文档库 最新最全的文档下载
当前位置:文档库 › 微机实验八-8253方波实验实验报告

微机实验八-8253方波实验实验报告

微机实验八-8253方波实验实验报告
微机实验八-8253方波实验实验报告

计算机科学与技术系

实验报告

专业名称计算机科学与技术

课程名称微机原理与接口技术

项目名称 8253方波实验

班级

学号

姓名

同组人员无

实验日期 2016/06/28

一、实验目的与要求

1、了解8253的内部结构,工作原理;了解8253与8088的接口逻辑;

熟悉8253的控制寄存器和初始化编程方法,熟悉8253的6中工作方式 二、实验逻辑原理图与分析(汇编—流程图) 2.1 画实验逻辑原理图

AD15~AD0ALE A16/s3~A19/s6

BHE

DT/R DEN RD WR M/IO

INTA INTR

MN/MX

ClK READY RESET

8282

8288收发器

STB D7~D0RD WR A0A1

CLK0GATE0OUT CLK GATE1OUT OUT2GATE2CLK2

2M

+5V 发光管或蜂鸣器

译码器

CS

2.2 逻辑原理图分析

实验原理与分析:由于实验是使用8253的计数器0和计数器1实现对输入时钟频率的两级分频,得到一个周期为1S 的方波。故8253通信实验需要8253A 芯片,8282地址锁存器,用于8086CPU 与8253A 芯片地址线的连接,8286收发器用于8086CPU 与8253A 芯片数据线的连接,通过地址译码器实现片选信号(CS )的选通。

8253的内部结构,读/写控制逻辑 :决定三个计数器和控制字寄存器中哪一个能进行工作,并控制内部总线上数据传送的方向;控制寄存器:接收从CPU 来的控制字,并由控制字的D7、D6位的编码决定该控制字写入哪个计数器的控制寄存器,控制寄存器只能写入,不能读出;计数器: 当8253用作计数器时,加在CLK 引脚上脉冲的间隔可以是不相等的;当它用作定时器时,则在CLK 引脚应输入精确的时钟脉冲,8253所能实现的定时时间,取决于计数脉冲的频率和计数器的初值,即:定时时间=时钟脉冲周期Tc ×预置的计数初值n 。

三、 程序分析

3.1、程序功能

使用8253的计数器0和计数器1实现对输入时钟频率的两级分频,得到一个周期为1秒的方波,用此方波控制蜂鸣器,发出报警信号,也可以将输入脚接到逻辑笔上来检验程序是否正确

3.2程序代码分析

写8253控制字:选择计数器0,计数器的写格式为:先写低地址在写高地址,

计数器0的工作在方式2(分频)BCD 码计数 端口地址为:0B003H

D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 1 0 1 0 1 1 0 0

BCD 计数

MOV DX,COM_ADDR MOV AL,35H

OUT DX,AL ;计数器T0设置在模式2状态,BCD 计数 写入计数器0的初始值(10000H )端口地址0B000H MOV DX,T0_ADDR MOV AL,00H OUT DX,AL

MOV AL,10H ;CLK0/1000 OUT DX,AL

写8253控制字:选择计数器1,计数器的写格式为:先写低地址在写高地址,计数器0的工作在方式3(方波)BCD 码计数 端口地址为:0B003H

D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 1 1 1 0 1 1 1 0

BCD 计数

MOV DX,COM_ADDR

MOV AL,77H

OUT DX,AL ;计数器T1为模式3状态,输出方波,BCD 码计数 写入计数器0的初始值(20000H )端口地址0B001H MOV DX,T1_ADDR MOV AL,00H OUT DX,AL MOV AL,20H

OUT DX,AL ;CLK1/1000 JMP $ ;OUT1输出1s 的方波 END START

四、实验数据和结果分析

先写低8位后写高8位 方式2

计数器0 先写低8位后写高8位 方式3

计数器1

4.1 实验结果数据

实验结果:二极管的关断和导通的频率每隔0.5秒亮一次,0.5秒灭

4.2 结果数据分析

根据定时器/计数器8253的工作原理:8253具有3个独立的计数通道,采用减1计数方式。在门控信号有效时,每输入1个计数脉冲,通道作1次计数操作。当计数脉冲是已知周期的时钟信号时,计数就成为定时。通过编程,对其内部的寄存器和工作方式的设置达到其计数的效果。

该实验根据8253的工作原理,在硬件的基础上进行编程实现了实验结果:蜂鸣器发警报和红绿灯交替亮。对此结果的具体分析如下:

根据实验要求,计算出计数初值2M,由于8253一个通道的最大计数范围是65536,所以将计数初值分为两个通道传入,即2000*1000。

五、实验问题分析、思考题与小结

5.1实验问题分析、思考题

利用8253实现方波发生器,由于蜂鸣器有噪音,所以没有用到蜂鸣器,故利用二极管的通断来反应方波发生器的成功实现。实验课上老师提出一个问题:如果计数器0不能用了,该怎样修改程序,实现本次实验的功能,刚开始,我们只修改了8235的第一个控制字的通道方式,将其改为2,没有考虑到地址问题,后来通过和同学一起讨论,得知控制字的端口地址也需要更改。

