文档库 最新最全的文档下载
当前位置:文档库 › 图论及应用第一章完整作业

图论及应用第一章完整作业

图论及应用第一章完整作业
图论及应用第一章完整作业

习题 1

1. 证明在n阶连通图中

(1)至少有n-1条边。

(2)如果边数大于n-1,则至少有一条闭通道。

(3)如恰有n-1条边,则至少有一个奇度点。

证明 (1) 若对v V(G),有d(v)2,则:2m=d(v)2n m n n-1,矛盾!

若G中有1度顶点,对顶点数n作数学归纳。

当n=2时,G显然至少有一条边,结论成立。

设当n=k时,结论成立,

当n=k+1时,设d(v)=1,则G-v是k阶连通图,因此至少有k-1条边,所以G 至少有k条边。

(2) 考虑v 1v 2v n的途径,若该途径是一条路,则长为n-1,但图G的边数

大于n-1,因此存在v i,v j,使得v i adgv j,这样,v i v i+1v j并上v i v j构成一条闭通道;

若该途径是一条非路,易知,图G有闭通道。

(3) 若不然,对v V(G),有d(v)2,则:2m=d(v)2n m n n-1,与已

知矛盾!

2.设G是n阶完全图,试问

(1)有多少条闭通道?

(2)包含G中某边e的闭通道有多少?

(3)任意两点间有多少条路?

答(1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n-2)…1.

3.证明图1-27中的两图不同构:

图1-27

证明容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。

4.证明图1-28中的两图是同构的

图1-28

证明将图1-28的两图顶点标号为如下的(a)与(b)图

作映射f : f(v i )u i (1 i 10)

容易证明,对v i v j E((a)),有f(v i v j )u i u j E((b)) (1 i 10, 1j 10 ) 由图的同构定义知,图1-27的两个图是同构的。

5. 证明:四个顶点的非同构简单图有11个。

证明

m=0

1 2 3 4 5 6

由于四个顶点的简单图至多6条边,因此上表已经穷举了所有情形,由上表知:四个顶点的非同构简单图有11个。

6. 设G 是具有m 条边的n 阶简单图。证明:m =???

? ??2n 当且仅当G 是完全图。

证明 必要性 若G 为非完全图,则 v V(G),有d(v) n-1 d(v) n(n-1) 2m n(n-1)

m n(n-1)/2=???

?

??2n , 与已知矛盾!

充分性 若G 为完全图,则 2m= d(v) =n(n-1) m= ???

?

??2n 。

7. 证明:(1)m (K l ,n ) = ln ,

(a)

v 1

v 2 v 3 v 4

v 5 v 6

v 7

v 8 v 9

v 10 u 1 u 2

u 3

u 4

u 5 u 6 u 7 u 8 u 9 u 10 (b)

(2)若G 是具有m 条边的n 阶简单偶图,则m ??

?

???42n 。

证明 (1) K l,n 的总度数为2ln ,所以,m (K l ,n ) = ln 。

(2) 设G 的两个顶点子集所含顶点数分别为n 1与n 2,G 的边数为m,可建立如下的二 次规划:

m=n 1n 2

s.t n 1+n 2=n n 11, n 2 1

当n 为偶数时,n 1=n 2=n/2时,m 取最大值:m=n 2

/4

当n 为奇数时,取n 1=(n+1)/2, n 2=(n-1)/2时,m 取最大值:m=(n 2

-1)/4

所以,m ??

?

???42n 。

8. 设△和δ是简单图G 的最大度和最小度,则δ≤2m / n ≤△。

证明

?

≤≤∴≥???==≤

?≥=∑∑∈∈n m n m n v d m n m n v d m V

v V

v 22)(22)(2δδδ

9. 证明:若k 正则偶图具有二分类V = V 1∪V 2,则 | V 1| = |V 2|。

证明 由于G 为k 正则偶图,所以,k V 1 =m = k V 2 V 1= V 2 。

10. 证明:由两人或更多个人组成的人群中,总有两人在该人群中恰好有相同的朋友数。

证明 将人用图的顶点表示,图的两顶点邻接当且仅当人群中的两人相认识,于是,问题转化为:证明在任意一个简单图中必有一对度数相等的顶点。 若图G 为连通单图,则对v V(G),有1d(v)n-1,因此,n 个顶点中必存在两个顶点,其度数相同;若G 为非连通图,设G 1为阶数n 1的连通分支,则v V(G 1),有1d(v)n 1-1,于是在G 1中必存在两个顶点,其度数相同。

11. 证明:序列 (7,6,5,4,3,3,2) 和 (6,6,5,4,3,3,1) 不是图序列。

证明 由于7个顶点的简单图的最大度不会超过6,因此序列 (7,6,5,4,3,3,2) 不是图序列;

(6,6,5,4,3,3,1)是图序列 (5,4,3,2,2,0)是图序列,然(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1) 不是图序列。

12.证明:若δ≥2,则G包含圈。

证明只就连通图证明即可。设V(G)={v1,v2,…,v n},对于G中的路v1v2…v k,若v k与v1邻接,则构成一个圈。若v i1v i2…v in是一条路,由于 2,因此,对v in,存在点v ik与之邻接,则v ik v in v ik构成一个圈。

13.证明:若G是简单图且δ≥2,则G包含长至少是δ+1的圈。

证明设v0v1…v k为G中一条最长路,则v0的邻接顶点一定在该路上,否则,与假设矛盾。现取与v0相邻的脚标最大者,记为l,则l,于是得圈v0v1v2v l v0,该圈长为l+1,显然不小于δ+1。

