文档库 最新最全的文档下载
当前位置:文档库 › 参数估计习题课

参数估计习题课

参数估计习题课
参数估计习题课

第21讲 参数估计习题课

教学目的:1. 通过练习使学生进一步掌握矩估计和最大似然估计的计算方法; 2. 通过练习使学生理解无偏性和有效性对于评价估计量标准的重要性;

3. 通过练习使学生进一步掌握正态总体参数的区间估计和单侧置信限。

教学重点:矩估计和最大似然估计,无偏性与有效性,正态总体参数的区间估计。 教学难点:矩估计,最大似然估计,正态总体参数的区间估计。 教学时数:2学时。 教学过程:

一、知识要点回顾

1. 矩估计

用各阶样本原点矩n k

i i 1

1x n k V ==∑ 作为各阶总体原点矩k EX 的估计,1,2,

k =。若

有参数2g(,(),,)k E

X E X E X θ=()(),则参数θ的矩估计为

n n n 2

i=1i=1i=1

111?(,,

,)k

i i i X X X n n n θ=∑∑∑。 2. 最大似然估计

似然函数1()(;)n

i i L f x θθ==∏,取对数ln[()]L θ,从

ln()

d d θθ

=0中解得θ的最大似然估计θ

?。 3. 无偏性,有效性

当θθ=?E 时,称θ?为θ的无偏估计。 当21?D ?D θθ<时,称估计量1?θ比2

?θ有效。 二 、典型例题解析

1.设,0()0, 0x e x f x x θθ-?>=?≤?,求θ的矩估计。

解 ,0dx xe EX x ?+∞

-=θθ设du dx u x x u θ

θ

θ1

,1

,=

=

=

则0

0011

1()0()u u

u EX ue du ue e du e θθθθ

+∞+∞--+∞

--+∞

????==-+=+-???

?????=θ

1 故1EX

θ=

,所以x 1?=θ

。 2. 设总体X 在[]b a ,上服从均匀分布,求a 和b 的矩估计。

解 由均匀分布的数学期望和方差知

1

()()2

E X a b =+

(1) 21()()12

D X b a =- (2)

由(1)解得a EX b -=2,代入(2)得2)22(121a EX DX -=,

整理得2)(3

1

a EX DX -=,解得

()()a E X b E X ?=??

=??故得b a ,的矩估计为

??a x b x ?=-?

?=+??

其中∑=-=n

i i x x n 1

22

)(1?σ

。 3.设总体X 的密度函数为(;)!

x e f x x θ

θθ-=

,求θ的最大似然估计。

解 设)!)...(!)(!(),()(2111n

n x n

i i x x x e x f L n

i i

θ

θ

θθ-=∑===∏,则

1

1

ln ()()ln ln(!)n n

i i i i L x n x θθθ===--∑∑

11

ln ()11?0, n n

i i i i d L x n x x d n θθθθ===-===∑∑

4.

设总体X 的密度函数1(,)()(a

a x f x a x e a θθθ--=已知),求参数θ的最大似然

估计。

解 1

1

121

()(,)(...)

n

a

i i n

x n

n

a i n i L f x a x x x e

θ

θθθ=--=∑==∏

1

1

ln ()ln ln (1)ln n

n

a i i i i L n n a a x x θθθ===++--∑∑

1

ln ()0n a

i i d L n x d θθθ==-=∑ 解得 ∑==n i a

i x n 1

1θ。

5. 设1?θ和2?θ为参数θ的两个独立的无偏估计量,且假定2

1?2?θθD D =,求常数c 和d ,使2

1???θθθd c +=为θ的无偏估计,并使方差θ?D 最小。 解 由于θθθθθθ)(??)??(?2

121d c dE cE d c E E +=+=+=,且知θθ=?E ,故得c+d=1。 又由于

2

222222221221?)2(??2??)??(?θθθθθθθθD d c D d D c D d D c d c D D +=+=+=+= 并使其最小,即使222d c f +=,满足条件c+d=1的最小值。 令d=1-c ,代入得22)1(2c c f -+=,'42(1)0, 620c f c c c =--=-=

解得3

2

1,31=-==c d c 。

7. 设某电子元件的寿命服从正态分布),(2σμN ,抽样检查10个元件,得样本均值)(1200h x =,样本标准差)(14h s =。求 (1) 总体均值μ置信水平为%99的置信区间;

(2) 用x 作为μ的估计值,求绝对误差值不大于10(h )的概率。 解 (1)由于σ未知,s=14(h ),根据求置信区间的公式得 ))1(),1((2

2-+--

n t n s

x n t n s x αα ))9(10

141200),9(10141200(005.0005.0t t +-

查表得25.3)9(005.0=t ,故总体均值μ置信水平为%99的置信区间为

(120014.388, 120014.388)(1185.612, 1214.388)-+=

(2)

)1410

10)1(()10(

)10(<-=<-=<-n t P n

s n x P x P μμ

=-=<≈<=α21))9()9(()2588.2)9((025.0t t P t P =

8. 设n X X X ,...,,21为正态总体),(2σμN 的一个样本,确定常数c 的值,使

21

11)(∑-=+-=n i i i x x c Q 为2σ的无偏估计。

]