5.2实验小结

通过此次实验,了解了8253的内部结构,工作原理和8253与8088的接口逻辑;熟悉了8253的控制寄存器和初始化编程方法,了解8253在实际生活中的具体应用,即计数和定时,本次实验值实现了在规定的时间内(0.5S),红绿灯交替闪烁以及认识到8253的方式2(分频)和方式3(方波)的区别。

六、其它

物化实验答案

饱和蒸气压的测定 1.为什么平衡管 a,c 中的空气要赶净怎样判断空气已被赶净在实验过程中如何防止空气倒灌答:若空气不赶净测得的压力不是纯液体的饱和蒸气压,而是与空气的混合压力,它不能用克劳修斯-克拉贝龙方程来描述.在大气压下测定沸点,若几次(例如三次)测定值在误差范围之内(≤℃)则可认为空气已被赶净.为防止空气倒灌,可在读取温度和压力数据后立即重新加热水浴,或迅速使系统减压. 2.本实验的主要系统误差有哪些答: (1)方法误差.在由克拉贝龙方程导出克劳修斯-克拉贝龙方程的过程中有 3 个近似. g l 即:将蒸气看作理想气,设 V m=RT/P;与气体摩尔体积相比,忽略液体的摩尔体积(V m) ; 在不太大的温度间隔内,将摩尔气化热看作常数. (2)读取温度和压力不能同时. (3)温度的测量不作校正;(4)四氯化碳不纯等. 3.对教材第46页上提示2如何回答答:a:该平衡管对压力变化反应较灵敏,但由于液柱较细,容易发生倒灌.而且c管和b管液面上升和下降较快,两液面相平时的温度和压力不易读准,并且由于封闭液体量少,易因蒸气损失量大而影响实验. b:该平衡管制作简便,易装液,但空气不能排尽,且容易发生空气倒灌.在精度比较低的实验中可采用之. c:该平衡管制作比较精良,能较好地解决空气倒灌问题,并且由于 b 管比 c 管粗许多, 所以 b 管液面下降较慢,而 c 管液面上升较快,易判断两液面相平,温度和压力读数较准. 另外 b,c 间封液较多,一般不会因蒸气量损失大而影响实验.(也有人认为读数时 b 管与 c 管液面相平不易观察,对读数的可靠性造成一定影响,可能滞后.此问题可以讨论,也可以通过小实验验证) 4.系统如何捡漏判断漏气的依据是什么答:将系统减压~50 kPa,关闭与安全瓶相连的活塞,观察系统压力变化.若系统压力不断增大则可判断系统漏气. 5.实验装置中缓冲瓶起什么作用答:使系统压力稳定,即使系统稍有漏气也不会对测量产生太大影响. 6.本实验中所用测量仪器的最小读数的精确度是多少用来表示平均摩尔汽化热的有效数字有几位答:本实验中所用温度传感器,最小分度℃,可估计读到℃;压力计最小读数是 ;一般温度和压力读数都是 4 位有效数字,所以用来表示平均摩尔汽化热的有效数字也应当是 4 位. 7.实验测得的是特定压力下液体的实际沸点, 如何求得液体的正常沸点你得到的正常沸点是多少,并与文献值比较答:由实验得到的 ln(p/p0)~1/T 图上查出 ln1 下的 1/T 值,然后计算 T;或由实验上得到的 0 ln(p/p )= -A/T+b 公式计算 p=100kPa 下的 T 值(在已知 A 和 b 的情况下) . 8.压力和温度测量都有随机误差, 试用最小二乘法求算 ln(p/p0)=-vHm/RT+b=-A/T+b 直线的 斜率及其误差,并由此求算vHm 值及其误差. 答:见实验教材第 24 页上的例题.以同样的方法对你的实验结果作误差分析. 9.四氯化碳是易燃物,在加热时应该注意什么问题答:所有接口都必须密封,加热温度不要太高,一般高出正常沸点 2-3 度即可. 双液体系沸点-成分图的绘制 1.本实验中,气,液两相是怎样达成平衡的若冷凝管 D 处体积太大或太小,对测量有何影响答:在本实验采用的恒沸点仪中,利用冷凝回流的方法保持气,液两相的相对量一定,则体系温度一定,两相达平衡.若冷凝管 D 处的体积太大,则气相冷凝液不易更新,客观上会造成气相蒸汽分馏,影响气相的平衡成分测定;而过小,则会因积存液量少给取样测定带来困难. 2.平衡时气,液两相温度应该