`

14.G的围长是指G中最短圈的长;若G没有圈,则定义G的围长为无穷大。证明:

(1)围长为4的k的正则图至少有2k个顶点,且恰有2k个顶点的这样的图(在同构意义下)只有一个。

(2)围长为5的k正则图至少有k2+1个顶点。

证明 (1) 设u,v是G中两相邻顶点,则S(u)S(v)=,否则,可推出G中的围长为3,与已知矛盾。因此,G中至少有2(k-1)+2个顶点,即有2k个顶点。把S(u) v,

S(v) u连为完全偶图,则得到2k个顶点的围长为4的图,由作法知,这样的图是唯一的。

(2) 对u V(G),设u的邻接顶点为u1,u2,u k,由于G的围长为5,所以,u1,u2,u k互不邻接。又设u i的邻接顶点为u i1,u i2,u ik-1,(i=1,2,…,k),显然,S(u i)S(u j)= u

(i j),否则,G中有长为4的圈,所以,G的顶点数至少有k2+1个。

15.对具有m条边的阶n图G,证明:(1)若m≥n,则G包含圈;

(2)若m≥n+4,则G包含两个边不重的圈。

证明(1)若G含有环或平行边,则G有圈。假定G为n阶简单图。若G中顶点度大于等于2,则G中有圈。设G中有一度顶点,去掉该顶点和其关联的边得图G1,由条件,显然有m(G1)V(G1),若G1中有一度顶点,去掉该顶点和其关联的边得图G2,有m(G2)

V(G2),,如此进行下去,该过程不可能进行到n=1或n=2的情形,否则,不满足m≥n 所以,过程进行到Gm,Gm是度数2的图,它含有圈。

(2) 只就m=n+4证明就行了。

设G是满足m=n+4,但不包含两个边不相交的圈的图族中顶点数最少的一个图。可以证明G具有如下两个性质:

1) G的围长g5。事实上,若G的围长4,则在G中除去一个长度4的圈C1的一条边,所得之图记为G,显然,m(G) V(G)=V(G),由(1),G中存在圈C2, 使C1,C2的边不相交这与假定矛盾;

2)(G)3。事实上,若d(v0)=2,设v0v1,v0v2E(G),作G1=G-v0+v1v2;若d(v0)1,则

G 1为在G 中除去v 0及其关联的边(d(v 0)=0,任去G 中一条边)所得之图。显然,m(G 1)=V(G 1)+4,G 1仍然不含两个边不重的圈之图。但V(G 1)V(G),与假定矛盾。 由2),n+4=m 3n/2 n 8. 但另一方面,由1),在G 中存在一个圈Cg ,其上的顶点之间的边,除Cg 之外,再无其它边,以S 0表示Cg 上的顶点集,故由2),S 0上每个顶点均有伸向Cg 外的的边。记与S 0距离为1的顶点集为S 1,则S 0的每一个顶点有伸向S 1的边,反过来,S 1中的每个顶点仅有唯一的一边与S 0相连,不然在G 中则含有长不大于g/2+2的圈,这与G 的围长为g 相矛盾,故S 0 S 1,于是有:n S 0+ S 1g+g 10,但这与n 8矛盾。所以,假定条件下的G 不存在。

16. 在图1-13的赋权图中,找出a 到所有其它顶点的距离。

解 1. A 1= {a },t (a ) = 0,T 1 = Φ

2.()

113b v =

3. m 1 = 1, a 2 = v 3 , t (v 3) = t (a ) + l (av 3) = 1 (最小),

T 2 ={av 3} 2. A 2 ={a , v 3}, 2)

2(21)

2(1

,v b v b ==

3. m 2 = 1, a 3 = v 1 , t (v 1) = t (a ) + l (av 1) = 2 (最小),

T 3 ={av 3, av 1} 2. A 3 ={a , v 3, v 1}, 4)

3(32)3(22)