)()()(2)([]

)())((2)[()]()[()(21

1

12121

1

1212

1

1

12

1

1

1μμμμμμμμμμ-+----=-+----=---=-=∑∑∑∑-=++-=++-=+-=+i n i i i i i n i i i i n i i i n i i i x E x E x E x E c x x x x E c x x E c x x c EQ

由于0)(=-=-=-μμμμi i Ex x E ,所以有

21

1

21

1

1)1(2)2(]0[σσ-==+-=∑∑-=-=+n c c Dx Dx c EQ n i n i i i

由2σ=EQ (无偏性),故有1)1(2=-n c ,所以)

1(21

-=n c 。

二、计算题

1.某工厂生产滚珠.从某日生产的产品中随机抽取9

个,测得直径(单位:mm)如下: 用矩估计法估计该日生产的滚珠的平均直径和均方差.

解. 设滚珠的直径为X , 平均直径为μ,均方差为σ. 由矩估计法可知

,

,

.

,

=,

.

2.设总体X 的密度函数为

, 其中 (θ>0), 求θ的极大

似然估计量.

解. 设(X 1, X 2,…, X n )是来自X 的一样本. 由极大似然估计原理,参数θ的似然函数为:

,

上式两边取对数

,似然方程为

,解似然方程得θ的极大似然估计量是

.

3.设总体X的密度函数为

,

求α的极大似然估计量和矩估计量. 解.设(X1, X2,…, X n)是来自X的样本.

(1)由矩估计法

, ∴

.

即参数α的矩估计量是

.

(2) 由极大似然估计原理, 参数α的似然函数为

,

上式两边取对数

, 似然方程为

, 解似然方程得到参数α的极大似然估计量是

.

1.设,0

()0, 0x e x f x x θθ-?>=?≤?,求θ的矩估计。

解 ,0dx xe EX x ?+∞

-=θθ设du dx u x x u θ

θ

θ1

,1

,=

=

=

则0

01

1

1()0()

u

u

u EX ue du ue e du e θ

θθθ+∞

+∞--+∞--+∞????==-+=+-?

??

?????=θ

1

故1EX

θ=

,所以x 1?=θ

3. 一地质学家研究密歇根湖湖地区的岩石成分,随机地自该地区取100个样品,每个样品有10块石子,记录了每个样品中属石灰石的石子数。假设这100次观察相互独立,并由过去经验知,它们都服从参数为n=10,P 的二项分布。P 是该地区一块石子是石灰石的概率。求p 的极大似然估计值,该地质学家所得的数据如下

解:λ的极大似然估计值为λ?=X =

4. 设X 1,X 1,…,X n 为总体的样本,求各未知参数的极大似然估计值和估计量

(1)???>=+-其它,0,)()1(c

x x c θx f θθ

其中c >0为已知,θ>1,θ为未知参数。

(2)??

???≤≤=-.,01

0,)(1其它x x θx f θ

其中θ>0,θ为未知参数。

解(1)似然函数

1211

)()()(+-===∏θn θn n n

i i x x x c θx f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1

1

=-

+=-++=∑∑

==n

i i

n

i i x

c n n θ

θd θL d x θc θn θn θL

∑=-=

n

i i

c

n x

n

θ1

ln ln ? (解唯一故为极大似然估计量)

(2)∑

∏=--

=-+-===

n

i i θn n

n

i i

x θθn

θL x x x θ

x f θL 1

1

212

1

ln )1()ln(2)(ln ,)

()()(

∑∑

====+?-=n

i i

n

i i x n

θx θ

θn θd θL d 1

2

1

)

ln (?,0ln 21

12)(ln 。(解唯一)故为极大似然估计量。

6. 设样本12,,

n X X X 来自总体~(,0.25)X N u ,如果要以%的概率保证0.1X u -<,试

问样本容量n 应取多大

~(0,1)

N 。现要求n,使

{0.1}210.997P X u P φ-<=<=-≥

即0.9985φ≥

,查表得, 2.96≥,所以n=219,即样本容量为219。

8. 设总体X 具有分布律

其中θ(0<θ<1)为未知参数。已知取得了样本值x1=1,x2=2,x3=1,试求θ的矩估计值和最大似然估计值。

解:(1)求θ的矩估计值

θ

θθθθθθθθX E 23)]1()][1(3[)1(3)1(221)(2

2-=-+-+=-+-?+?=

X θX E =-=23)(令

则得到θ的矩估计值为6

5231

2132

3?=++-

=-=X θ

(2)求θ的最大似然估计值 似然函数}1{}2{}1{}{)(3213

1

======

∏=X P X P X P x X

P θL i i i

)

1(2)1(25

22θθθθθθ-=?-?=

ln L (θ )=ln2+5ln θ+ln(1-θ) 求导

011

5)(ln =--=θ

θθθd L d

5

?