8253计数器定时器接口实验

微机原理实验报告 实验五 8253计数器/定时器接口实验 1.实验目的 1)学会通过PC总线、驱动器、译码器等在PC机外部扩充为新的芯片; 2)了解8253计数器/定时器的工作原理; 3)掌握8253初始化的程序设计; 4)掌握8253方式0的计数方式的使用方法和方式3方波产生的方法。 2.实验内容 将实验装置上的1片8253定时器/计数器接入系统,具体做两个内容的实验。 1)实验一:将8253的计数器0设置为工作于方式0,设定一个计数初值,用手 动逐个输入单脉冲,观察OUT0的电平变化。 硬件连接:断开电源,按图2-1将8253接入系统。具体包括: (1)将8253的CS接I/O地址输出端280H-287H; (2)将8253的计数器0的CLK0与单脉冲信号相连,以用来对单脉冲进行计数; (3)将8253的GATE0用专用导线接向+5V,以允许计数器0工作; (4)将8253的OUT0接到LED发光二极管,以显示8253计数器0的输出OUT0的 状态。 图2-1 8253实验一的连线图 2)实验二:将8253的计数器0、1均设置为工作于方式3(方波),按图2-2重 新接线。要求是当CLK0接1MHz时,OUT1输出1Hz的方波,OUT的输出由LED 显示出来。将计数器0与计数器1串联使用,计数器0的输出脉冲OUT0作为计数器1的时钟输入CLK1。

图2-2 8253实验二的连线图3.程序及框图 1)程序框图 图4-1给出了8253实验一的流程图。 图4-1 程序流程图 图4-2给出了8253实验二的流程图。 2)程序代码 实验一程序代码: CTRL EQU 283H TIME0 EQU 280H TIME1 EQU 281H DATA SEGMENT MESS DB 'ENTER ANY KEY RETURN TO DOS!',0DH,0AH,'$' DATA ENDS CODE SEGMENT

方波_三角波发生电路实验报告

河西学院物理与机电工程 学院 综合设计实验 方波-三角波产生电路 实验报告 学院:物理与机电工程学院 专业:电子信息科学与技术

:侯涛 日期:2016年4月26日 方波-三角波发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。 指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V 一、方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。

2、用折线法把三角波转换成正弦波。 二、方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 三、工作原理: 1、方波、三角波发生电路原理

8255,8253交通灯模拟实验

微机原理课程设计——8255,8253交通灯模拟实验 文档介绍:交通信号灯的控制: 1.通过8255A并口来控制LED发光二极管的亮灭。 2.A口控制红灯,B口控制黄灯,C口控制绿灯。 3.输出为0则亮,输出为1则灭。 4.用8253定时来控制变换时间。 要求:设有一个十字路口,1、3为南,北方向,2、4为东西方向,初始态为4个路口的红灯全亮。之后,1、3路口的绿灯亮,2、4路口的红灯亮,1、3路口方向通车。延迟30秒后,1、3路口的绿灯熄灭,而1,3路口的黄灯开始闪烁(1HZ)。闪烁5次后,1、3路口的红灯亮,同时2、4路口的绿灯亮,2、4路口方向开始通车。延迟30秒时间后,2、4路口的绿灯熄灭,而黄灯开始闪烁。闪烁5次后,再切换到1、3路口方向。之后,重复上述过程。 系统原理 工作原理说明: 此方案是通过并行接口芯片8255A和8086计算机的硬件连接,以及通过8253延时的方法,来实现十字路口交通灯的模拟控制。 如硬件连接图所示,红灯(RLED),黄灯(YLEDD)和绿灯(GLED)分别接在8255的A,B,C口的低四位端口,PA0,PA1,PA2,PA3分别接1,2,3,4路口的红灯,B,C口类推。8086工作在最小模式,低八位端口AD0~AD7接到8255和8253的D0~D7,AD8~AD15通过地址锁存器8282,接到三八译码器,译码后分别连到8255和8253的CS片选端。8253的三个门控端接+5V,CLOCK0接由分频器产生的1MHZ的时钟脉冲,OUT0接到CLOCK1和CLOCK2,OUT1接到8086的AD18,8086通过检测此端口是否有高电平来判断是否30S定时到。OUT2产生1MHZ 方波通过或门和8255的B口共同控制黄

微机原理实验报告

汇编语言程序设计实验 一、实验内容 1.学习并掌握IDE86集成开发环境的使用,包括编辑、编译、链接、 调试与运行等步骤。 2.参考书例4-8,P165 (第3版161页)以单步形式观察程序的 执行过程。 3.修改该程序,求出10个数中的最大值和最小值。以单步形式观 察,如何求出最大值、最小值。 4.求1到100 的累加和,并用十进制形式将结果显示在屏幕上。 要求实现数据显示,并返回DOS状态。 二、实验目的 1.学习并掌握IDE86集成开发环境的使用 2.熟悉汇编语言的基本算法,并实际操作 3.学会利用IDE86进行debug的步骤 三、实验方法 1.求出10个数中的最大值和最小值 (1)设计思路:利用冒泡法,先对数据段的10个数字的前2个比 较,把二者中大的交换放后面。在对第二个和第三个数比较,把 二者中较大的交换放后面,依此类推直到第十个数字。这样第十 位数就是10个数里面最大的。然后选出剩下9个数字里面最大 的,还是从头开始这么做,直到第九个数字。以此类推直到第一 个数字。

(2)流程图 2.求1到100 的累加和,并用十进制形式将结果显示在屏幕上。 要求实现数据显示,并返回DOS状态

(1)设计思路:结果存放在sum里面,加数是i(初始为1),进行 100次循环,sum=sum+I,每次循环对i加1. (2)流程图: 四、 1.求出10个数中的最大值和最小值