3(1

,,v b v b v b ===

3. m 3 = 3, a 4 = v 4 , t (v 4) = t (v 1) + l (v 1v 4) = 3 (最小),

T 4 ={av 3, av 1, v 1v 4}

2. A 4 = {a , v 3, v 1, v 4},b 1(4) = v 2,b 2(4) = v 2,b 3(4) = v 2, b 4(4)

= v 5 3. m 4 = 4, a 5 = v 5 , t (v 5) = t (v 4) + l (v 4v 5) = 6 (最小),

T 5 ={av 3, av 1, v 1v 4, v 4v 5}

2. A 5 = {a , v 3, v 1, v 4, v 5},b 1(5) = v 2,b 2(5) = v 2,b 3(5) = v 2 , b 4(5) = v 2, b 5(5)

= v 2 3. m 5 = 4, t (v 2) = t (v 4) + l (v 4v 2) = 7 (最小),

T 6 ={av 3, av 1, v 1v 4, v 4v 5, v 4v 2}

2. A 6 = {a , v 3, v 1, v 4, v 5, v 2}, b 2(6) = v 6, b 4(6) = b ,b 5(6) = v 6,b 6(6)

= v 6 3. m 6 = 6, a 7 = v 6 , t (v 6) = t (v 2) + l (v 2v 6) = 9 (最小),

v 1 1 v 4

6 3 4 2 9

a 8 v 2 2 v 5 6

b 7 2 4 1 2 v 3 v 6

图1-13 9

T 7 ={av 3, av 1, v 1v 4, v 4v 5, v 4v 2, v 2v 6}

2. A 7 = {a , v 3, v 1, v 4, v 5, v 2, v 6}, b 4(7) = b ,b 5(7) =b ,b 7(7)

=b 3. m 7 = 7, a 8 = b , t (b ) = t (v 6) + l (v 6b ) = 11 (最小),

T 8 ={av 3, av 1, v 1v 4, v 4v 5, v 4v 2, v 2v 6, v 6b }

于是知a 与b 的距离

d (a , b ) = t (b ) = 11

由T 8导出的树中a 到b 路1426av v v v b 就是最短路。

17. 证明:若G 不连通,则G 连通。

证明 对)(,_G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_

G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_

G 中连通,因此,u 与v 在_

G 中连通。

18. 证明:若e ∈E (G ),则ω(G )≤ω(G -e )≤ω(G )+1。

证明 若e 为G 之割边,则ω(G -e )=ω(G )+1,若e 为G 之非割边,则ω(G -e )=ω(G ),所以,若e ∈E (G ),则ω(G )≤ω(G -e )≤ω(G )+1。

19. 证明:若G 连通且G 的每个顶点的度均为偶数,则对于任意的v ∈V (G ),ω(G-v )

≤d (v )/2成立。

证明 设C 为ω(G-v )的一连通分支,则在G 中,v 有偶数条边伸向C ,若不然,C 中奇 度点个数为奇数。因此,v 至少有两条边伸向C ,有ω(G-v )≤d (v )/2成立。

20. 证明:若G 的直径大于3,则G 的直径小于3。

证明 )(,G V v u ∈?,若uv

E(G)

uv E(G )

1),(=-v u d G

。若uv E(G),则

uv E(G )。分两种情况:(1) 若在V(G)中任意顶点至少和u,v 之一相连,在这种情况下,对G 中任意两个顶点x,y ,有3),(≤y x d G ,矛盾。

(2) V(G)中存在一点w,使得uw,wv E(G),则uw,wv E(G ),此时,2),(=-v u d G

所以,G 的直径小于3。

21.设G 是具有m 条边的n 阶简单图,证明:若G 的直径为2且△= n -2,则m ≥2n -4。

证明 在G 中,设d(v)= △= n -2,与v 邻接的顶点设为:v 1,v 2,…,v n-2,剩下的一个顶点为u, u 与v 不能邻接。如下图所示。

由于d(G)=2,因此u 与v 1,v 2,…,v n-2必邻接,否则,G 的直径大于2。因此,该图中至少应该有的边数为

n-2+n-2=2n-4,即:m ≥2n -4。

22.证明:若G 是至少有三个点的简单连通图但不是完全图,则G 有三个顶点u , v 和w ,使得 uv , vw ∈E ,而uw E 。

证明 G 是非完全图 u,w 1V, uw 1E; 由于G 是连通的 存在最短路uu 1u 2u n w 1 (n 1),显然,uu 2E,否则,与最短路矛盾。于是令u 1=v,u 2=w,则为所求。

(注:文档可能无法思考全面,请浏览后下载,供参考。)

v 1 v 2

v 3 v n-2 u

v

电大离散数学作业答案(图论部分)

离散数学作业5 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2018年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是15. 2.设给定图G (如右由图所示),则图G 的点割集是 {f}. 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点度数之和等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且等于出度. 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于n-1,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为W(G-V1)≤∣V 1∣. 7.设完全图K n 有n 个结点(n ≥2),m 条边,当n 为奇数时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足e=v-1关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i =5. 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回

图论作业(1)

第三章 1.证明: 必要性: v 是连通图G 的割边, 则 , 至少有两个连通 分支。设其中一个连通分支顶点集合为V1,另外连通分支顶点集合为V2,即V1与V2构成V 的划分。 对于任意的u ∈V1, v ∈V2,如果割边e 不在某一条(u ,v )路上,那么,该路也是连接G-e 中的u 与v 的路,这与u,v 处于G-v 的不同分支矛盾。 “充分性” 若e 不是图G 的割边,那么G-v 连通,因此在G-v 中存在u,v 路,当然也是G 中一条没有经过边e 的u,v 路。矛盾。 7.证明: v 是单图G 的割点,则G-v 至少两个连通分支。现任取 , 如果x,y 在G-v 的同一分支中,令u 是与x,y 处于不同分支的点,那么,通过u ,可说明,x 与y 在G-v 的补图中连通。若x,y 在G-v 的不同分支中,则它们在G-v 的补图中邻接。所以,若v 是G 的割点,则v 不是其补图的割点。 9.连通图G 的一个子图B 称为是G 的一个块,如果(1), 它本身是块;(2), 若没有真包含B 的G 的块存在。 又由于对于阶数至少是3的 ()()G e G ωω->

图G是块当且仅当G无环并且任意两点都位于同一圈上。根据题意,对于阶数至少是3的图G,由于G没有偶圈,所以G的每个块的点可以在奇圈上,如果不在奇圈上,则块只能是K2,否则如果不是K2的话,该子图将存在割点,该子图就不是块。得证。 16.(1) (2) (3)

第四章3. (1)既是欧拉闭迹又是哈密尔顿圈 (2) (3)