θ

得到唯一解为

6

选修4-4 坐标系与参数方程知识点及经典例题

坐标系与参数方程 *选考内容《坐标系与参数方程》高考考试大纲要求: 1.坐标系: ① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. ③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化. ④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:① 了解参数方程,了解参数的意义. ② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程. 第一讲 一、平面直角坐标系 伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换???>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

方法1:求伸缩变换后的图形。 由伸缩变换公式解出x、y,代入已知曲线方程就可求得伸缩变换后的曲线方程。 例::在一个平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。 方法2:待定系数法求伸缩变换。 求伸缩变换时,先设出变换,再代入原方程或变换后的方程,求出其中系数即可。 例:在同一平面直角坐标系中,求下列图形变换的伸缩变换:

二、极坐标 1.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 2.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 3.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。 4.极坐标与直角坐标的互化: 如图所示,把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且长度单位相同,设任意一点M 的直角坐标与极坐标分别为(x ,y ),(ρ,θ). (1)极坐标化直角坐标 (2)直角坐标化极坐标 ? ????ρ2=x 2+y 2,tan θ=y x (x ≠0).

总时差双代号网络图时间计算参数-计算题及答案

总时差(用TFi-j表示),双代号网络图时间计算参数,指一项工作在不影响总工期的前提下所具有的机动时间。用工作的最迟开始时间LSi-j与最早开始时间ESi-j之差表示。 自由时差,指一项工作在不影响后续工作的情况下所拥有的机动时间。用紧后工作的最早开始时间与该工作的最早完成时间之差表示。 网络图时间参数相关概念包括: 各项工作的最早开始时间、最迟开始时间、最早完成时间、最迟完成时间、节点的最早时间及工作的时差(总时差、自由时差)。 1总时差=最迟完成时间—尚需完成时间。计算结果若大于0,则不影响总工期。若小于0则影响总工期。 2拖延时间=总时差+受影响工期,与自由时差无关。 3自由时差=紧后最早开始时间—本工作最早完成时间。 自由时差和总时差-----精选题解(免B) 1、在双代号网络计划中,如果其计划工期等于计算工期,且工作i-j的完成节点j在关键线路上,则工作i-j的自由时差()。 A.等于零 B.小于零 C.小于其相应的总时差 D.等于其相应的总时差 答案:D 解析:

本题主要考察自由时差和总时差的概念。由于工作i-j的完成节点j在关键线路上,说明节点j为关键节点,即工作i -j的紧后工作中必有关键工作,此时工作i-j的自由时差就等于其总时差。 2、在某工程双代号网络计划中,工作M的最早开始时间为第15天,其持续时间为7天。 该工作有两项紧后工作,它们的最早开始时间分别为第27天和第30天,最迟开始时间分别为第28天和第33天,则工作M的总时差和自由时差()天。 A.均为5 B.分别为6和5 C.均为6 D.分别为11和6 答案:B 解析: 本题主要是考六时法计算方法 1、工作M的最迟完成时间=其紧后工作最迟开始时间的最小值所以工作M 的最迟完成时间等于[28,33]=28 2、工作M的总时差=工作M的最迟完成时间-工作M的最早完成时间等于28-(15+7)=6 3、工作M的自由时差=工作M的紧后工作最早开始时间减工作M的最早完成时间所得之差的最小值: [27-22;30-22]= 5。 3、在工程网络计划中,判别关键工作的条件是该工作()。

参数方程典型例题分析

参数方程典型例题分析 例1在方程(为参数)所表示的曲线上一点的坐标是().(A)(2,-7)(B)(,)(C)(,)(D)(1,0) 分析由已知得可否定(A)又,分别将,,1代入上式得,,-1,∴(,)是曲线上的点,故选(C).例2直线(为参数)上的点A,B所对应的参数分别为, ,点P分所成的比为,那么点P对应的参数是(). (A)(B)(C)(D) 分析将,分别代入参数方程, 得A点的横坐标致为,B点的横坐标为, 由定比分点坐标公式得P的横坐标为 , 可知点P所对应的参数是故应选(C). 例3化下列参数方程为普通方程,并画出方程的曲线. (1)(为参数,)

(2)(为参数); (3)(为参数), 解:(1)∵ ∴, ∴或 故普通方程为(或),方程的曲线如图. (2)将代入得 ∵普通方程为(),方程的曲线如图.

(3)两式相除得代入得 整理得 ∵ ∴普通方程为(),方程的曲线如图. 点评(l)消去参数的常用方法有代入法,加减消元法,乘除消元法,三角消元法等;(2)参数方程化普通方程在转化过程中,要注意由参数给出的,的范围,以保证普通方程与参数方程等价. 例4已知参数方程 ①若为常数,为参数,方程所表示的曲线是什么? ②若为常数,为参数,方程所表示的曲线是什么? 解:①当时,由(1)得,由(2)得,

∴,它表示中心在原点, 长轴长为,短轴长为焦点在轴上的椭圆. 当时,,, 它表示在轴上的一段线段. ②当()时,由(1)得, 由(2)得.平方相减得, 即 它表示中心在原点,实轴长为,虚轴长为, 焦点在轴上的双曲线. 当()时,,它表示轴; 当()时,, ∵(时)或(时) ∴,∴方程为(), 它表示轴上以(-2,0)和(2,0)为端点的向左和向右的两条射线. 点评本题的启示是形式相同的方程,由于选择参数的不同,可表示不同的曲线,因此要注意区分问题中的字母是常数还是参数. 例5直线(为参数)与圆(为参数)相切,则直线的倾斜角为().

