文档库 最新最全的文档下载
当前位置:文档库 › 人教新课标版数学高二必修5导学案 1.1.1正弦定理(一)学生版

人教新课标版数学高二必修5导学案 1.1.1正弦定理(一)学生版

人教新课标版数学高二必修5导学案 1.1.1正弦定理(一)学生版
人教新课标版数学高二必修5导学案 1.1.1正弦定理(一)学生版

1.1.1 正弦定理(一)

学习目标

1.掌握正弦定理的内容及其证明方法.

2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题.

学习过程

一、自主学习

1.a sin A

=______________=______________=2R (其中R 是________________________); 2.a =b sin A sin B =c sin A sin C

=2R sin A ; 3.sin A =a 2R

,sin B =________________,sin C =____________________. 4.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的________.已知三角形的几个元素求其他元素的过程叫做________________.

二、合作探究

探究点1: 正弦定理的证明

问题1 如图,在Rt △ABC 中,a sin A 、b sin B 、c sin C

各自等于什么?

问题2 在一般的△ABC 中,a sin A =b sin B =c sin C

还成立吗?课本是如何说明的? 例1 在钝角△ABC 中,证明正弦定理.

探究点2:用正弦定理解三角形

例2 在△ABC 中,已知A =32.0°,B =81.8°,a =42.9cm ,解三角形.

探究点3:边角互化

例3 在任意△ABC 中,求证:a (sin B -sin C )+b (sin C -sin A )+c (sin A -sin B )=0.

例4 在△ABC 中,A =π3

,BC =3,求△ABC 周长的最大值.

三、当堂检测

1.在△ABC 中,一定成立的等式是( )

A .a sin A =b sin

B B .a cos A =b cos B

C .a sin B =b sin A

D .a cos B =b cos A

2.在△ABC 中,sin A =sin C ,则△ABC 是( )

A .直角三角形

B .等腰三角形

C .锐角三角形

D .钝角三角形

3.在△ABC 中,已知BC =5,sin C =2sin A ,则AB =________.

4.在△ABC 中,a =3,b =2,B =π4

,则A =________. 四、课堂小结

本节课我们学习过哪些知识内容?

五、学后反思

1、我的疑问:

2、我的收获:

新人教版高中数学必修5知识点总结(详细)

高中数学必修5知识点总结 第一章 解三角形 1、三角形三角关系:A+B+C=180°;C=180°-(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若 222a b c +<,则90C >. 注:正余弦定理的综合应用:如图所示:隔河看两目标

高中数学必修五测试题含答案

高一数学月考试题 一.选择题(本大题共12小题,每小题5分,共60分) 1.已知数列{a n }中,21=a ,*11()2 n n a a n N +=+∈,则101a 的值为 ( ) A .49 B .50 C .51 D .52 211,两数的等比中项是( ) A .1 B .1- C .1± D .12 3.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于( ) A .030 B .060 C .0120 D .0150 4.在⊿ABC 中,B C b c cos cos =,则此三角形为 ( ) A . 直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形 5.已知{}n a 是等差数列,且a 2+ a 3+ a 10+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24 6.在各项均为正数的等比数列 {}n b 中,若783b b ?=, 则31 32log log b b ++……314log b +等于( ) (A) 5 (B) 6 (C) 7 (D)8 7.已知b a ρρ,满足:a ρ=3,b ρ=2,b a ρρ+=4,则b a ρρ-=( ) A B C .3 D 10 8.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、83 9.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 10.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ). A .有一种情形 B .有两种情形

(完整版)正弦定理练习题经典

正弦定理练习题 1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.14 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 7.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3 ,则A =________. 9.在△ABC 中,已知a =433 ,b =4,A =30°,则sin B =________. 10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 12 . 判断满足下列条件的三角形个数 (1)b=39,c=54,? =120C 有________组解 (2)a=20,b=11,?=30B 有________组解 (3)b=26,c=15,?=30C 有________组解 (4)a=2,b=6,?=30A 有________组解 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

高二数学必修5全套教案(人教版)

1.1.1正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法; 会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系, 引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合 情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 一.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。 能否用一个等式把这种关系精确地表示出来? 二.讲授新课 [探索研究] 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义, 有 sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === 从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考1:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,(1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义, 有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B (2)当?ABC 是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导) 思考2:还有其方法吗? 由于涉及边长问题,从而可以考虑用向量来研究这问题。 C A B B C A