(4) 7.由于图没有奇度顶点,所以是欧拉图,又定理1可得,图G的边集可以划分为圈C1,C2,。。。。Cm,所以E(G)可以表示成C1,C2.。。Cm的并。 10.若图不是二连通,则存在割点,由于哈密尔顿图不存在割点,因而G是非哈密尔顿图。 若G是具有二分类(X,Y)的偶图,且|X|不等于|Y|,设X中所有点为x1,x2.。。。。xm,Y中的所有点为y1,y2.。。。。yn,若存在哈密尔顿图,则在哈密尔顿圈中必然存在X中的点与Y中的点相互交替出现,但是|X|不等于|Y|,则必然出现某两个点同属于|X|或者|Y|,但是G是偶图,属于同一集合的这样的两个点不可以相连,所以存在哈密尔顿圈矛盾,因而不存在哈密尔顿圈。 12. 证明:在G之外加上一个新点v,把它和G的其余各点连接得图G1

答案(电子科大版)图论及其应用第一章

习题一: ● 。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 ● 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 ● 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1) 不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 1 1 12312(1,1,,1,,,)d d n d d d d d π++=---是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若 ,则包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干 个连通的情形来证明。设 , 对于中的路 若与邻接,则构成一个闭路。若是一条路,由于,因 此,对于,存在与之邻接,则构成一个圈。 ● 17.证明:若G 不连通,则连通。 证明:对于任意的 ,若与属于G 的连通分支,显然与在中连通;

图论及其应用答案电子科大

图论及其应用答案电子科 大 This model paper was revised by the Standardization Office on December 10, 2020

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通, 而在G中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从 u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u在每一条(x ,y )的路上,则与已知矛盾,G是块。 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v是单图G的割点,则G ?v有两个连通分支。现任取x ,y ∈V (G ?v ), 如果x ,y 不在G ?v的同一分支中,令u是与x ,y处于不同分支的点,那么,x ,与y在G ?v的补图中连通。若x ,y在G ?v的同一分支中,则它们在G ?v的补图中邻接。所以,若v是G 的割点,则v不是补图的割点。 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

图论大作业

《图论及其应用》大作业 指导老师郝荣霞 知行1503 徐鹏宇 15291200

2.1.9证明:若G是森林且恰有2k个奇点,则在G中有k条边不重的路P1,P2......P K,使得E(G)=E(P1) E(P2) ...... E(P K)。 证明: 对奇点数k使用数学归纳法。 ①当k=1时,G是森林,且有且只有2个奇点 ?G只能为一颗树,且G的所有奇度顶点为两个1度顶点 ?G是一条路 ?满足题设 ②假设当k=t时,结论成立。接下来考虑k=t + 1时的情况。 在G中一个分支中取两个叶子点u与v,令P是连接该两个顶点的唯一路。 由于P上除u,v以外的点均被P经过两次,即G-P后除u,v以外的点奇偶性不变。 ?则G–P是有2t个奇度顶点的森林 ?由归纳假设知,G–P可以分解为t条边不重合的路之并,即E(G-P)=E(P1) E(P2) ...... E(P t)。 ?则G可分解为t+1条边不重合的路之并,即E(G)=E(P1) E(P2) ...... E(P t) E(P)。 ?即证。

2.4.4证明:若e 是K n 的边,则τ(K n -e )=(n-2)n n-3 证明: 由定理2.9:τ(K n )=n n-2 由于τ(K n -e )=τ(K n )-τ(含有e 的生成树棵树) 现在需要求含有e 的生成树棵树, τ(含有e 的生成树棵树)=)1(2 1n 1-n 2-n n n )(=2n n-3 τ(K n -e )=τ(K n )-τ(含有e 的生成树棵树)=(n-2)n n-3

3.2.4证明:不是块的连通图至少有两个块,其中每个恰有一个割点。 证明: 设G 为不是块的连通图,由于G 连通且不是块 ?G 有割点 ①当G 只有1个割点v 时,延割点分开,G1,G2内无割点,且连通,由块的定义知?G1,G2是块,且分别含一个割点v 。 ②当G 含有2个及2个以上割点时,取相距距离最远的两个割点u 和v ,此时分G 为三部分G1,G2,G3 。 由于u ,v 是相距最远的两割点?G1和G3不含割点。 又由于G 连通,G1,G3为G 的一部分?故G1,G3连通。 ?G1,G3内无割点,且连通。 ?G1,G3是块,且分别含割点u ,v 。 ?即证

图论及应用第一章完整作业

习 题 1 1. 证明在n 阶连通图中 (1) 至少有n -1条边。 (2) 如果边数大于n -1,则至少有一条闭通道。 (3) 如恰有n -1条边,则至少有一个奇度点。 证明 (1) 若对?v ∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ? m ≥n >n-1,矛盾! 若G 中有1度顶点,对顶点数n 作数学归纳。 当n=2时,G 显然至少有一条边,结论成立。 设当n=k 时,结论成立, 当n=k+1时,设d(v)=1,则G-v 是k 阶连通图,因此至少有k-1条边,所以G 至少有k 条边。 (2) 考虑v 1→v 2→?→v n 的途径,若该途径是一条路,则长为n-1,但图G 的边数大于n-1,因此存在v i ,v j ,使得v i adgv j ,这样,v i →v i+1→?→v j 并上v i v j 构成一条闭通道;若该途径是一条非路,易知,图G 有闭通道。 (3) 若不然,对?v ∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ? m ≥n >n-1,与已知矛盾! 2. 设G 是n 阶完全图,试问 (1) 有多少条闭通道? (2) 包含G 中某边e 的闭通道有多少? (3) 任意两点间有多少条路? 答 (1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n -2)…1. 3. 证明图1-27中的两图不同构: 证明 容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。 4. 证明图1-28中的两图是同构的 证明 将图1-28的两图顶点标号为如下的(a)与(b)图 图 1-27 图1-28