DSEG SEGMENT NUM DB -1,-4,0,1,-2,5,-6,10,4,0 ;待比较数字 DSEG ENDS CODE SEGMENT ASSUME DS:DSEG,CS:CODE START:MOV AX,DSEG MOV DS,AX LEA SI,NUM MOV DX,SI MOV CL,9 ;大循环计数寄存器初始化 NEXT1:MOV BL,CL ;大循环开始,小循环计数器初始化MOV SI,DX NEXT2:MOV AL,[SI+1] CMP [SI],AL ;比较 JGGONE ;如果后面大于前面跳到小循环末尾CHANGE:MOV AH,[SI] ;交换 MOV [SI+1],AH MOV [SI],AL JMP GONE GONE:add SI,1 DEC BL JNZ NEXT2

微机原理实验报告

西安交通大学实验报告 课程_微机与接口技术第页共页 系别__生物医学工程_________实验日期:年月日 专业班级_____组别_____交报告日期:年月日 姓名__ 学号__报告退发 ( 订正、重做 ) 同组人_教师审批签字 实验一汇编语言程序设计 一、实验目的 1、掌握Lab6000p实验教学系统基本操作; 2、掌握8088/8086汇编语言的基本语法结构; 3、熟悉8088/8086汇编语言程序设计基本方法 二、实验设备 装有emu8086软件的PC机 三、实验内容 1、有一个10字节的数组,其值分别是80H,03H,5AH,FFH,97H,64H,BBH,7FH,0FH,D8H。编程并显示结果: 如果数组是无符号数,求出最大值,并显示; 如果数组是有符号数,求出最大值,并显示。 2、将二进制数500H转换成二-十进制(BCD)码,并显示“500H的BCD是:” 3、将二-十进制码(BCD)7693转换成ASCII码,并显示“BCD码7693的ASCII是:” 4、两个长度均为100的内存块,先将内存块1全部写上88H,再将内存块1的内容移至内存块2。在移动的过程中,显示移动次数1,2 ,3…0AH…64H(16进制-ASCII码并显示子

程序) 5、键盘输入一个小写字母(a~z),转换成大写字母 显示:请输入一个小写字母(a~z): 转换后的大写字母是: 6、实现4字节无符号数加法程序,并显示结果,如99223344H + 99223344H = xxxxxxxxH 四、实验代码及结果 1.1、实验代码: DATA SEGMENT SZ DB 80H,03H,5AH,0FFH,97H,64H,0BBH,7FH,0FH,0D8H;存进数组 SHOW DB 'THE MAX IS: ','$' DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA ;把数据的基地址赋给DS MOV DS,AX MOV DX,OFFSET SHOW ;调用DOS显示字符串 MOV AH,09H INT 21H MOV SI ,OFFSET SZ ;数组的偏移地址赋给SI MOV CX,10 ;存进数组的长度给CX MOV DH,80H ;将数组的第一个数写进DH NEXT: MOV BL,[SI] ;将数组的第一个数写进BL CMP DH,BL ;比较DH和BL中数的到校 JAE NEXT1 ;如果DH中的数大于BL中,将跳转到NEXT1 MOV DH,BL ;如果DH中的数小于BL中,将BL中的数赋给DH NEXT1: INC SI ;偏移地址加1 LOOP NEXT;循环,CX自减一直到0,DH中存数组的最大值 ;接下来的程序是将将最大值DH在屏幕上显示输出 MOV BX,02H NEXT2: MOV CL,4 ROL DH,CL ;将DH循环右移四位

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

立波波压力测定实验报告

大学海洋工程环境实验报告 实验日期:2011年5月16日成绩: 班级:学号::教师: 同组者: 立波波压力测定实验 一、实验目的与基本原理 1. 实验目的 通过实验增加学生对立波的感性认识,了解波浪反射的工作特性,从波浪理论可知波浪正向入射到光滑不透水直墙时,反射波与入射波的波要素绝对值相等,两者完全叠加产生稳定的立波。立波的特性是周期T和波长L不变,波高H 增加一倍,相应的波压力也大大增加。要求学生学会反射系数和波压力的测量方法,培养学生的实际动手能力和通过实验手段验证波压力计算方法的能力。 2. 实验原理 ⑴入射波高测量; ⑵立波波高测量及计算反射系数; ⑶观察立波波腹及波节出现的位置并做好记录; ⑷在直立墙上沿高程布置压力传感器,测量波压力分布。 二、实验 1. 实验过程 ⑴准备:准备一块木板,其宽度应与水槽宽相适应,作为直立防波堤,沿高度方向每隔5cm钻一个孔作为安装压力传感器用,板的长度要适应。 ⑵对波高仪和压力传感器进行标定,求出各自的标定系数K、a、b。 ⑶在没有放置板的条件下,测量入射波高为H i,然后放入再测量立波波高