【重磅】双代号网络图时间参数计算

双代号网络图时间参数计算 双代号网络图时间参数计算 双代号网络图是应用较为普遍的一种网络计划形式。它是以箭线及其两端节点的编号表示工作的网络图。 双代号网络图中的计算主要有六个时间参数: ES:最早开始时间,指各项工作紧前工作全部完成后,本工作最有可能开始的时刻; EF:最早完成时间,指各项紧前工作全部完成后,本工作有可能完成的最早时刻 LF:最迟完成时间,不影响整个网络计划工期完成的前提下,本工作的最迟完成时间;LS:最迟开始时间,指不影响整个网络计划工期完成的前提下,本工作最迟开始时间;TF:总时差,指不影响计划工期的前提下,本工作可以利用的机动时间; FF:自由时差,不影响紧后工作最早开始的前提下,本工作可以利用的机动时间。 双代号网络图时间参数的计算一般采用图上计算法。下面用例题进行讲解。 例题:试计算下面双代号网络图中,求工作C的总时差? 早时间计算: ES,如果该工作与开始节点相连,最早开始时间为0,即A的最早开始时间ES=0; EF,最早结束时间等于该工作的最早开始+持续时间,即A的最早结束EF为0+5=5; 如果工作有紧前工作的时候,最早开始等于紧前工作的最早结束取大值,即B的最早开始FS=5,同理最早结束EF为5+6=11,而E工作的最早开始ES为B、C工作最早结束(11、8)

取大值为11。 迟时间计算: LF,如果该工作与结束节点相连,最迟结束时间为计算工期23,即F的最迟结束时间LF=23;LS,最迟开始时间等于最迟结束时间减去持续时间,即LS=LF-D; 如果工作有紧后工作,最迟结束时间等于紧后工作最迟开始时间取小值。 时差计算: FF,自由时差=(紧后工作的ES-本工作的EF); TF,总时差=(本工作的最迟开始LS-本工作的最早开始ES)或者=(本工作的最迟结束LF-本工作的最早结束EF)。 该题解析: 则C工作的总时差为3. 总结: 早开就是从左边往右边最大时间 早结=从左往右取最大的+所用的时间 迟开就是从右边往右边最小时间 迟开=从右往左取最小的+所用的时间 总时差=迟开-早开;或者;总时差=迟结-早结 自由差=紧后工作早开-前面工作的早结 希望你看懂啦。呵呵 工作最早时间的计算:顺着箭线,取大值 工作最迟时间的计算:逆着箭线,取小值 总时差:最迟减最早 自由时差:后早始减本早完 1.工作最早时间的计算(包括工作最早开始时间和工作最早完成时间):“顺着箭线计算,依次取大”(最早开始时间--取紧前工作最早完成时间的最大值),起始结点工作最早开始时间为0。用最早开始时间加持续时间就是该工作的最早完成时间。 2.网络计划工期的计算:终点节点的最早完成时间最大值就是该网络计划的计算工期,

(完整版)统计学习题答案第5章参数估计

第5章 参数估计 ●1. 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。 (1) 样本均值的抽样标准差x σ等于多少? (2) 在95%的置信水平下,允许误差是多少? 解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, (1)样本均值的抽样标准差 x σσ5=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96, 于是,允许误差是E = α/2 σ Z 6×0.7906=1.5496。 ●2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。 (3) 假定总体标准差为15元,求样本均值的抽样标准误差; (4) 在95%的置信水平下,求允许误差; (5) 如果样本均值为120元,求总体均值95%的置信区间。 解:(1)已假定总体标准差为σ=15元, 则样本均值的抽样标准误差为 x σσ15=2.1429 (2)已知置信水平1-α=95%,得 α/2Z =1.96, 于是,允许误差是E = α/2 σ Z 6×2.1429=4.2000。 (3)已知样本均值为x =120元,置信水平1-α=95%,得 α/2Z =1.96, 这时总体均值的置信区间为 α/2 x Z 0±4.2=124.2115.8 可知,如果样本均值为120元,总体均值95%的置信区间为(115.8,124.2)元。 ●3.某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时): 3.3 3.1 6.2 5.8 2.3 4.1 5.4 4.5 3.2 4.4 2.0 5.4 2.6 6.4 1.8 3.5 5.7 2.3 2.1 1.9 1.2 5.1 4.3 4.2 3.6 0.8 1.5 4.7 1.4 1.2 2.9 3.5 2.4 0.5 3.6 2.5