电子科技大学-图论第一次作业

课本习题一: ● 。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对"v i v j ? E ((a)),有f (v i v j,),=,u i,u j,?,E,((b)) (1£ i £ 10, 1£j £ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 ● 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 ● 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 非负整数组12121(,,,),,2n n n i i d d d d d d d m π==≥≥≥=∑L L 是图序列的充要条件是: ? 11 12312(1,1,,1,,,)d d n d d d d d π++=---L L 是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若δ≥2,则G 包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干个连通的情形来证明。设V (G )={V 1,V 2,V 3,?V n },对于G 中的路V 1,V 2,V 3,?V n 若V k 与V 1邻接,则构成一个圈。若V i1,V i2,V i3,?V in 是一条路,由于δ≥2,因此,对于V in ,存在V ik 与之邻接,则V ik ,,?V in V ik 构成一个圈。 ● 17.证明:若G 不连通,则G ?连通。 证明:对于任意的u,v ∈(G ?),若u 与v 属于G 的不同连通分支,显然u 与v 在G ?中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点, 则u 与w ,v 与w 分别在G ?中连通,因此,u 与v 在G ?中连通。 ● 18.证明:若e ∈E(G),则w (G )≤w (G ?e )≤w (G )+1. 证明:若e 为G 的割边,则w (G ?e )= w (G )+1,若e 为G 的非割边,则w (G ?e )=w (G ),

图论1-3藏习题解答

学号:0441 姓名:张倩 习题1 4.证明图1-28中的两图是同构的 证明:将图1-28的两图顶点标号为如下的(a)与(b)图 作映射f : f(v i )u i (1 i 10) 容易证明,对v i v j E((a)),有f(v i v j )u i u j E((b)) (1 i 10, 1j 10 ) 由图的同构定义知,图1-27的两个图是同构的。 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : (a) v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 (b)

m=2:m=3:

m=4:m=5:m=6:

因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 ()1 1 123121,1,,1,,,=d d n d d d d d π++---L L 是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 12.证明:若δ≥2,则G 包含圈。 证明 只就连通图证明即可。设V(G)={v1,v2,…,vn },对于G 中的路v1v2…vk,若vk 与v1邻接,则构成一个圈。若vi1vi2…vin 是一条路,由于 2,因此,对vin ,存在点vik 与之邻接,则vik vinvik 构成一个圈 。 17.证明:若G 不连通,则G 连通。 证明 对)(,_ G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_ G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_ G 中连通,因此,u 与v 在_ G 中连通。 18.证明:若()e E G ∈,则()()()1G G e G ωωω≤-≤+. 证明:若e 为G 的割边,则()()1G e G ωω-=+,若e 为G 的非割边,则 ()()G e G ωω-=,所以,若()e E G ∈,则有()()()1G G e G ωωω≤-≤+. 习题2 1.证明:每棵恰有两个1度顶点的树均是路。 证明:设树T 为任意一个恰有两个1度顶点的树,则T 是连通的,且无圈,

图论第二次作业

第四章 3(1).有欧拉闭迹和H圈 (2).有欧拉闭迹但没有H圈 (3).有H圈无欧拉闭迹 (4).无欧拉闭迹且没有H圈 4:证:若G不是H图,由chvatal定理知,G度弱于某个图,故: = 这与题目已知条件相矛盾,故G是H图。 8:证:不失一般性,设G是连通图,是G的2k个奇点,连接,得到,则得到图,则是欧拉图,设C是中 的欧拉闭迹,删除C中的,即可得到k条边不重复的迹,使得 . 10(1)若G不是二连通图,那么G不连通或者有割点u,则w,故G是

非H图。 (2). 若G是具有二分类的偶图,且,若假设则,故 G是非H图。 11:设R是G中的H路,则对于每个真子集S,有w,又: w w,故w. 12:设u是G外一点,将u和G中的每个点连接得到图,则G的度序列为 ,故有题意知,不存在小于的正整数m,使得 ,故由Chvatal定理知,图是H图,则G有 H路。 15:(1)由图的闭包定义可知,构作一个图的闭包,可以通过不断在度和大于等于n的非邻接顶点加边得到。故图的闭包算法如下: 第一步:令; 第二步:在中求顶点,使得: 第三步:如果,则转到第四步;否则,停止,则可得到G 的闭包。 第四步:令,转到第二步。 复杂性分析:由其算法我们可得出其总运算量为: 故该算法能够在多项式时间内被解决,故该算法是一个好算法。 (2).设计算法如下: 第一步:在闭包构造中,将加入的边依次加入次序记为 ,在中任意取出一个H圈,令k=N;