为H r ,然后计算反射系数。 ⑷ 波压力测量: 波压力沿水深的分布是不同的,有波浪理论可知,波压力: Pz=-ρ·g ·z ﹢ 2 1 ρ·g ·H · (){}()()θcos c h k ch h z k h ?+ 式中:ρ——水密度; g ——重力加速度; k ——波数; θ——相位角; h ——静水水深; z ——水面下深度。 但是波压力呈周期性变化,其最大值为波峰时的压力P z +,然后与计算值比较绘出压力沿水深分布与静水压力分离出来得到波峰和波谷时波浪动水压力沿水深的分布曲线。 2. 实验结果 传感器的标定:压力传感器标定系数a = 5327.8 ,b = -6044.5 (b U a P +?=) 波高传感器标定系数K = 4.14 (物理波高h K H ?=,h 为波浪过程线波高/V ); 入射波:波周期T = 2.181 秒,波长L =3.149 米,波高H = 2.19 厘米。 立波:波周期T = 2.145 秒,波长L = 3.14 米,波高H = 6.38 厘米。 ⑴ 实验数据 表1 波高仪标定记录表

实验一 8253方波实验

实验一8253方波实验 一、实验目的 (1)学会8253芯片和微机接口原理和方法。 (2)掌握8253定时器/计数器的工作方式和编程原理。 二、实验仪器 示波器教学机电脑 三、实验内容 8253的0通常工作在方式3,产生方波。 四、程序框图 五、实验电路 六、编程提示 8253芯片介绍 ,用+5V 8253是一种可编程定/计数器,有三个十六位计数器,其计数频率范围为0~2MH Z 单电源供电。 8253的功能用途: (1)延时中断 (2)可编程频率发生器 (3)事件计数器 (4)二进制倍频器 (5)实时时钟 (6)数字单稳 (7)复杂的电机控制器 8253的六种工作方式: (1)方式0:计数结束中断 (2)方式1:可编程频率发生 (3)方式2:频率发生器 (4)方式3:方波频率发生器 (5)方式4:软件触发的选通信号 (6)方式5:硬件触发的选通信号

8253的0号通道工作在方式3,产生方波。 七、程序清单 通道0工作在方式3:00110110H=36H 计数器0:0FFE0H 控制计数器:0FFE3H code segment assume cs:code,ds:code,es:code org 3000H start: MOV DX,0FFE3H MOV AL,36H OUT DX,AL MOV DX,0FFE0H MOV AL,00H OUT DX,AL MOV AL,10H OUT DX,AL JMP $ code ends end start 八、实验步骤 (1)按实验电路图连接线路: ①8253的GATE0接+5V。 (已 ②8253的CLK0插孔接分频器74LS393的T2插孔,分频器的频率源为:4.9152MH z 连好)。 ③8253的CS孔与138译码器的Y0孔相连。 ④对一体机而言,将SIO区D0~D7用排线与BUS区D0~D7相连。 (2)运行实验程序 (3)用示波器测量8253的OUT0输出插孔有方波产生。 九、实验数据及结果 当程序清单中MOV AL 10H 时,其频率为149.9HZ,T=6.7ms 当程序清单中MOV AL 15H 时,其频率为114.3HZ,T=8.7ms

信号发生器实验报告(波形发生器实验报告)

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法 。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。 (2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC 桥式正弦波振荡器 图1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。下图2为起振波形。

立波波压力测定实验报告

大学 海洋工程环境 实验报告 实验日期: 2011年5月16日 成绩: 班级: 学号: : 教师: 同组者: 立波波压力测定实验 一、实验目的与基本原理 1. 实验目的 通过实验增加学生对立波的感性认识,了解波浪反射的工作特性,从波浪理论可知波浪正向入射到光滑不透水直墙时,反射波与入射波的波要素绝对值相等,两者完全叠加产生稳定的立波。立波的特性是周期T 和波长L 不变,波高H 增加一倍,相应的波压力也大大增加。要求学生学会反射系数和波压力的测量方法,培养学生的实际动手能力和通过实验手段验证波压力计算方法的能力。 2. 实验原理 ⑴ 入射波高测量; ⑵ 立波波高测量及计算反射系数; ⑶ 观察立波波腹及波节出现的位置并做好记录; ⑷ 在直立墙上沿高程布置压力传感器,测量波压力分布。 二、实验 1. 实验过程 ⑴ 准备:准备一块木板,其宽度应与水槽宽相适应,作为直立防波堤,沿高度方向每隔5cm 钻一个孔作为安装压力传感器用,板的长度要适应。 ⑵ 对波高仪和压力传感器进行标定,求出各自的标定系数K 、a 、b 。 ⑶ 在没有放置板的条件下,测量入射波高为H i ,然后放入再测量立波波高为H r ,然后计算反射系数。 ⑷ 波压力测量: 波压力沿水深的分布是不同的,有波浪理论可知,波压力: Pz=-ρ·g ·z ﹢ 2 1 ρ·g ·H · (){}()()θcos c h k ch h z k h ?+

式中:ρ——水密度; g——重力加速度; k——波数; θ——相位角; h——静水水深; z——水面下深度。 +,然后与计算值比但是波压力呈周期性变化,其最大值为波峰时的压力P z 较绘出压力沿水深分布与静水压力分离出来得到波峰和波谷时波浪动水压力沿水深的分布曲线。 2. 实验结果 传感器的标定:压力传感器标定系数a= 5327.8 ,b= -6044.5 (b =) ? U P+ a 波高传感器标定系数K= 4.14 (物理波高h H? =,h为波浪过程线波高 K /V); 入射波:波周期T= 2.181 秒,波长L=3.149 米,波高H= 2.19 厘米。 立波:波周期T= 2.145 秒,波长L= 3.14 米,波高H= 6.38 厘米。 ⑴实验数据 表1 波高仪标定记录表