人教版高中数学必修5期末测试题

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.在等差数列3,7,11…中,第5项为( ). A .15 B .18 C .19 D .23 2.数列{}n a 中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列 D .首项为1的等比数列 3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4 B .5 C .6 D .7 4.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°, 则c 的值等于( ). A .5 B .13 C .13 D .37 5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 6.△ABC 中,如果A a tan =B b tan =C c tan ,那么△ABC 是( ). A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 7.如果a >b >0,t >0,设M =b a ,N =t b t a ++,那么( ). A .M >N B .M <N C .M =N D .M 与N 的大小关系随t 的变化而变化 8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n = n 21 D .a n =1+log 2n

解三角形高考典型例题汇编

《解三角形》 一、 正弦定理:sin sin sin a b c A B C ===2R 推论:(1) ::sin :sin :sin a b c A B C = (2) a=2RsinA b=2RsinB c=2RsinC (3) sin =,sin =,sin = 222a b c A B C R R R 1. 在△中,若,则= 2. 在△中,a =b=6, A=300 ,则B= 3. 【2013山东文】在中,若满足,,,则 4.【2010山东高考填空15题】在△ABC 中a ,b=2,sinB+cosB ,则A=? 5.【2017全国文11】△ABC 中,sin sin (sin cos )0B A C C +-=,a =2,c ,则C =? 6. 在△ABC 中, C =90o , 角A ,B ,C 的对边分别是a ,b ,c.则 a b c +的取值范围是? 二、余弦定理:222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 推论 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? 1. 在△ABC 中,如果sin :sin :sin 2:3:4A B C =,求cos C 的值 2. 在△ABC 中,若则A= 3. 【2012上海高考】在中,若,则的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 4.【2016山东文科】ABC △中角A ,B ,C 的对边分别是a ,b ,c ,,b c = 22 2(1sin )a b A =-, 则A =? (A )3π4 (B )π3 (C )π4 (D )π6

高中数学必修5测试题(基础)

朝阳教育暑期辅导中心数学必修5测试题(B 卷) 考试时间:90分钟 满分:100分 出卷人:毛老师 考生姓名: 一、选择题(每小题5分,共50分) 1.在等比数列{n a }中,已知11 = 9 a ,5=9a ,则3=a ( ) A 、1 B 、3 C 、±1 D 、±3 2.在△ABC 中,若=2sin b a B ,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0 015030或 3.在△ABC 中,若SinA :SinB :SinC=5:7:8,则B 大小为( ) A 、30° B 、60° C 、90° D 、120° 4.已知点(3,1)和(- 4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是( ) A. a <-7或 a >24 B. a =7 或 a =24 C. -7的解集是11 (,)23 -,则a b +的值是( )。 A. 10 B. 10- C. 14 D. 14- 8 1 1,两数的等比中项是( ) A .1 B .1- C .1± D . 12 9.设11a b >>>-,则下列不等式中恒成立的是 ( ) A . 11a b < B .11 a b > C .2a b > D .22a b > 10.已知{}n a 是等差数列,且a 2+ a 3+ a 8+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24 二、填空题(每小题4分,共20分) 11、在△ABC 中,=2,=a c B 150°,则b = 12.等差数列{}n a 中, 259,33,a a ==则{}n a 的公差为______________。 13.等差数列{}n a 中, 26=5,=33,a a 则35a a +=_________。

《正弦定理和余弦定理》典型例题

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A =,30C =,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C =, ∴sin 10sin 45102sin sin 30c A a C ?= == ∴ 180()105B A C =-+=, 又sin sin b c B C =, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ?= ===?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60 o o a =,∴56a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ?= ==中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

高二数学必修五知识点归纳

高二数学必修五知识点归纳 第一章解三角形 1、三角形的性质: ①.A+B+C=, AB2 C2 sin AB2 cos C2 ②.在ABC中, ab>c , ab<c ; A>BsinA>sinB, A>BcosA<cosB, a >b A>B ③.若ABC为锐角,则AB> ,B+C > ,A+C > a2b2>c2,b2c2>a2,a2+c2>b2 2、正弦定理与余弦定理:①. (2R为ABC外接圆的直径) a2Rsin A、b2Rsin B、c2RsinC sinA a2R

12 b2R 、 sinC 12 c2R 12 acsinB 面积公式:SABC absinC bcsinA ②.余弦定理:abc2bccosA、bac2accosB、cab2abcosC bca 2bc cosA、cosB ac b 2ac 222 、cosC abc