第二步:若不在中,令;否则转到第三步。 第三步:设,令;求中两个相邻点u和v使得, u,v依序排列在上,且有:,令: 第四步:若k=1,转到第五步;否则,令k=k-1,转第二步; 第五步:停止。为G的H圈。 算法的复杂性分析:因为该算法进行了N次循环,每次循环中找到满足要求的邻接顶点u和v至多需要n-3次判断,所以总的运算量:N(n-3)。是一个好算法。 第五章 1:(1)证:k方体有2k个顶点,每个顶点可以用长度为k的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。 若划分k方体的2k个顶点,把坐标之和为偶数的顶点归入X,否则归入Y。显然,X中顶点互不邻接,Y中顶点也如此。所以k方体是偶图。又k方体的每个顶点度数为k,所以k方体是k正则偶图。所以由推论可知:k方体存在完美匹配。 (2).解K 2n 的任意一个顶点有2n-1中不同的方法被匹配。所以K 2n 的不同完美匹 配个数等于(2n-1)K 2n-2,如此推下去,可以归纳出K 2n 的不同完美匹配个数为: (2n-1)!!。同理,K n, n 的不同完美匹配个数为:(n)!。 2:若不然,设M 1与M 2 是树T的两个不同的完美匹配,那么M 1 ΔM 2 ≠Φ,且T[M 1 ΔM 2 ] 每个顶点度数为2,即它存在圈,于是推出T中有圈,矛盾。故一棵树中最多只有一个完美匹配。 7:解:设 作如下四条路: 故其四个生成圈如下:

图论及应用第一章完整作业

习题 1 1. 证明在n阶连通图中 (1)至少有n-1条边。 (2)如果边数大于n-1,则至少有一条闭通道。 (3)如恰有n-1条边,则至少有一个奇度点。 证明(1) 若对v V(G),有d(v)2,则:2m=d(v)2n m n n-1,矛盾! 若G中有1度顶点,对顶点数n作数学归纳。 当n=2时,G显然至少有一条边,结论成立。 设当n=k时,结论成立, 当n=k+1时,设d(v)=1,则G-v是k阶连通图,因此至少有k-1条边,所以G至少有k条边。 (2) 考虑v 1v 2v n的途径,若该途径是一条路,则长为n-1,但图G的边数 大于n-1,因此存在v i,v j,使得v i adgv j,这样,v i v i+1v j并上v i v j构成一条闭通道; 若该途径是一条非路,易知,图G有闭通道。 (3) 若不然,对v V(G),有d(v)2,则:2m=d(v)2n m n n-1,与 已知矛盾! 2.设G是n阶完全图,试问 (1)有多少条闭通道? (2)包含G中某边e的闭通道有多少? (3)任意两点间有多少条路? 答(1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n-2)…1. 3.证明图1-27中的两图不同构: 图1-27 证明容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。 4.证明图1-28中的两图是同构的 图1-28 证明将图1-28的两图顶点标号为如下的(a)与(b)图

作映射f : f(v i )u i (1 i 10) 容易证明,对v i v j E((a)),有f(v i v j )u i u j E((b)) (1 i 10, 1j 10 ) 由图的同构定义知,图1-27的两个图是同构的。 5. 证明:四个顶点的非同构简单图有11个。 证明 m=0 1 2 3 4 5 6 由于四个顶点的简单图至多6条边,因此上表已经穷举了所有情形,由上表知:四个顶点的非同构简单图有11个。 6. 设G 是具有m 条边的n 阶简单图。证明:m =??? ? ??2n 当且仅当G 是完全图。 证明 必要性 若G 为非完全图,则 v V(G),有d(v) n-1 d(v) n(n-1) 2m n(n-1) m n(n-1)/2=??? ? ??2n , 与已知矛盾! 充分性 若G 为完全图,则 2m= d(v) =n(n-1) m= ??? ? ??2n 。 7. 证明:(1)m (K l ,n ) = ln , (a) v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 (b)

电子科技大学-图论第二次作业

习题四: 3.(1)画一个有Euler 闭迹和Hamilton圈的图; (2)画一个有Euler闭迹但没有Hamilton圈的图; (3)画一个有Hamilton圈但没有Euler闭迹的图; (4)画一个即没有Hamilton圈也没有Euler闭迹的图; 解:找到的图如下: (1)一个有Euler 闭迹和Hamilton圈的图; (2)一个有Euler闭迹但没有Hamilton圈的图; (3) 一个有Hamilton圈但没有Euler闭迹的图; (4)一个即没有Hamilton圈也没有Euler闭迹的图. 4.设n阶无向简单图G有m条边,证明:若,则是图。证明: G是H图。 若不然,因为G是无向简单图,则,由定理1:若G是的非单图,则G 度弱于某个.于是有:

2,1()()(2)(1)(1)2 11 1(1)(2)(1)(21)221 1.2m n E G E C m n m n m m m n m m m n m n ??≤= +---+-??-??=+------- ? ?? -??≤+ ??? 这与条件矛盾!所以G 是H 图。 8.证明:若G 有 个奇点,则存在条边不重的迹 ,使得 . 证明:不失一般性,只就G 是连通图进行证明。设G=(n, m)是连通图。令v l ,v 2,…,v k ,v k+1,…,v 2k 是G 的所有奇度点。在v i 与v i+k 间连新边e i 得图G*(1≦i ≦k).则G*是欧拉图,因此,由Fleury 算法得欧拉环游C.在C 中删去e i (1≦i ≦k).得k 条边不重的迹Q i (1≦i ≦k): 12()() () ()k E G E Q E Q E Q = 10.证明:若: (1)不是二连通图,或者 (2)是具有二分类的偶图,这里 , 则是非Hamilton 图。 证明:(1)不是二连通图,则不连通或者存在割点,有,由于课本 上的相关定理:若是Hamilton 图,则对于 的任意非空顶点集,有: ,则该定理的逆否命题也成立,所以可以得出:若不是二连通图, 则是非Hamilton 图 (2)因为是具有二分类 的偶图,又因为 ,在这里假设 ,则有,也就是说:对于 的非空顶点集,有: 成 立,则可以得出则是非Hamilton 图。 11.证明:若有Hamilton 路,则对于V 的每个真子集S ,有 .

