文档库 最新最全的文档下载
当前位置:文档库 › 新的滑行钻进技术在沙特阿拉伯的水平井钻井中成功应用

新的滑行钻进技术在沙特阿拉伯的水平井钻井中成功应用

新的滑行钻进技术在沙特阿拉伯的水平井钻井中成功应用
新的滑行钻进技术在沙特阿拉伯的水平井钻井中成功应用

ABSTRACT

With the focus on continuous drilling optimization, a collaborative effort was implemented to analyze and assess drilling challenges encountered while drilling extended horizontal wells in the Khurais field in Saudi Arabia. The primary goal was to enhance the efficiency of conventional downhole motor systems for directional drilling in the challenging horizontal reservoir section.

Khurais field is located in a remote area in the central part of Saudi Arabia, approximately 200 km from the Saudi capital, Riyadh, and 300 km from the Eastern Province port city of Dammam. The producer wells are drilled in the middle of the field and the water injector wells are drilled close to the field boundaries.

An average of 12 rigs worked simultaneously throughout the duration of the project to drill and complete the required increment wells. The horizontal wells comprise the producers, trilateral producers and power water injectors. The wells are drilled to an average measured depth (MD) of 14,000 ft, with an average of 6,500 ft of open hole section across the reservoir. The 6?” horizontal open hole section is particularly challenging. It is drilled with steerable mud motors with the assistance of real time geosteering and logging while drilling tools to maintain the horizontal open hole section of the well close to the top of the reservoir within a window of 3 ft.

The fracture intervals, coupled with high permeability, make the drilling of this section particularly challenging, as mud losses are frequently encountered in this section. The main difficulties to surmount to improve the efficiency of the directional drilling process are high drag and differential sticking.

To overcome these challenges, the drilling team utilized a new sliding technology that interacts with the drilling rig top drive to break the static friction, improving the weight transfer to the bit and thereby increasing the rate of penetration (ROP). Through its virtual elimination of differential sticking and its reduction of buckling problems, this system helps to deliver weight smoothly down to the bit. Additional benefits of this innovative technology are the prevention of mud motor stalling, a steady orientation of the tool face and easier steering.

This article describes the innovative system utilized to improve the ROP during the sliding process by almost 50% and presents real cases supported by field data. It also underscores the importance of post-action reviews and rig crew training in the achievement of record ROP in the sliding mode. Historical cases are presented, and the benefits of the application of this technology in these wells are explained.

INTRODUCTION

An innovative slider system was trial tested in the 6?”horizontal section of Khurais’ power water injector wells across the reservoir. This section was drilled through the Arab formation, consisting of four members composed of porous layers of carbonates separated by anhydrite. Because special equipment was to be run across the open hole section, it was very important to drill a smooth well path with minimum tortuosity and to avoid abrupt changes in well direction (high doglegs). The equipment that subsequently was run in this well consisted of an open hole completion with up to six open hole packers and 35 inflow control devices to isolate fractures and improve injection distribution. In addition, acid stimu-lation jobs were conducted with coiled tubing were usually done across this interval. Figure 1 shows a schematic of a typical power water injector well.

This section was drilled with roller cone bits and steerable motors with an outer diameter of 5” and a rotor stator lobe ratio of 6/7 — this configuration represents a low revolution, high torque motor. The motor included a bend at the motor

bearing housing at approximately 7 ft from the bit. The

Fig. 1. Design of a typical power water injector well.

Successful Application of New Sliding Technology for Horizontal Drilling in

Saudi Arabia

Authors: Roberto H. Tello Kragjcek, Abdullah S. Al-Dossary, Waleed G. Kotb and Abdelsattar H. El-Gamal

distance from the bent housing of the motor to the bit determines the maximum angle change that can be reached. The typical adjustable bent housing angle utilized was 1.5°. In some cases, the required dogleg rate in the horizontal section could reach up to 6°/100 ft; this occurred when adjustments

in the well profile were required to maintain the horizontal open hole section of the well close to the top of the reservoir, within a window of 3 ft.

The horizontal sections were drilled using real-time data transmission, geosteering and logging while drilling technology. This collective approach required support from a dedicated team of geologists that was in permanent contact with directional drillers and drilling engineers through a special online platform. The geosteering team requested adjustments to the well trajectory based on real-time logging data transmitted from the rigs.