微机实验8253

浙江工业大学计算机学院实验报告 实验名称定时/计数器(8253)

一、实验内容与要求 1.1 实验内容 1.计数器方式0实验 将计数器0设置为方式0,计数器初值为N(N≤0FH),用手动开关逐个输入单脉冲,编程使计数值在屏幕上显示,并同时用逻辑笔观察OUT0电平变化(当输入N+1个脉冲后OUT0变高电平)。 2.计数器方式3实验 将计数器0、计数器1分别设置为方式3,计数初值设为1000,用逻辑笔观察OUT1输出电平的变化(频率1Hz)。 3. 计数器级联实验 将计数器0设置为方式3(方波),计数器1设置为方式2(分频)。实现计数器0的输出为方波,计数器1的输入是计数器0输出。人机交互界面设计:实现在显示屏幕上提示输入计数器0(方波)的参数和计数器1(分频信号)的参数。 1.2 实验要求 (1)正确完成硬件电路连线; (2)使用8253定时/计数器芯片,除片选引脚,其他信号都已接好,进行有关结构设计和编程 (3)编写正确汇编程序,完成正确的屏幕以及硬件仪器的显示。 二、实验原理与硬件连线 2.1 实验原理 8253/8254 定时/计数器总体结构如图2.1.1所示,外部引脚定义如图2.1.2所示

图2.1.1 定时/计数器总体结构 图2.1.2 外部引脚定义 2.2 硬件连线 1.实验1硬件连线如图 2.21所示: 图2.2.1 TPC-USB 平台计数器方式0实验连线图 2.实验2 硬件连线如图2.22所示: U5 8253 +5V +5V

图2.2.2 TPC-USB平台计数器方式3实验连线 3.实验3硬件连线如图2.23所示: U5 8253 +5V +5V 图2.2.3 TPC-USB平台计数器级联实验连线 三、设计思路、步骤和程序流程图 3.1 设计思路 (1)硬件连线:在TPC-USB实验板上,进行三种方式下的8253计数器实验(2)程序设计:通过对实验要求的理解,编写想关的汇编代码 (3)两者结合显示符合实验要求的结果 3.2 实验步骤 3.3 程序流程 (1)计数器方式0实验,流程如图3.3.1:

四川大学微机原理实验报告..

微机原理实验报告 学院: 专业班级: 姓名 学号

实验一汇编语言编程基础 1.3汇编语言程序上机操作和调试训练 一.功能说明 运用8086汇编语言,编辑多字节非压缩型BCD数除法的简单程序,文件名取为*.ASM。 运用MASM﹒EXE文件进行汇编,修改程序中的各种语法错误,直至正确,形成*.OBJ文件。 运用LINK.EXE文件进行连接,形成*.EXE文件。 仔细阅读和体会DEBUG调试方法,掌握各种命令的使用方法。 运用DEBUG。EXE文件进行调试,使用单步执行命令—T两次,观察寄存器中内容的变化,使用察看存储器数据段命令—D,观察存储器数据段内数值。 再使用连续执行命令—G,执行程序,检查结果是否正确,若不正确可使用DEBUG的设置断点,单步执行等功能发现错误所在并加以改正。 二.程序流程图 设置被除数、商的地址指针 设置单位除法次数计数器 取被除数一位作十进制调整 作字节除法、存商 N 被除数各位已除完? Y 显示运算结果 结束 三.程序代码 修改后的程序代码如下: DATA SEGMENT A D B 9,6,8,7,5 B DB 5 C DB 5 DUP (0) N EQU 5 DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA,ES:DATA START: MOV AX,DATA MOV DS,AX

MOV ES,AX CLD LEA SI,A LEA DI,C MOV CX,N MOV AH,0 LP1: LODSB AAD DIV B STOSB LOOP LP1 MOV CX,N LEA DI,C LP2: MOV DL,[DI] ADD DL,30H MOV AH,2 INT 21H INC DI LOOP LP2 MOV AH,4CH INT 21H CODE ENDS END START 四.实验感想和收获 通过这次试验,我对微机原理上级试验环境有了初步的认识,可以较为熟练地对汇编语言进行编译,汇编及连接,同时也学会了用DEBUG调试程序,收获很大。 在这次试验中我也遇到了一些困难。在刚开始我发现自己无法打开MASM.EXE,计算机提示是由于版本不兼容。我这才想起来我的操作系统是64位的,和该软件版本不兼容。不过我并没有放弃,经过我的摸索之后,我发现用DOSBOX这个程序可以解决我的电脑运行不了该程序的问题。在解决了第一个难题后,我开始着手改正试验1.3中的语法错误和逻辑错误,但是无论我怎么修改却始终都无法通过编译,并且基本上每句话都有编译错误。根据我多年编程的经验来看,这应该是中文输入法在搞鬼,之后我耐心地把程序重新输了一遍,果然通过了编译,并且之后的连接也进行的很顺利。在用DEBUG调试时发现得出的结果也很正确。 尽管这次的实验内容非常简单,仅仅是教会我们一些基本的操作,但我却明显感觉到了汇编语言和C语言等高级语言所不同的地方。越是底层,基础的东西就越不人性化,用C语言一行代码就能实验的功能在汇编语言中可能要花上数十行。看来汇编语言的学习不是几周就能速成的,必须要有长年累月的积淀才能掌握。