图论第二次作业

图论第二次作业Newly compiled on November 23, 2020

图论第二次作业 一、 第四章 (1)画一个有Euler 闭迹和Hamilton 圈的图; (2)画一个有Euler 闭迹但没有Hamilton 圈的图; (3)画一个有Hamilton 圈但没有Euler 闭迹的图; (4)画一个既没有Euler 闭迹也没有Hamilton 圈的图; 解:(1)一个有Euler 闭迹和Hamilton 圈的图形如下: (2)一个有Euler 闭迹但没有Hamilton 圈的图形如下: (3)一个有Hamilton 圈但没有Euler 闭迹的图形如下: (4)一个既没有Euler 闭迹也没有Hamilton 圈的图形如下: 证明:若G 没有奇点,则存在边不重的圈C 1,C 1,···,C m ,使得 )()()()(21m C E C E C E G E ???=。 证明:将G 中孤立点除去后的图记为1G ,则1G 也没有奇点,且2)(1≥G δ,则1G 含圈1C ,在去掉)(11C E G -的孤立点后,得图2G ,显然2G 仍无奇度点,且2)(2≥G δ,从而2G 含圈2C ,如此重复下去,直到圈m C ,且)(m m C E G -全为孤立点为止,于是得到)()()()(21m C E C E C E G E ???=。 证明:若 (1)G 不是二连通图,或者 (2)G 是具有二分类),(Y X 的偶图,这里Y X ≠, 则G 是非Hamilton 图。 证明:(1)因为G 不是二连通图,则G 不连通或者存在割点v ,有2)(≥-v G w ,由相关定理得:若G 是Hamilton 图,则对于v(G)的任意非空顶点集S ,有:S S G w ≤-)(,则该定理得逆否命题也成立,所以可得:若G 不是二连通图,则G 是非Hamilton 图。 (2)因为G 是具有二分类),(Y X 的偶图,又因为Y X ≠,在这里假设Y X ≤,则有X Y X G w >=-)(,也就是说:对于v(G)的非空顶点集S ,有:S S G w >-)(成立,则可以得出G 是非Hamilton 图。 设G 是有度序列),,,(21n d d d ???的非平凡简单图,这里n d d d ≤???≤≤21,证明:若不存在小于2 )1(+n 的正整数m ,使得m d m <且m n d m n -<+-1,则G 有Hamliton 路。 证明:在G 之外加上一个新点v ,把它和G 的其余各点连接,得图G 1:

离散数学作业7答案(数理逻辑部分)

离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分.作业应手工书写答题,字迹工整,解答题要有解答过程,完成后上交任课教师(不收电子稿). 一、填空题 1.命题公式() →∨的真值是 1 . P Q P 2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为P∨Q→R . 3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧┐R)∨(P∧Q∧R) . 4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为?x ( P ( x) ∧Q ( x)). 5.设个体域D={a, b},那么谓词公式) xA? ∨ x ?消去量词后的等值式为 yB ( ) (y (A(a)∨A(b))∨(B(a) ∧B(b)). 6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(?x)A(x) 的真值为0 . 7.谓词命题公式(?x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(?x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 解:

图论 王树禾 答案

图论第一次作业 By byh

|E(G)|,2|E(G)|2G υυ??≤ ??? ?? ??? 1.1 举出两个可以化成图论模型的实际问题 略 1.2 证明其中是单图 证明:(思路)根据单图无环无重边的特点,所以 最大的情形为任意两个顶点间有一条边相连,即极 端情况为。

?1.4 画出不同构的一切四顶单图 ?0条边:1条边: ?2条边:3条边: ?4条边:5条边:?6条边:

1.10G?H当且仅当存在可逆映射θ:V G→V H,使得uv∈E G?θuθv∈E H,其中G和H是单图。(证明充分性和必要性) ?必要性 ?若G?H,由定义可得,存在可逆映射θ:V G→V Hφ:E G→E(H)当且仅当ψ G e=uv时,ψHφe=θuθ(v),所以uv∈E G? θuθv∈E H ?充分性 ?定义?:E G→E(H),使得uv∈E G和θuθv∈E(H)一一对应,于是?可逆,且ψ e=uv的充要条件是ψHφe=θuθv,得G?H G

1.12求证(a)?K m ,n =mn,(b)G是完全二分图,则?G≤1 4 v G2 ?(a)对于K m ,n ,将顶集分为X和Y,使得X∪Y=V K m,n, X∩Y= ?,X=m,Y=n,对于X中的每一顶点,都和Y中所有顶点相连,所以?K m,n =mn ?(b)设G的顶划分为X,Y,X=m,Y=v?m,则?G≤ ??K m ,v-m =v?m m≤v2 4

?证明: ?(a)第一个序列考虑度数7,第二个序列考虑6,6,1 ?(b)将顶点v分成两部分v’和v’’ ?v’ = {v|v= v i, 1≤ i≤ k}, ?v’’ = {v|v= v i, k< i≤ n} ?以v’点为顶的原图的导出子图度数之和小于 ?然后考虑剩下的点贡献给这k个点的度数之和最大可能为