Directional wells drilled with motors are drilled with drillstring rotation (rotating mode) are not required when corrections in well trajectory, and without drillstring rotation (sliding mode) when a change or adjustment to the well trajectory is needed. Conventional drilling in sliding mode is much less efficient than drilling in the rotating mode. In the sliding mode, the motor must be oriented before a slide can begin; orienting the motor involves two steps. First, the drillstring must be oriented in the required direction; it is rotated gradually to place the motor bend in the desired direction. Second, as the bit direction is being established, the torque has to be released from the drillstring so the bit orientation will stay relatively constant. If the torque is not worked out of the drillstring, it may cause the tool face orientation to change as the drillstring is advanced for drilling. The bit is initially pointed in a direction clockwise from the desired drilling direction, thereby counteracting the reactive torque of the motor. This process is often difficult and inefficient to implement1.

Based on an analysis of approximately 280 horizontal wells drilled with steerable motors in Khurais field, it was found that approximately 30% of the drilling time was spent in the sliding drilling mode. In a sliding mode, hole cleaning is less efficient because there is no pipe rotation and cuttings accumulate on the low side of the hole and produce excessive friction that makes it progressively more difficult for the drillstring to slide smoothly. This friction also makes it difficult to keep a constant weight on the bit (WOB); consequently, the stalling of the steerable motor becomes an issue. Maintaining an acceptable rate of penetration (ROP) while preventing the motor from stalling requires that the motor be operated in a narrow load range. To minimize the problems with maintaining WOB and preventing motor stalling, roller cone bits were used in the Khurais project.

Rotary steerable systems (RSSs) with point-the-bit technology were also utilized in the Khurais project. This technology was only used to drill the last part of the extended horizontal sections, when it was difficult to continue drilling with steerable motors due to the high friction that made the sliding process very difficult. The cost of RSS tools is much higher than that of the conventional steerable motors; the new technology presented in this article allows the drilling of higher horizontal displacements with conventional steerable motors, thereby minimizing the overall directional drilling costs.

BRIEF DESCRIPTION OF THE STANDARD DRILLING PROCESS

The directional drilling plan for a typical Khurais well requires landing the 7” liner on top of the reservoir at 88°. The 6?” horizontal section is drilled to 89° at a 2°/100 ft buildup rate, and the angle is held to total depth (TD) at approximately 14,000 ft measured depth (MD). To maintain the well trajectory in a window of 3 ft close to the top of the reservoir, a series of rotating and sliding intervals is required, following the instructions of the specialized geosteering center.

Tool face orientation can shift with changes in WOB and torque; as weight is applied to the bit, torque at the bit increases. Therefore, the overall gross ROP is much less during sliding mode with a steerable motor than during rotating mode. It is not unusual to have the sliding ROP be as much as 70% less than the rotating ROP2.

To execute a slide, the driller normally stops drilling, picks up the drill bit off the bottom and reciprocates the drillstring to release trapped torque. The downhole motor, with its bent housing approximately 7 ft above the bit, experiences an equal force in the opposite direction (left) of the bit rotation, called reactive torque. To compensate for the effect of the reactive torque on the bit, the driller then must reorient the tool face (clockwise) and control the slack off at the surface to achieve the desired tool face angle. The average clockwise direction compensation required was about 40° in the wells drilled in Khurais field.

Weight is transferred to the bit by slacking off at the surface. The difference between the weight that the bit actually receives and the amount slacked off at the surface is the drag force that opposes pipe movement. Controlling bit weight in the sliding mode is difficult because of the friction (drag) in extended sections, which can cause the WOB to be released suddenly. If a sudden transfer of weight to the bit exceeds what the downhole motor can handle, the motor will stall and the bit rotation will come to a sudden halt. Such stalling conditions can damage the rubber of the steerable motor stator; the amount of damage depends on the amount of the weight transferred to the bit and the number of times the motor stalls. Sudden transfers of weight to the bit are often difficult to prevent1, 2.