信号发生器实验报告

电子线路课程设计报告设计题目:简易数字合成信号发生器 专业: 指导教师: 小组成员:

数字合成信号发生器设计、调试报告 一:设计目标陈述 设计一个简易数字信号发生器,使其能够产生正弦信号、方波信号、三角波信号、锯齿波信号,要求有滤波有放大,可以按键选择波形的模式及周期及频率,波形可以在示波器上 显示,此外可以加入数码管显示。 二、完成情况简述 成功完成了电路的基本焊接,程序完整,能够实现要求功能。能够通过程序控制实现正弦波的输出,但是有一定噪声;由于时间问题,我们没有设计数码管,也不能通过按键调节频率。 三、系统总体描述及系统框图 总体描述:以51单片机开发板为基础,将输出的数字信号接入D\A转换器进行D\A转换,然后接入到滤波器进行滤波,最后通过运算放大器得到最后的波形输出。 四:各模块说明 1、单片机电路80C51 程序下载于开发板上的单片机内进行程序的执行,为D\A转换提供了八位数字信号,同时为滤波器提供高频方波。通过开发板上的232串口,可以进行软件控制信号波形及频率切换。通过开发板连接液晶显示屏,显示波形和频率。 2、D/A电路TLC7528 将波形样值的编码转换成模拟值,完成单极性的波形输出。TLC7528是双路8位数字模拟转换器,本设计采用的是电压输出模式,示波器上显示波形。直接将单片机的P0口输出传给TLC7528并用A路直接输出结果,没有寄存。 3、滤波电路MAX7400 通过接收到的单片机发送来的高频方波信号(其频率为所要实现波频率的一百倍)D转换器输出的波形,对转换器输出波形进行滤波并得到平滑的输出信号。 4、放大电路TL072

TL072用以对滤波器输出的波进行十倍放大,采用双电源,并将放大结果送到示波器进行波形显示。 五:调试流程 1、利用proteus做各个模块和程序的单独仿真,修改电路和程序。 2、用完整的程序对完整电路进行仿真,调整程序结构等。 3、焊接电路,利用硬件仿真器进行仿真,并用示波器进行波形显示,调整电路的一些细节错误。 六:遇到的问题及解决方法 遇到的软件方面的问题: 最开始,无法形成波形,然后用示波器查看滤波器的滤波,发现频率过低,于是检查程序发现,滤波器的频率设置方面的参数过大,延时程序的参数设置过大,频率输出过低,几次调整好参数后,在进行试验,波形终于产生了。 七:原理图和实物照片 波形照片:

大学物理实验题库

对测量结果做总体评定时,一般均应把系统误差和随机误差联系起来看,下列说法正确的是() 答案 所选答案: [未给定] 正确答案: A. 准确度高即测量结果接近真值的程度高,系统误差较小 D. 精密度表示测量结果中的随机误差大小的程度 问题 2 得0 分,满分3.3 分 关于正态分布的性质,错误的是() 答案 所选答案: [未给定] 正确答案: B. 绝对值小的误差出现的可能性(概率)小,绝对值大的误差出现的可能 性大 D. 误差为零处的概率密度最小 问题 3 得0 分,满分3.3 分 关于不确定度的说法,不正确的是() 答案 所选答案: [未给定] 正确答案: A. 当重复测量次数较少时,可用求得置信概率为0.95的A类不确定度分 量 B. 用统计学方法估算出的是B类分量 C. 用非统计方法估算出的是A类分量

问题 4 得0 分,满分3.3 分 下列说法正确的是() 答案 所选答案: [未给定] 正确答案: C. 仪器误差属于系统误差仪器误差属于系统误差 D. 量程为0~25mm的一级螺旋测微计,示值误差为±0.004mm 问题 5 得0 分,满分3.3 分 关于螺旋测微器的说法正确的是() 答案 所选答 案: [未给定] 正确答案: A. 螺旋测微计分零级、一级和二级3种精度级别,通常实验室使用的为一级螺旋测微计,其示值误差随量程而异 C. 量程为0~25mm的一级螺旋测微计,仪器误差为±0.004mm D. 螺旋测微计的最小分度值是0.01mm 问题 6 得0 分,满分3.3 分 测量仪器和量具本身总是存在一定误差,我们习惯上称之为仪器误差,下列说法正确的是() 答案 所选答案: [未给定] 正确答案: A.