图论习题参考答案

二、应用题 题0:(1996年全国数学联赛) 有n (n ≥6)个人聚会,已知每个人至少认识其中的[n /2]个人,而对任意的[n /2]个人,或者其中有两个人相互认识,或者余下的n -[n /2]个人中有两个人相互认识。证明这n 个人中必有3个人互相认识。 注:[n /2]表示不超过n /2的最大整数。 证明 将n 个人用n 个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G 。由条件可知,G 是具有n 个顶点的简单图,并且有 (1)对每个顶点x , )(x N G ≥[n /2]; (2)对V 的任一个子集S ,只要S =[n /2],S 中有两个顶点相邻或V-S 中有 两个顶点相邻。 需要证明G 中有三个顶点两两相邻。 反证,若G 中不存在三个两两相邻的顶点。在G 中取两个相邻的顶点x 1和y 1,记N G (x 1)={y 1,y 2,……,y t }和N G (y 1)={x 1,x 2,……,x k },则N G (x 1)和N G (y 1)不相交,并且N G (x 1)(N G (y 1))中没有相邻的顶点对。 情况一;n=2r :此时[n /2]=r ,由(1)和上述假设,t=k=r 且N G (y 1)=V-N G (x 1),但N G (x 1)中没有相邻的顶点对,由(2),N G (y 1)中有相邻的顶点对,矛盾。 情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。故k ≠r+1,同理t ≠r+1。所以t=r,k=r 。记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。若x i0y j0∈E ,则w ,x i0, y j0两两相邻,矛盾。若x i0y j0?E ,则与x i0相邻的顶点只能是(N G (x 1)-{y j0})∪{w},与y j0相邻的顶点只能是(N G (y 1)-{x j0})∪{w}。但与w 相邻的点至少是3,故N G (x 1)∪N G (y 1)中存在一个不同于x i0和y j0顶点z 与w 相邻,不妨设z ∈N G (x 1),则z ,w ,x i0两两相邻,矛盾。 题1:已知图的结点集V ={a ,b ,c ,d }以及图G 和图D 的边集合分别为: E (G )={(a ,a ), (a ,b ), (b ,c ), (a ,c )} E (D)={, , , , } 试作图G 和图D ,写出各结点的度数,回答图G 、图D 是简单图还是多重图? 解: a d a d b c b c 图G 图D 例2图

电子科大图论答案

图论第三次作业 一、第六章 2.证明: 根据欧拉公式的推论,有m ≦l*(n-2)/(l-2), (1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4; (2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10; (3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6. 3.证明: ∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6; 又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4. 4.证明: (1)∵G 是极大平面图,∴每个面的次数为3, 由次数公式:2m==3φ, 由欧拉公式:φ=2-n+m, ∴m=2-n+m,即:m=3n-6. (2)又∵m=n+φ-2,∴φ=2n-4. (3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者

子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。 5.证明: 假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。 6.证明: (1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5. (2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5. 二、第七章 2.证明: 设n=2k+1,∵G 是Δ正则单图,且Δ>0, ∴m(G)==>k Δ,由定理5可知χˊ(G)=Δ(G)+1.

电子科技大学研究生试题图论及其应用参考答案

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k ≥2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8 分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k 七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X | v v 1 3 图G

图论第二次作业

图论第二次作业 一、第四章 4.3(1)画一个有Euler闭迹和Hamilton圈的图; (2)画一个有Euler闭迹但没有Hamilton圈的图; (3)画一个有Hamilton圈但没有Euler闭迹的图; (4)画一个既没有Euler闭迹也没有Hamilton圈的图;解:(1)一个有Euler闭迹和Hamilton圈的图形如下: (2)一个有Euler闭迹但没有Hamilton圈的图形如下: (3)一个有Hamilton圈但没有Euler闭迹的图形如下: (4)一个既没有Euler闭迹也没有Hamilton圈的图形如下:

4.7 证明:若G 没有奇点,则存在边不重的圈C 1,C 1,···,C m ,使得 )()()()(21m C E C E C E G E ???=。 证明:将G 中孤立点除去后的图记为1G ,则1G 也没有奇点,且2)(1≥G δ,则1G 含圈1C ,在去掉)(11C E G -的孤立点后,得图2G ,显然2G 仍无奇度点,且2)(2≥G δ,从而2G 含圈2C ,如此重复下去,直到圈m C ,且)(m m C E G -全为孤立点为止,于是得到)()()()(21m C E C E C E G E ???=。 4.10 证明:若 (1)G 不是二连通图,或者 (2)G 是具有二分类),(Y X 的偶图,这里Y X ≠, 则G 是非Hamilton 图。 证明:(1)因为G 不是二连通图,则G 不连通或者存在割点v ,有2)(≥-v G w ,由相关定理得:若G 是Hamilton 图,则对于v(G)的任意非空顶点集S ,有:S S G w ≤-)(,则该定理得逆否命题也成立,所以可得:若G 不是二连通图,则G 是非Hamilton 图。 (2)因为G 是具有二分类),(Y X 的偶图,又因为Y X ≠,在这里假设Y X ≤,则有X Y X G w >=-)(,也就是说:对于v(G)的非空顶点集S ,有:S S G w >-)(成立,则可以得出G 是非Hamilton 图。 4.12 设G 是有度序列),,,(21n d d d ???的非平凡简单图,这里n d d d ≤???≤≤21,证明:若不存在小于 2 )1(+n 的正整数m ,使得m d m <且m n d m n -<+-1,则G 有Hamliton 路。 证明:在G 之外加上一个新点v ,把它和G 的其余各点连接,得图G 1: G 1的度序列为:),1,,1,1(21n d d d n +???++,由已知:不存在小于2 )1(+n 的正整数

相关文档