(完整版)九年级利用频率估计概率练习题

九年级利用频率估计概率练习题 一、选择题(每题3分,共24分) 1.下列说法正确的是( ). A.一颗质地均匀的已连续抛掷了2 000次的骰子。其中,抛掷出5点的次数最少,则第 2 001次一定抛出5点 B.某种彩票中奖的概率是l%,因此买100张该种彩票一定会中奖 C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨 D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 2.下列试验能用编号为“l~6”卡片(均匀)搅匀作为替代试验的有( ). ①抛掷四面体②抛掷两枚硬币③抛掷一枚骰子④在“黑桃5一黑桃10'中任抽一张牌⑤ 转四等分的圆转盘 A.1个 B.2个 C.3 D.4个 3.下列试验中,所选择的替代物不合适的是( ). A.不透明的袋中有1个红球、1个黑球,每次摸一个球,可用一枚均匀的硬币代替 B.不透明的袋中有3个红球、2个黑球,每次摸一个球,可以用一个圆面积5等分,其中3个扇形涂成红色,2个扇形涂成黑色的转盘替代 C.掷一颗均匀的骰子。可用三枚均匀的币替代 D.抽屉中,2副白手套、l副黑手套,可用2双白袜子、l双黑袜子替代 4.在“抛一枚均匀硬币”的试验中,如果没有硬币,下列试验一种不能作为替代试验?( ) A.2张扑克。“黑桃”代表“正面”,“红桃”代表“反面” B.掷1枚图钉 C.2个形状大小完全相同,但1红1白的两个乒乓球 D.人数均等的男生、女生,以抽签的方式随机抽取1人 5.甲、乙两名同学在一次用频率去估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( ). A.掷一枚正六面体的骰子,出现l点的概率 B.从一个装有2个白球和1个红球的袋子中任取1个球,取到红球的概率 C.抛一枚硬币,出现正面的概率 D.任意写一个整数,它能被2整除的概率 6.下列说法不正确的是( ). A.明天下雨的概率是90%,则明天不一定下雨

25.3 用频率估计概率练习题

25.3 用频率估计概率 基础题 知识点1 频率与概率的关系 1.(山西中考)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( ) A .频率就是概率 B .频率与试验次数无关 C .概率是随机的,与频率无关 D .随着试验次数的增加,频率一般会越来越接近概率 2.(南通中考)在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为( ) A .12 B .15 C .18 D .21 3.(扬州中考)色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如下表: 根据上表,估计在男性中,男性患色盲的概率为________(结果精确到0.01). 4.在做种子发芽试验时,10 000颗有9 801颗发芽,据此估计,种子的发芽率为________( 精确到0.01). 5.(阜新中考)为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为________个. 6.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色,黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是________个. 7.(淄博中考)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8 000小时的节能灯是优等品,使用寿命小于6 000小时的节能灯是次品,其余的节能灯是正品,质监部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成下表. (1)根据分布表中的数据,分别求出a ,b ,c 的值;

2参数方程知识讲解及典型例题

参数方程 一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个参数 t 的函数,即 ?? ?==)()(t f y t f x ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数t 叫做参变数,简称参数. 1 y x Eg1(1 Eg2(1总结:参数方程化为普通方程步骤:(1)消参(2)求定义域 2、椭圆的参数方程: 中心在原点,焦点在x 轴上的椭圆: θ θsin cos b y a x == (θ为参数,θ的几何意义是离心角,如图角AON 是离心角)

注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M 点的轨迹是椭圆,中心在(x 0,y 0 θ θ sin cos 00b y y a x x +=+= Eg 3, 4 pt y pt x 222 == (t 为参数,p >0,t 的几何意义为过圆点的直线的斜率的倒数) 直线方程与抛物线方程联立即可得到。 三、一次曲线(直线)的参数方程 过定点P 0(x 0,y 0),倾角为α的直线, P 是直线上任意一点,设P 0P=t ,P 0P 叫点P 到定点P 0的有向距离,在P 0两侧t 的符号相反,直线的参数方程

αα sin cos 00t y y t x x +=+= (t 为参数,t 的几何意义为有向距离) 说明:①t 的符号相对于点P 0,正负在P 0点两侧 ②|P 0P |=|t | 直线参数方程的变式: bt y y at x x +=+=00,但此时t 的几何意义不是有向距离,只有当 t 得 y x Eg

单代号搭接网络计划时间参数计算

单代号搭接网络计划时间参数计算 在一般的网络计划(单代号或双代号)中,工作之间的关系只能表示成依次衔接的关系,即任何一项工作都必须在它的紧前工作全部结束后才能开始,也就是必须按照施工工艺顺序和施工组织的先后顺序进行施工。但是在实际施工过程中,有时为了缩短工期,许多工作需要采取平行搭接的方式进行。对于这种情况,如果用双代号网络图来表示这种搭接关系,使用起来将非常不方便,需要增加很多工作数量和虚箭线。不仅会增加绘图和计算的工作量,而且还会使图面复杂,不易看懂和控制。例如,浇筑钢筋混凝土柱子施工作业之间的关系分别用横道图、双代号网络图和搭接网络图表示,如下图所示。 施工过程 名 称 施工进度(天) 1 2 3 4 5 6 7 8 9 10 11 一.搭接关系的种类及表达方式 单代号网络计划的搭接关系主要是通过两项工作之间的时距来表示的,时距的含义,表示时间的重叠和间歇,时距的产生和大小取决于工艺的要求和施工组织上的需要。用以表示搭接关系的时距有五种,分别是STS (开始到开始)、STF (开始到结束)、FTS (结束到开始)、FTF (结束到结束)和混合搭接关系。 (一)FTS (结束到开始)关系 结束到开始关系是通过前项工作结束到后项工作开始之间的时距(FTS )来表达的。如下图所示。 扎钢筋 浇筑混凝土 支模1 支模2 支模3 1 2 4 3 5 6 8 7 9 10 支模1 2 支模2 2 支模3 2 扎筋2 1 扎筋3 1 扎筋1 1 浇筑混凝土1 2 浇筑混 凝土2 2 浇筑混 凝土3 2 支模 6 扎钢筋 3 浇筑 6 STS=4 FTF=1 STS=1 FTF=4 i j FTS i j FTS D i D j