In conventional sliding mode, achieving the proper orientation of the tool face becomes more challenging the more that the horizontal departure increases because of the increased difficulty in eliminating torque from the system during initial reciprocations. Once a proper tool face orientation is achieved, maintaining that orientation also

becomes more difficult with increasing horizontal departures

static friction above the section influenced by the motor torque. This static zone provides rotational stability for the motor tool face in much the way that a keel stabilizes a ship.In practice, the optimal oscillating torque applied to the drillstring is determined dynamically at the rig rather than through calculations.

DESCRIPTION

The sliding automation technology consists of software and hardware components. The software component receives three main inputs; information from a manual input screen, surface torque from the top drive and standpipe pressure (as an indication of reactive torque). During the rocking cycle, the system permanently fine-tunes the amount of surface torque applied to the right and left to correct for the change in

reactive torque. To orient the tool face during a rocking cycle,the directional driller can change the direction of the tool face by applying toque pulses to the right or to the left. The

hardware component is a robotic control system that can be installed in any type of top drive. This surface control system interfaces with the top drive control system and works by rocking the top of the drillstring alternately clockwise and counterclockwise, so the upper part of the drillstring always experiences tangential motion.

BENEFITS OF THE AUTOMATED TORQUE CONTROL SYSTEM

Using the rocking action applied with this system, the drillstring behaves as if it were rotating, and the sliding

process is much more effective. The automated slide drilling allows substantial increases in both the daily footage drilled and the length of a horizontal section that can be drilled with a conventional steerable motor. The system adjusts the amount of surface torque needed to transfer the proper amount of weight to the bit and eliminates the need to pick up the drillstring off the bottom of the hole to make tool face corrections. Corrections in the tool face angle are easily achieved

through additional torque pulses (bumping) during the

rocking cycles. The left-and-right torque rocking initiated by the top drive reduces longitudinal drag in the wellbore,allowing the drillpipe to rotate from the surface down to a point where torque from rotational friction against the side of the hole stops the drillpipe from turning.

To commence slide drilling from the rotary drilling mode,the driller simply initiates an automatic rocking action by applying torque to the right and then to the left enough to

allow appropriate weight transfer to the bit. The transfer of weight is controlled through automatic adjustments of rocking

depth, which compensate for changes in reactive torque 1

.

FIELD TEST RESULTS

Figure 3 shows the directional path of a typical well drilled in the Khurais field. The 6?” horizontal section had an

because the weight transfer to the bit becomes more erratic,thereby affecting the reactive torque, and consequently

changing the tool face angle 1. The solution to this problem,Fig. 2, describes a sequence of steps to illustrate how the new slider system works.

NEW STEERABLE MOTOR CONTROL SYSTEM

Saudi Aramco’s drilling team and the protect team selected candidate wells for testing the new sliding technology, which consists of a surface control system that interfaces with the top drive control system to overcome many of the friction related problems of steerable motors.

The system works by rotating the top of the drillstring,alternately clockwise and counterclockwise until predetermined surface torque values are achieved; in this way, the upper part of the drillstring always experiences tangential motion. The amount of cyclical torque applied at the surface depends on the particular frictional characteristics of the well. This method keeps drillstring friction in the dynamic mode and significantly reduces axial friction. The amount of cyclical torque applied at the surface depends on the particular frictional charac-teristics of the well. By sensing the amount of surface torque needed to transfer the proper amount of weight to the bit, and eliminating the need to bring the drillstring off the bottom to make tool face corrections, automated slide drilling allows substantial increases in both the daily footage drilled and the length of horizontal sections that can be achieved 1, 2.

Subsequently, there is no time lost in orienting the tool face,as compared to the conventional method of changing modes.Through manipulation of the surface torque oscillations,the driller can move the point of rocking depth as deep along the drillstring as desired. The slider control system uses this principle to improve the performance of drilling with steerable motors. The system drives the point of influence deep enough to significantly reduce the axial friction that causes stick/slip during sliding.