222 3第二章数列 1、数列的定义及数列的通项公式: ①. anf(n),数列是定义域为N 的函数f(n),当n依次取1,2,时的一列函数值② i.归纳法 若S00,则an不分段;若S00,则an分段iii. 若an1panq,则可设an1mp(anm)解得m,得等比数列anm Snf(an) iv. 若Snf(an),先求a 1得到关于an1和an的递推关系式 Sf(a)n1n1Sn2an1 例如:Sn2an1先求a1,再构造方程组:(下减上)an12an12an Sn12an11 2.等差数列: ① 定义:a n1an=d(常数),证明数列是等差数列的重要工具。② 通项d0时,an为关于n的一次函数; d>0时,an为单调递增数列;d<0时,a n为单调递减数列。 n(n1)2 ③ 前nna1

人教版高二数学必修五学案(全套)

加油吧,少年,拼一次,无怨无悔! 高二数学必修五全套学案 §1.1.1 正弦定理 学习目标 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法; 3. 会运用正弦定理解斜三角形的两类基本问题. 学习过程 一、课前准备 试验:固定?ABC的边CB及∠B,使边AC绕着顶点C转动. 思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系? 显然,边AB的长度随着其对角∠C的大小的增大而.能否用一个等式把这种关系精确地表示出来? 二、新课导学 ※学习探究 探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直 角三角形中,角与边的等式关系. 如图,在Rt?ABC中,设BC=a, AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,

有 sin a A c =,sin b B c =,又sin 1c C c ==, 从而在直角三角形ABC 中,sin sin sin a b c A B C == . ( 探究2:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B = , 同理可得sin sin c b C B = , 从而sin sin a b A B = sin c C =. 类似可推出,当?ABC 是钝角三角形时,以上关系式仍然成立.请你试试导. 新知:正弦定理 在一个三角形中,各边和它所对角的 的比相等,即 sin sin a b A B = sin c C =. 试试: (1)在ABC ?中,一定成立的等式是( ). A .sin sin a A b B = B .cos cos a A b B =

正弦定理典型例题与知识点

正弦定理 教学重点:正弦定理 教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 A a s i n = B b sin =C c sin 2. 三角形面积公式 在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 3.正弦定理的推论: A a sin = B b sin =C c sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形 1)已知两角和任意一边,求其它两边和一角; 2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。 3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况) ○ 1若A 为锐角时: ??? ?? ? ?≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a 已知边a,b 和∠A 有两个解 仅有一个解无解 CH=bsinA≤) ( b a 锐角一解无解 b a 1、已知中,,,则角等于 ( D) A . B . C . D .

2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.

1. 在ABC ?中,若sin 2sin 2A B =,则ABC ?一定是( ) 3.在Rt △ABC 中,C= 2 π ,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C= 2 π ,∴sin sin sin sin( )2 A B A A π =-sin cos A A = 1sin 22A = ,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值12 。 4. 若ABC ?中,10 10 3B cos ,21A tan == ,则角C 的大小是__________ 解析 11 tan ,cos ,sin tan 23A B O B B B π==<<∴=∴= tan tan 3tan tan()tan()1,tan tan 14 A B C A B A B O C C A B π ππ+∴=--=-+= =-<<∴=- 7.在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 解:由正弦定理 2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2b B R =, sin 2c C R = 。 所以由2sin sin sin A B C =可得:2()222a b c R R R =?,即:2 a bc =。 又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。 6.在ABC ?中, b A a B sin sin <是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 3.下列判断中正确的是 ( )

人教版高中数学必修5全册导学案

§1.1.1 正弦定理 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法; 3. 会运用正弦定理解斜三角形的两类基本问题. CB 及∠B ,使边AC 绕着 顶点C 转动. 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来? 二、新课导学 ※ 学习探究 探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ?ABC 中,设BC =a ,AC =b ,AB =c , 根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c =,又sin 1c C c ==, 从而在直角三角形ABC 中,sin sin sin a b c A B C == . ( 探究2:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 当?ABC 是锐角三角形时,设边AB 上的高是 CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B = , 同理可得sin sin c b C B = , 从而sin sin a b A B =sin c C =. 类似可推出,当?ABC 是钝角三角形时,以上关系式仍然成立.请你试试导. 新知:正弦定理 在一个三角形中,各边和它所对角的 的比相等,即 sin sin a b A B = sin c C =. 试试: (1)在ABC ?中,一定成立的等式是( ) . A .sin sin a A b B = B .cos cos a A b B = C . sin sin a B b A = D .cos cos a B b A = (2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 . [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =; (2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin c C . (3)正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b =;sin C = . (4)一般地,已知三角形的某些边和角,求其它 的边和角的过程叫作解三角形. ※ 典型例题 例1. 在ABC ?中, 已知45A =,60B =,42a =cm ,解三角形.

