原子周围的空间位阻及电子效应,从而改变催化剂的性能,因而能更好地设计聚合物的分子微观结构。MAO或mMAO活化的单茂镍催化体系可催化甲基丙烯酸甲酯、苯乙烯、1 -丁烯聚合,其间规度可高达75%[5]。 早在20世纪60年代以烷基铝、烷氧基铝活化的Ni(acac)2催化烯烃齐聚的活性相当高[6]。MAO更加提高了它的催化活性及立体选择性,使它不仅用作齐聚催化剂,还可得到高相对分子质量的聚烯烃[7,8]。Ni(acac)2不仅可催化乙烯、丙烯聚合,还可催化环烯烃、甲基丙烯酸甲酯、苯乙烯的均聚和共聚,并且助催化剂对催化活性及其立体选择性有很大的影响。乙酰丙酮镍/MAO催化体系的催化活性非常高,但立体选择性不太好。

相关文档
相关文档 最新文档