The depth to which the point of influence is driven is

limited by the fact such that a section of drillstring remains in Fig. 2. Illustration of how the new slider technology works.

extension of 8,460 ft from a 7” liner shoe: 5,889 ft to 14,350ft. The liner shoe was set to an inclination of 85°. The section was drilled with a steerable motor and without slider tech-nology from the liner shoe to 8,828 ft MD. When the well reached 7,000 ft, a severe loss of circulation zones was encountered, and mud returns were only 20%. Under this situation, due to the poor hole cleaning of conventional

sliding mode, cuttings began to accumulate in the low side of the lateral. The drilling process continued with water and gel sweeps, but at 8,828 ft MD, the conventional sliding drilling process became extremely difficult due to severe drillstring friction. The operator decided to install the new slider system afterwards to address the excessive friction issue. The slider system was utilized to drill almost 4,000 ft of the horizontal section from 8,828 ft MD to 12,888 ft MD with only 20%mud return. Despite these severe hole conditions, the sliding drilling was carried out successfully.

Figure 4 shows the overall ROP (sliding and rotating) for both sections drilled with the same bottom-hole assembly (BHA) and a similar type of tricone roller bit. The overall ROP in the section where the slider system was used is higher in spite of the additional horizontal departure.

At 12,888 ft MD, after a vertical departure of almost 8,800ft, the drilling team decided to utilize a RSS due to the extremely high frictions.

The slider system was also utilized to drill the multilateral Well B. In this well, the 7” liner was set at 7,850 ft with 85°

inclination, and the 6?” horizontal motherbore section was then drilled to 9,536 ft, where it became very difficult to slide with an acceptable ROP; at that point it was decided to install the slider control system. The drilling continued with the utilization of the slider control system until the TD of the motherbore at 12,070 ft was reached.

A section that was drilled without the assistance of the

slider system where the tool face was unsteady and difficult to control due to reactive torque and stalling of the steerable motor is shown in Fig. 5. A plot from a section drilled with the slider, Fig. 6, shows a steadier tool face as a result of the elimination of motor stalling and achievement of smooth WOB due to the slider’s rocking action.

Figure 7 shows the ROP while sliding with the slider

system vs. the ROP while rotating; both are in a comparable range. If the slider had not been used, the sliding ROP would have been approximately 30% of the rotating ROP . A greater sliding ROP is another benefit of this technology.

From the information tracked in drilling morning reports and on the directional driller parameter sheet, the team

determined that the distribution of the drilling time when the slider system wasn’t used was 60% sliding and 40% rotating,

but with the utilization of the slider system, the ratio changed

Fig. 3. Interval drilled with slider shows severe mud losses and higher ROP

compared to interval drilled without slider.

Fig. 4. Comparison of ROP under similar conditions with slider (green bar) and

without it.

Fig. 5. Section drilled without slider where tool face was difficult to control.

Fig. 6. Section drilled with the slider where tool face was controlled.

required to orient the tool face, and the bottom chart shows that drillstring pickups were not necessary when the slider was used.

CONCLUSIONS

This new technology proved that it is possible to overcome the friction related problems of steerable motors by rotating the drillstring alternately clockwise and counterclockwise, so the upper part of the drillstring always experiences tangential motion. This technology allows the transfer of weight smoothly to the bit, thereby eliminating motor stall. The sliding ROP was increased by 70% in some cases. The slider system ensured a very steady tool face and showed an

excellent capability to correct the tool face angle whenever

to 25% sliding and 75% rotating. This reduction in percent-age of sliding time is mainly due to the increase in the ROP

achieved during sliding mode while using this new technology. In Well C, the drilling team decided to drill intervals

alternately with and without the slider, with the objective of comparing the benefits of this new technology under the same hole conditions and using the same BHA design. The 7” liner was set at 6,200 ft MD and at an inclination of 84°; after drilling the 6?” section to 7,737 ft, the driller started utilizing the slider system.

Comparable sliding ROPs are shown in Fig. 8. With the use of the slider, the average improvement in the sliding ROP was approximately 60%.

In Fig. 9, a comparison of drilling parameters (block

position and pump pressure) in two sections drilled in sliding mode with and without the slider is shown. The top chart shows motor stalling and drillstring pickups due to

inefficient transfer of weight to the bit, the bottom chart shows that with the assistance of the slider system, no drillstring

pickup was required and no pump pressure spikes were experienced.

In Well D, the slider was used to drill the whole horizontal interval from 6,200 ft MD to 11,213 ft MD. At 9,500 ft, the drag reached 45,000 lbs, but rocking the drillstring with the slider was effective in overcoming the friction and minimizing pipe buckling to effectively transfer weight to the bit.