北师大版高中数学必修5综合测试题及答案

高中数学必修5 命题人:魏有柱 时间:100分钟 一、选择题 1.数列1,3,6,10,…的一个通项公式是() (A )a n =n 2-(n-1) (B )a n =n 2-1 (C )a n =2)1(+n n (D )a n =2 )1(-n n 2.已知数列3,3,15,…,)12(3-n ,那么9是数列的() (A )第12项 (B )第13项 (C )第14项 (D )第15项 3.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 () A . B . C . D . 4.等差数列{a n }共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n 的值是 () A.3 B.5 C.7 D.9 5.△ABC 中,cos cos A a B b =,则△ABC 一定是() A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 6.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于() A .30° B .30°或150° C .60° D .60°或120° 7.在△ABC 中,∠A =60°,a=6,b=4,满足条件的△ABC( A ) (A)无解 (B)有解 (C)有两解 (D)不能确定 8.若110a b <<,则下列不等式中,正确的不等式有 () ①a b ab +< ②a b > ③a b < ④2b a a b +> A.1个 B.2个 C.3个 D.4个 9.下列不等式中,对任意x ∈R 都成立的是 () A .2111x <+ B .x 2+1>2x C .lg(x 2+1)≥lg2x D .244 x x +≤1 10.下列不等式的解集是空集的是(C) A.x 2-x+1>0 B.-2x 2+x+1>0 C.2x-x 2>5 D.x 2+x>2 11.不等式组 (5)()0,03x y x y x -++≥??≤≤?表示的平面区域是 ( )

正弦定理知识点与典型例题

正弦定理 【基础知识点】 1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==2 1ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/2 2.三角形中的边角不等关系: A>B ?a>b,a+b>c,a-bb 时有一解. 也可利用正弦定理a A b B sin sin =进行讨论. 如果sinB>1,则问题无解;如果sinB =1,则问题有一解; 如果求出sinB<1,则可得B 的两个值,但要通过“三角形内角和定理”或“大边对大角”

数学必修5公式

一、解三角形1.正弦定理 2sin sin sin a b c R A B C = = = 2.三角形面积公式 111sin sin sin 2 2 2 A B C S bc A ac B ab C = == 3.余弦定理2222cos a b c bc A =+- 222cos 2b c a A bc +-= 4.韦达定理1212b x x a c x x a ? +=-?????=?? 二、数列1.等差数列A P 定义:()12n n a a d n n N d -+-=≥∈,,是常数 通项公式:()()()111n m a a n d a n m d pn q p d q a d =+-=+-=+==-, 等差中项:2 a b A a A b A P += ?,,成 性质:若m n p q +=+,则()m n p q a a a a m n p q N ++=+∈,,, 若{}n a 为A P ,则123456789a a a a a a a a a ++++++,,,…仍成A P 前n 项和:() ()12 1112 2 22n n n a a n n d d d S na An Bn A B a +-??= =+ =+==- ?? ?, 性质:当项数为2n 时,S S nd -=偶奇22n n n n n S S S AP d n d --'=23,,成, 2.等比数列G P 定义: () 1 20n n a q n n N q a +-=≥∈≠,,通项公式: 1 1 10n n m n m n m a a a q a q c q c q ---??=?=?=?=≠ ??? 等比中项:)0g a b a g b GP =≠?,,,成 性质:若m n p q +=+,则()m n p q a a a a m n p q N +=∈,,,21122n n n n a a a a a -+-+=?=? 2 1726354a a a a a a a ?=?=?=前n 项和:()11111111 n n n a q a a q q S q q na q ?--?=≠=?--? =?,,性质:当项数为2n 时, S q S =偶奇 ;2n n n n n n S S S G P q q --'=23,,成,三、不等式1.性质a b b a >?>?>, a b a c b c >?+>+0a b c ac bc >>?>,0a b c ac bc >>?+>+, a b c d a c b d >-,00a b c d ac bd >>>>?>,01n n a b a b n N n +>>?>∈>,, 01a b n N n +>>? > ∈>, 2.均值不等式如果a b R + ∈, ,则 2 a b +≥,当且仅当 a b =时,等式成立如果a b R +∈,,则222a b ab +≥,当且仅当a b =时,等式成立

高中数学人教版必修5全套教案

课题: §1.1.1正弦定理 授课类型:新授课 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定 义 , 有 sin a A =, sin b B =,又s i n 1 c C == , A 则sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

正弦定理余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b =

相关文档
相关文档 最新文档