《用频率估计概率》练习1(有答案)

2.3 用频率估计概率 一、仔仔细细,记录自信 1.公路上行驶的一辆汽车车牌为偶数的频率约是()A.50% B.100% C.由各车所在单位或个人定D.无法确定 2.实验的总次数、频数及频率三者的关系是()A.频数越大,频率越大 B.频数与总次数成正比 C.总次数一定时,频数越大,频率可达到很大 D.频数一定时,频率与总次数成反比 3.在一副(54张)扑克牌中,摸到“A”的频率是() A.1 4 B. 2 27 C. 1 13 D.无法估计 4.在做针尖落地的实验中,正确的是() A.甲做了4000次,得出针尖触地的机会约为46%,于是他断定在做第4001次时,针尖肯定不会触地 B.乙认为一次一次做,速度太慢,他拿来了大把材料、形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的次数,这样大大提高了速度C.老师安排每位同学回家做实验,图钉自由选取 D.老师安排同学回家做实验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不满意的就不要 二、认认真真,书写快乐 5.通过实验的方法用频率估计概率的大小,必须要求实验是在的条件下进行. 6.某灯泡厂在一次质量检查中,从2 000个灯泡中随机抽查了100个,其中有10个不合格,则出现不合格灯泡的频率是,在这2 000个灯泡中,估计有个为不合格产品. 7.在红桃A至红桃K这13张扑克牌中,每次抽出一张,然后放回洗牌再抽,研究恰好抽到的数字小于5的牌的概率,若用计算机模拟实验,则要在的范围中产生随机数,若产生的随机数是,则代表“出现小于5”,否则

就不是. 8.抛一枚均匀的硬币100次,若出现正面的次数为45次,那么出现正面的频率是. 三、平心静气,展示智慧 9.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球. 10.如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据: (1)计算并完成表格: 转动转盘的次数n100 150 200 500 800 1 1000 落在“铅笔”的次数m68 111 136 345 564 701 落在“铅笔”的频率 m n (2)请估计,当n很大时,频率将会接近多少? (3)假如你去转动转盘一次,你获的铅笔的概率是多少?

(完整版)参数方程高考真题专题训练

高考真题专题训练——参数方程专题(6.11-6.12) 1、(2012课标全国Ⅰ,理23,10分)在直角坐标系xOy 中,曲线C 1的参数方程为 2cos 22sin x y α α =?? =+?(α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程 (Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3 πθ=与C 1的异于极点的交点 为A ,与C 2的异于极点的交点为B ,求AB . 2、(2012课标全国Ⅱ,理23,10分)已知曲线1C 的参数方程是)(3sin y 2cos x 为参数??? ???==,以坐 标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π (1)求点,,,A B C D 的直角坐标; (2)设P 为1C 上任意一点,求2 2 2 2 PA PB PC PD +++的取值范围。 3、(2013课标全国Ⅰ,理23,10分)选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos , 55sin x t y t =+??=+?(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴 建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).

4,(2013课标全国Ⅱ,理23,10分)已知动点P ,Q 都在曲线C :2cos , 2sin x t y t =??=?(t 为参数)上, 对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程; (2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 5、(2014课标全国Ⅰ,理23,12分)已知曲线C :22 149x y +=,直线l :222x t y t =+??=-?(t 为参 数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程; (Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值. 6、(2014课标全国Ⅱ,理23,10分)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ??∈????. (Ⅰ)求C 的参数方程; (Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.

25.3用频率估计概率教学设计

25.3用频率估计概率教学设计 【教材分析】 《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。概率与人们的日常生活密切相关,应用十分广泛。纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。 【教学目标】 根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面: 知识目标: 1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。 2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。方法与过程目标: 1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系. 2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法. 情感态度与价值观目标: 1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。 2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。 【重点与难点】 重点:1.体会用频率估计概率的必要性和合理性。 2.学会依据问题特点,用频率来估计事件发生的概率。 难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。 【学生分析】 学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。所以,要发动学生积极参与,动手实验,在实践中感悟。 【教学方法】 树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。 【设计理念】 激发学生的学习兴趣,发展学生的数学才能,在教学过程中充分运用启发和讨论方式,发扬教学民主,关注知识的形成和发展过程,创设情境,培养学生用数学的眼光看世界的意识,发展搜集和处理信息的能力,运用所学的数学知识解释生活中发生的某些现象,从中建立起数学模型,抽象为数学问题,探究和发展其中的变化规律。 【教师准备】 《问题导读---评价单》、《问题生成---评价单》、《问题训练---评价单》

最新极坐标与参数方程经典练习题-带详细解答

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为122x t y ?=+?? ??=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两 点,求弦长||AB .2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π ,圆C 的极坐标方程 为)4 π ρθ= -. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程 已知直线l 的参数方程是)(242 2 2 2 是参数t t y t x ??? ? ?? ? +==,圆C 的极坐标方程为 )4 cos(2π θρ+=. (I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴 重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+??=-+? (α为参数), 点Q 的极坐标为7 )4 π。 (1)化圆C 的参数方程为极坐标方程; (2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。 5.在极坐标系中,点M 坐标是)2, 3(π ,曲线C 的方程为)4 sin(22π θρ+ =;以极点 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .

双代号网络图时间参数的计算

双代号网络图时间参数的计算 参数名称符号英文单词 工期 计算工期TCComputer Time 要求工期TR RequireTime 计划工期T P Plan Time 工作的 时间参数 持续时间D i-jDay 最早开始时间ES i-j Earliest Starting Tim e 最早完成时间EF i—j Earliest Finishing Time 最迟完成时间LFi—jLatest Finishing Time 最迟开始时间LSi—jLatest Starting Time 总时差TFi-j Total Float Time 自由时差FF i-j Free Float Time 二、工作计算法 【例题】:根据表中逻辑关系,绘制双代号网络图,并采用工作计算法计算各工作的时间参数。 工作A B C DEFGHI 紧前-A A B B、C C D、E E、 F H、G 时间333854422

(一)工作的最早开始时间ESi—j —-各紧前工作全部完成后,本工作可能开始的最早时刻。 (二)工作的最早完成时间EF i—j EF i-j=ES i-j + D i—j 1。计算工期Tc等于一个网络计划关键线路所花的时间,即网络计划结束工作最早完成时间的最大值,即T c=max{EF i—n} 2.当网络计划未规定要求工期Tr时, Tp=T c 3.当规定了要求工期Tr时,T c≤T p,T p≤T r —-各紧前工作全部完成后,本工作可能完成的最早时刻。

(三)工作最迟完成时间LFi-j 1.结束工作的最迟完成时间LFi-j=T p 2.其他工作的最迟完成时间按“逆箭头相减,箭尾相碰取小值”计算. --在不影响计划工期的前提下,该工作最迟必须完成的时刻。 (四)工作最迟开始时间LS i-j LSi—j=LFi—j—D i-j --在不影响计划工期的前提下,该工作最迟必须开始的时刻。

人教版九年级数学上册25.3 用频率估计概率2同步测试题及答案(2020必考)

25.3 用频率估计概率 1.用频率来估计概率的值,得到的只是______,但随实验的次数增多,频率值与实际概率值的差会越来越趋近于______,此时对这个事件发生概率值估计的准确性也就越大. 2.某单位共有30名员工,现有6张音乐会门票,领导决定分给6名员工,为了公平起见,他将员工们按1~30进行编号,用计算器随机产生______~______之间的整数,随机产生的______个整数对应的编号去听音乐会. 3.为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中73天空气质量情况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有______天. 4.利用计算器产生1~5的随机数(整数),连续两次随机数相同的概率是______. 5.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( ) A .361 B .181 C .61 D .2 1 6.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( ) A .8000条 B .4000条 C .2000条 D .1000条 7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行 (2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只? (4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法. 8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由. 9.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________. 10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的 两端刚好都接有绳子的概率是______. 11.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m ,针长为0.1m , 向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.

极坐标全参数方程高考练习含问题详解(非常好的练习题)

极坐标与参数方程高考精练(经典39题) 1.在极坐标系中,以点(2,)2C π 为圆心,半径为3的圆C 与直线:()3l R π θρ=∈交于,A B 两点.(1)求圆C 及直线 l 的普通方程.(2)求弦长AB . 2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4 R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长. 3.在极坐标系中,点M 坐标是)2,3(π ,曲线C 的方程为)4 sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半 轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值.

4.已知直线l 的参数方程是)(242222是参数t t y t x ???????+==,圆C 的极坐标方程为)4cos(2πθρ+=. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y t a x ,3???=+=.在极坐标系(与直角坐标系xOy 取相同的长 度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程; (Ⅱ)若圆C 与直线l 相切,数a 的值. 6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。 (I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。

25.3用频率估计概率(教案)

25.3用频率估计概率 教学目标 【知识与技能】 理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率. 【过程与方法】 经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率? 【情感态度】 通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值. 【教学重点】 对利用频率估计概率的理解和应用. 【教学难点】 利用频率估计概率的理解. 教学过程 一、情境导入,初步认识 问题1400个同学中,一定有2个同学的生日相同(可以不同年)吗?那么300个同学中一定有2个同学的生日相同吗? 有人说:“50个同学中,就很可能有2个同学的生日相同这话正确吗?调查全班同学,看看有无2个同学的生日相同. 问题2要想知道一个鱼缸里有12条鱼,只要数一数就可以了.但要估计一个鱼塘里有多少条鱼,该怎么办呢? 【教学说明】在前面我们学习了能列举所有可能的结果,并且每种结果的可能性相等的随机事件的概率的求法?那么这里的两个问题情境中,很容易让学生想到这些事件的结果不容易完全列举出来,而且每种结果出现的可能性也不一定是相同的.从而引发学生的求知欲,对于这类事件的概率该怎样求解呢,引入课题.