Figure 10 shows two charts. The top chart represents the

manual sliding section, showing the drillstring pickups

Fig. 7. Sliding ROP using the slider compared to rotating ROP

.

Fig. 8. Sliding ROP in different sections drilled alternately with and without the slider.

Fig. 10. The top chart shows drillstring pickups during manual slide drilling

without the slider. The bottom chart shows that no drillstring pickups were needed when the slider was used.

Fig. 9. Comparable performance during sliding drilling without the slider and with it.

required, and it provides a means to correct the tool face orientation while sliding.

The success of the slider depends on the proper training of the directional drillers and ensuring they use it in the way it was designed to be used. The training usually takes 3? hours, and it is recommended that training occur away from the rig.

Nothing goes downhole, so there are virtually no failures.

ACKNOWLEDGMENTS

The authors would like to thank the management of Saudi Aramco for their support and permission to publish this article.

This article was presented at the SPE Saudi Arabia Section Technical Symposium and Exhibition, al-Khobar, Saudi Arabia, May 15-18, 2011.

REFERENCES

1.Maidla, E. and Haci, M.: “Understanding Torque: The

Key to Slide Drilling Directional Wells,” IADC/SPE paper 87162, presented at the IADC/SPE Drilling Conference, Dallas, Texas, March 2-4, 2004.

2.Maidla, E., Haci, M., Jones, S., Cluchey, M., Alexander,

M. and Warren, T.: “Field Proof of the New Sliding

Technology for Directional Drilling,” IADC/SPE paper 92558, presented at the IADC/SPE Drilling Conference, Amsterdam, the Netherlands, February 23-25, 2005.

Abdullah has worked on various fields and increments. Currently, he is handling the Ghawar Lump Sum Turn Key

Waleed G. Kotb

with the Wildcat Oilfield Services. He

has 9 years of experience in the oil and

gas industry on both land and offshore

drilling rigs. Waleed joined Wildcat in

2005 as a Senior Service Engineer and

progressed on to become the Saudi Arabian area Service Supervisor before moving to his

Abdelsattar H. El-Gamal

Wildcat Oilfield Services in 2006 as a

Senior Engineer and then became the

Corporate Service Manager in 2007.

He is responsible for managing a

highly evolving service team

comprising junior and senior engineers, team leaders and coordinators who work in a diverse number of highly innovative equipment and

Roberto H. Tello Kragjcek joined

Saudi Aramco in 2006. Since then, he

has worked in Ghawar field and on

the Khurais project. Roberto has 16

years of drilling and completion

engineering experience in major oil

companies. Before joining Saudi Aramco, he worked for Chevron-Texaco as a Drilling

Engineer Supervisor. Roberto has been involved in drilling projects in Venezuela, the United States, Trinidad and

Tobago and Argentina. Recently he was also involved in

the preparation of lump sum drilling contracts for Ghawar field, drilling technical limit, bit design optimization and

mud plant facility installation, among others.

In 1994, Roberto received his B.S. degree in Mechanical Engineering from San Juan University, San Juan, Argentina.

Currently he is completing his M.S. degree in Petroleum

Engineering in Heriot-Watt University, Edinburgh, U.K. BIOGRAPHIES

水平井钻井技术经验概述

第一章定向井(水平井)钻井技术概述 第一节定向井、水平井的基本概念 1.定向井丛式井发展简史 定向井钻井被(英)T.A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然 石油管理局的河50丛式井组,该丛式井组长384米,宽115米,该丛式井平台共有钻定向井42口。 2.定向井的分类 按定向井的用途分类可以分为以下几种类型: 普通定向井 多目标定向井 定向井丛式定向井 救援定向井 水平井 多分枝井(多底井) 国外定向井发展简况

(表一)

10.井眼尺寸不受限制 11.可以测井及取芯 12.从一口直井可以钻多口水平分枝井 13.可实现有选择的完井方案 (4).短曲率半径水平井的优缺点 优点缺点 1.井眼曲线段最短1.非常规的井下工具 2.侧钻容易2.非常规的完井方法 3.能够准确击中油层目标3.穿透油层段短(120—180米)4.从一口直井可以钻多口水平分枝井4.井眼尺寸受到限制