微原实验报告8253

华北电力大学 实验报告 | | 实验名称 8253应用 课程名称微机原理及应用 | | 专业班级:自动化1202 学生姓名:屈言雪 学号: 201202020222 成绩: 指导教师:程海燕实验日期: 2014/12/16

一、实验目的及要求: 实验目的:(1) 学习可编程定时/计数器8253的工作原理及工作方式; (2)掌握使用8253的应用编程方法,并设计出相应电路在实验箱上正确连接; (3)熟练掌握WAVE6000实验系统的使用 实验要求:1、基本要求:利用8253输出周期为1秒的方波。 2、在8259的IR2端输入中断请求信号,该信号由8253的方波信号产生(频率 1Hz)。每来一个上升沿,申请中断一次,CPU响应后通过输出接口74LS273使发 光二极管亮,第1次中断,LED0亮,第2次中断,LED1亮,…… 第8次中断, LED7亮,中断8次后结束。 二、实验设备 1.计算机 https://www.wendangku.net/doc/f012629120.html,b6000微机实验箱 3.导线若干 三、实验内容 1、基本要求:利用8253输出周期为1秒的方波。 2、在8259的IR2端输入中断请求信号,该信号由8253的方波信号产生(频率1Hz)。每来 一个上升沿,申请中断一次,CPU响应后通过输出接口74LS273使发光二极管亮,第1次中断,LED0亮,第2次中断,LED1亮,…… 第8次中断,LED7亮,中断8次后结束。 四、实验步骤 1、Proteus中的设计: (1)连接好8086与74LS373,如图:

(2)设置38译码器译码:根据74LS273地址为8000H,知A15-A0只有A15为1、其余全为0时,即Y0有效时选中273;8259的地址为9000H,Y1有效时选中8259;8253的地址为A000H,Y2有效时选中8253;将38译码器的A、B、C端口分别接地址A12、A13、A14, 使能端E1接A15,E2、E3都接地,如图:

微机原理实验报告

微 机 原 理 实 验 报 告 班级: 指导老师:学号: 姓名:

实验一两个多位十进制数相加的实验 一、实验目的 学习数据传送和算术运算指令的用法 熟悉在PC机上建立、汇编、链接、调试和运行汇编语言程序的过程。 二、实验内容 将两个多位十进制数相加,要求被加数和加数均以ASCII码形式各自顺序存放在以DATA1、DATA2为首的5个内存单元中(低位在前),结果送回DATA1处。 三、程序框图 图3-1

四、参考程序清单 DATA SEGMENT DATA1 DB 33H,39H,31H,37H,34H;被加数 DATA1END EQU $-1 DATA2 DB 34H,35H,30H,38H,32H;加数 DATA2END EQU $-1 SUM DB 5 DUP(?) DATA ENDS STACK SEGMENT STA DB 20 DUP(?) TOP EQU LENGTH STA STACK ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA,SS:STACK,ES:DATA START: MOV AX,DATA MOV DS,AX MOV AX,STACK MOV SS,AX MOV AX,TOP MOV SP,AX

MOV SI,OFFSET DATA1END MOV DI,OFFSET DATA2END CALL ADDA MOV AX,4C00H INT 21H ADDA PROC NEAR MOV DX,SI MOV BP,DI MOV BX,05H AD1: SUB BYTE PTR [SI],30H SUB BYTE PTR [DI],30H DEC SI DEC DI DEC BX JNZ AD1 MOV SI,DX MOV DI,BP MOV CX,05H CLC AD2: MOV AL,[SI] MOV BL,[DI] ADC AL,BL

信号发生器实验报告(终)

南昌大学实验报告 学生姓名:王晟尧学号:6102215054专业班级:通信152班 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p=6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶 m 体管的截止电压值。 图4 三角波→正弦波变换电路

实验三 8253定时器

实验三8253定时器/计数器实验 姓名:张朗学号:11121535 一、实验目的 1. 学会8255芯片与微机接口的原理和方法。 2. 掌握8255定时器/计数器的工作原理和编程方法。 二、实验内容 编写程序,将8253的计数器0设置为方式2(频率发生器),计数器1设置为方式3(方波频率发生器),计数器0的输出作为计数器1的输入,计数器1的输出接在一个LED上,运行后可观察到该LED在不停地闪烁。 1.编程时用程序框图中的二个计数初值,计算OUT1的输出频率,用表观察LED,进行核对。 2.修改程序中的二个计数初值,使OUT1的输出频率为1Hz,用手表观察LED,进行核对。 3.上面计数方式选用的是16进制,现若改用BCD码,试修改程序中的二个计数初值,使LED的闪亮频率仍为1Hz。 三、实验区域电路连接图

CS3→0040H;JX8→JX0;IOWR→IOWR;IORD→IORD;A0→A0;A1→A1; GATE0→+5V;GATE1→+5V;OUT0→CLK1;OUT1→L1;CLK0→0.5MHz;(单脉冲与时钟单元) 四、程序框图 五、编程

1.T=1.48s CODE SEGMENT ASSUME CS:CODE ORG 1200H START: CLI MOV DX, 0043H MOV AL, 34H OUT DX, AL MOV DX, 0040H MOV AL, 0EEH OUT DX, AL MOV AL, 02H OUT DX, AL MOV DX, 0043H MOV AL, 76H ;01110110设置计数器1,方式3,16位二进制计数OUT DX, AL MOV DX, 0041H MOV AL, 0E8H OUT DX, AL MOV AL, 03H OUT DX, AL JMP $ ;8253自行控制led灯 CODE ENDS END START

相关文档