二、思考探究,获取新知 1.利用频率估计概率 试验:把全班同学分成10组,每组同学掷一枚硬币50次,整理同学们获得的试验数据,并记录在下表中: 填表方法:第1组的数据填在第1行;第1,2组的数据之和填在第2行,…, 10个组的数据之和填在第10行. 如果在抛掷n次硬币时,出现m次“正面向上”,则随机事件“正面向上” 出现的频率为m/n. 【教学说明】分组是为了减少劳动强度加快试验速度,当然如果条件允许, 组数分得越多,获得的数据就会越多,就更容易观察出规律.让学生再次经历数据的收集,整理描述与分析的过程,进一步发展学生的统计意识,发现数据中隐藏的规律. 请同学们根据试验所得数据想一想:“正面向上”的频率有什么规律?历史 上,有些人曾做过成千上万次抛掷硬币的试验,试验结果如下:

工程网络计划有关时间参数的计算典型例题

工程网络计划有关时间参数的计算典型例题 例题1:某工程双代号网络计划如下图所示(单位:天)。该网络计划的关键线路为()。 A.①→③→⑤→⑥ B.①→③→④→⑤→⑥和①→②→③→④→⑤→⑥ C.①→②→⑤→⑥和①→②→③→④→⑥ D.①→②→③→⑤→⑥ 【正确答案】B 【答案解析】按工作计算法可知,总工期为14天,关键线路为:①→③→④→⑤→⑥和①→②→③→④→⑤→⑥两条。参见教材P128. 例题2:[背景资料]某施工企业与业主签订了某工程的施工承包合同。经监理工程师审核批准的施工进度计划如下图所示(时间单位:天)。 根据上述背景资料,回答下列第1~4小题: 第1小题:双代号网络图中虚箭线表示()。 A.资源消耗程度B.工作的持续时间C.工作之间的逻辑关系D.非关键工作 【正确答案】C

【答案解析】在双代号网络图中,为了正确地表达图中工作之间的逻辑关系,往往需要用虚箭线。虚线是实际工作中并不存在的一项虚设工作,故它们既不占用时间,也不消耗资 源。 在双代号网络图中,任意一条实箭线都要占用时间、消耗资源。参见教材P116. 第2小题:监理工程师审核批准的施工进度计划工期是()天。 A.210 B.245 C.280 D.300 【正确答案】D 【答案解析】本题实质就是计算该网络计划的工期。计算得到的最早开始时间、最早完成时间、最迟开始时间、最迟完成时间、总时差和自由时差。由图可知计划工期是300天。由于该网络计划图较简单,也可以分别计算四条线路的持续时间,关键线路的长就是计划工 期。参见教材P127. 工期泛指完成任务所需要的时间,一般有以下3种; (1)计算工期,根据网络计划时间参数计算出来的工期,用T c表示; (2)要求工期,任务委托人所要求的工期,用T r表示; (3)计划工期,根据要求工期和计算工期所确定的作为实施目标的工期,用T p表示。 网络计划的计划工期T p应按下列情况分别确定:当已规定了要求工期T r时,T p≤T r; 当未规定要求工期时,可令计划工期等于计算工期,T p=T r。 计算过程见下图所示:

人教版九年级上册数学同步练习《用频率估计概率》(习题+答案)

25.3用频率估计概率 内容提要 1.一般地,在大量重复试验中,如果事件A发生的频率m n 稳定于某个常数p,那么事件A发生的概率() P A p =. 2.即使试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等,我们也可以通过试验的方法去估计一个随机事件发生的概率.只要试验的次数n足够大,且频率 m n 稳定于某个常数,频率m n 就可以作为概率P的估计值. 基础训练 1.在“抛骰子”的游戏中,如果抛了100次,出现点数1的频率为19%,这是() A.可能的B.确定的C.不可能D.以上都不正确 2.下列说法正确的是() A.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨 B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 C.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖 D.一颗质地均匀的骰子已经连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点 3.某个事件发生的概率是1 2 ,这意味着() A.在两次重复实验中该事件必有一次发生 B.在一次实验中没有发生,下次肯定发生 C.在一次实验中已经发生,下次肯定不发生 D.每次实验中事件发生的可能性是50% 4.晓辉为练习射击,共射击600次,其中380次击中靶子,由此可以估计,晓辉射击一次击中靶子的概率约是() A.38% B.60% C.63% D.65% 5.为了估计池塘里有多少条鱼,从池塘里捕捞了100条鱼做上标记,然后放回池塘里,经过一段时间等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10

条,则估计池塘里有鱼条. 6.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据,请估计盒子里的白球个数为. (1)计算各次检查中“优等品”的频率,填入表中: )该厂生产乒乓球优等品的概率约为(精确到 8.某商场设立了一个可以自由转动的转盘(如图所示),并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据: (2)请估计,当转动转盘的次数很大时,频率将会接近多少(精确到0.1)? (3)假如你去转动该转盘一次,你获得铅笔的概率约是多少? (4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?

相关文档
相关文档 最新文档