5.直井段与油层距离最小5.起下钻次数多 6.可用于浅油层6.要求使用顶部驱动系或动力水龙头 7.全井斜深最小7.井眼方位控制受到限制 8.不受地表条件的影响8.目前还不能进行电测 第三节定向井的基本术语解释 1)井深:指井口(转盘面)至测点的井 眼实际长度,人们常称为斜深。国外 称为测量深度(MeasureDepth)。 2)测深:测点的井深,是以测量装置 率是井斜角度(α)对井深(L?)的一阶导数。 dα Kα=─── dL 井斜变化率的单位常以每100米度表示。 8)井深方位变化率:实际应用中简称方位变化率,?是指井斜方位角随井深变化的快慢程度,常用KΦ表示。计算公式如下: dΦ KΦ=─── dL

水平井钻井技术及其在石油开发中的应用

水平井钻井技术及其在石油开发中的应用 经济的快速发展使人们对石油的需求急剧增加以及对环境保护意识的日益增强,如何高效,清洁,经济地开采地下能源已经成为目前继续解决的问题。在此情况下,水平井钻井技术应运而生。它是起源于20世纪80年代并在石油,天然气开发中得到广泛应用的一项综合技术。水平井钻井技术的发展对油井产量提高已经油田采收率提高都起到了只管重要的作用,水平井钻井技术的出现是石油钻井技术方面重大的突破。 水平井技术作为油气田开发的一项成熟,适用技术,在油气田开发中日益得到推广应用,近几年来,随着水平井工艺技术的突破性进展,综合钻井成本逐年下降,经济效益的显著提高,水平井在许多不同油气藏开发中逐步得到广泛应用。本文介绍了水平井的优点及应用范围,论述了水平井的施工技术,并结合钻井工程实例,详细说明了水平井钻井技术在石油开发中的应用,最后点出了水平井钻井技术的应用效果和存在的问题。并得出了相应的结论。 关键词:水平井,钻进工艺,攻关目标水平井钻井技术存在的问题,井眼轨迹控制,随钻测量。

第1章绪论 现在,随着经济的发展,人们对石油的需求越来越大,水平井钻井技术成为最重要的钻井技术之一。在此情况下,水平井钻进技术应运而生。它是起源于20世纪80年代并在石油、天然气开发中得到广泛应用的一项综合性技术。其目的主要是提高石油的产量,降低采油成本。并且随着MWD (随钻测量仪)、PDC (聚晶金刚石复合片钻头)和高效导向螺杆钻具的应用,水平井技术已日趋完善。 总的来说。21世纪水平井钻井技术发展的趋势是向自动化,智能化,轻便化和经济化的方向发展。 传统的公关领域,主要是为钻井施工提供实用心情的工艺技术和装备,目的是提高钻井速度,降低钻井成本。水平井是未来钻井队的主要作业方式,对水品经的研究和发展将成为我们今后的最重要的课题之一,一定要重视和完善。

页岩气水平井钻井技术

页岩气水平井钻井技术 摘要当前我国页岩气水平井钻井施工整体表现出成本高、周期长、复杂事故多等问题。针对这些问题,本文对国内页岩气井进行了技术跟踪,归纳了当前我国页岩气水平井钻井过程中所面临的轨迹优化及控制、井壁稳定、摩阻扭矩、井眼清洁以及固井技术等难点问题。 关键词页岩气水平井轨迹控制井壁稳定摩阻 美国页岩气资源的规模化开发和商业化利用,正在改变着世界能源格局,而同为世界能源进口大国的中国,同样拥有丰富的页岩气资源。政策以及相关支持政策的陆续出台,不但表明了我国政府大力发展页岩气资源的决心,而且正在积极推进我国页岩气产业的全面、快速发展。 页岩气是指赋存于富有机质泥页岩及其夹层中,以吸附或游离状态为主要存在方式,在一定地质条件下聚集成藏并具有商业开发价值的非常规天然气。与常规天然气藏相比,页岩气储层孔隙度主体小于10%,储层孔隙为0~500nm,孔喉直径介于5~200nm,渗透率极低,一般多采用水平井并经水力压裂技术改造后进行开发。当前,公认的具备商业开采价值的页岩气藏需具备以下条件:①页岩气储集层厚度大于100ft(30m);②富有机质页岩有机质丰富,TOC > 3 %;③成熟度Ro在1.1-1.4之间;④气含量>100ft3/t;⑤产水量较少,低氢含量;⑥黏土含量小于40 %,混合层组分含量低;⑦脆性较高,低泊松比、高杨氏弹性模量;⑧围岩条件有利于水力压裂控制。页岩气藏作为典型的连续型油气聚集,往往分布在盆地内厚度大、分布广的集“生-储-聚”为一体的页岩烃源岩地层中。页岩作为粘土岩常见岩石类型之一,是由粘土物质经压实、脱水、重结晶作用后形成的,其成分复杂,除包含高岭石、蒙脱石、水云母、拜来石等粘土矿物外,还含有诸如石英、长石、云母等碎屑矿物和铁、铝、锰的氧化物与氢氧化物等自生矿物,页岩层理构造发育,多呈页状或薄片状(图1左),并沿层理发育有大量裂隙和微裂隙(图1右),脆性高、易碎,外力击打作用下易裂成碎片,且吸水膨胀性强,长时间裸露浸泡后极易引起井壁缩径、垮塌、掉块等复杂事故。例如,四川威远-长宁构造完成的3口页岩气水平井,水平井段钻进过程多次遭遇井壁垮塌、掉块等复杂,引发卡钻、报废进尺等事故,并导致3口水平井储层段40%进尺作业占总作业时间70%以上。同时,页岩气水平井井壁失稳问题频发,不但严重影响到钻井周期、钻井成本等问题,还直接导致井身质量差、固井难度大、储层污染严重等问题,这些问题都给后续开发带来极为不利的影响。据不完全统计,截止2012年初,四川威远、长宁及云南昭通页岩气产业化示范区完钻的4口水平井,平均井深3357米,平均钻井时间118天,而北美地区井深4000~5000米,水平段1500~2000米的页岩气井钻井周期通常在15~20天,水平段钻井时间仅为5~8天。由此可见,我国相对落后的页岩气水平井钻井技术,已经成为制约我国页岩气工业快速发展的重要瓶颈。

开窗侧钻钻井技术

开窗侧钻钻井技术 开窗侧钻钻井技术是在定向井、水平井、小井眼钻井技术基础上发展起来的一种综合钻井技术,在一定程度上代表了钻井工艺的发展水平。利用该技术能使套损井、停产井、报废井、低产井等复活,改善油藏开采效率,有效地开发各类油藏,提高采收率和油井产量,降低综合开发成本;能充分利用老井井身结构对油藏开发再挖潜,充分利用原有的井场、地面采输设备等,减少钻井作业费、节约套管使用费、地面建设费,降低施工成本,缩短施工周期,提高综合经济效益;该技术的推广还有利于环境保护。目前,油藏区块多年的开采,已进入开发后期,由于各种原因造成大量的停产井、报废井;由于地层复杂,勘探和开发难度大,存在大量的套损井、低产井。应用开窗侧钻钻井技术进行老井重钻,使老井复活并增加产能,市场前景广阔,经济和社会效益好,因而该技术在未来具有广阔的发展前景。 一、侧钻的作用及意义 侧钻的作用:1、油气水井侧钻在开发区利用原井眼,完善并保持了部分井网,可减少打部分调整井。 2、在开发区利用原井眼,可利用油气水井侧钻加深层位,获取新的油气流。 3、通过油气水井侧钻,使部分停产井恢复生产,提高油气井利用率及开发效果。 4、侧钻作为井下作业大修主要工艺措施,有利于老区改造挖潜,提高井下作业工艺技术水平。 侧钻意义:1、油藏储层构造及断块复杂,打不到目的层的垂直井 2、因水淹、水窜而储量动用程度差,剩余油具有可采价值的生产井 3、生产过程中油层套管严重破损的停产报费井 4、井下复杂事故以及为满足开发特殊需要等原因的油气水井 二、开窗的方法及类型 定斜器开窗侧钻方法:将一定规格的定斜器送入油层套管内预计开窗的位置固定,然后使用磨铣工具沿定斜器轴线一侧磨铣出一定形状的窗口从窗口钻新井眼的方法。这种方法是常用的常规侧钻开窗方法。 截断式开窗侧钻方法:采用液力扩张式铣鞋在预定井段磨铣切割套管达到开

水平井工艺技术措施

水平井技术措施 1. 侧钻 1) 直井段要保证钻直,钻进至造斜点测ESS,及时计算出井身轨迹数据,以此为依据计算设计下部施工的井眼轨道; 2) 侧钻井段要选择在井径规则、钻时较快的井段,最好是砂岩段; 3) 水泥塞要保证打实,候凝48小时以上,检查水泥塞质量。检查方法:修水泥面,试钻钻压50~80千牛,钻时不高于5~8分/单根,水泥塞质量达到上述要求后钻至侧钻点井深; 4) 侧钻用直马达加弯接头,使用MWD监测井身轨迹的变化情况,判断是否侧钻成功; 5) 严格按照推荐上扣扭矩紧扣; 6) 控制起下钻速度在15柱/小时以下; 7) 开泵前要确保已安放了钻杆泥浆滤清器; 8) 钻井参数服从马达参数,轻压,根据钻进直井段时的钻时选择控制好侧钻钻时; 9) 随时注意钻进时的返砂情况,根据返砂情况及时调整钻井参数,确认新井眼与老井眼偏离2米,新砂样达90%,可确定出新井眼,方可起钻; 10) 起钻前,充分循环至振动筛上无砂子返出; 11) 起钻后采用导向系统钻进。 2. 导向钻进 1) 严格按照推荐上扣扭矩紧扣; 2) 控制起下钻速度在15柱/小时以下; 3) 若下钻遇阻,划眼时应保证工具面是钻进该井段时使用的工具面; 4) 开泵前要确保已安放了钻杆泥浆滤清器; 5) 钻井参数参考马达使用参数; 6) 如果造斜率偏高,马达角度在2度以下可考虑采用10-30转/分以下的转速启动转盘导向钻进; 7) 如果造斜率偏低,起钻换高角度马达; 8) 工具造斜率应稍高于设计造斜率,避免因造斜率不足而起钻; 9) 实际施工过程中,应使实钻轨道尽量靠近设计轨道; 10) 根据现场实际情况,分段循环,及时短起下,保证井眼清洁; 11) 钻具倒装,原则是井斜30度以深井段采用18锥度钻杆,加重钻杆

第一章 定向井(水平井)钻井技术概述

第一章定向井(水平井)钻井技术概述 定向井、水平井的基本概念 定向井丛式井发展简史 定向井钻井被(英)T.A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然是直井。 定向井首先是从美国发展起来的,在十九世纪后期,美国的旋转钻井代替了顿钻钻井。当时没有考虑控制井身轨迹的问题,认为钻出来的井必定是铅垂的,但通过后来的井筒测试发现,那些垂直井远非是垂直的。并由于井斜原因造成了侵犯别人租界而造成被起诉的案例。最早采用定向井钻井技术是在井下落物无法处理后的侧钻。早在1895年美国就使用了特殊的工具和技术达到了这一目的。有记录定向井实例是美国在二十世纪三十年代初在加利福尼亚享廷滩油田钻成的。 第一口救援井是1934年在东德克萨斯康罗油田钻成的。救援井是指定向井与失控井具有一定距离,在设计和实际钻进让救援井和失控井井眼相交,然后自救援井内注入重泥浆压死失控井。 目前最深的定向井由BP勘探公司钻成,井深达10,654米; 水平位移最大的定向井是BP勘探公司于己于1997年在英国北海的RytchFarm 油田钻成的M11井,水平位移高达1,0114米。 垂深水平位移比最高的是Statoil公司钻成的的33/9—C2达到了1:3.14; 丛式井口数最多,海上平台:96口;人工岛:170口; 我国定向井钻井技术发展情况 我国定向井钻井技术的发展可以分为三个阶段,50—60年代开始起步,首先在玉门和四川油田钻成定向井及水平井:玉门油田的C2—15井和磨三井,其中磨三井总井深1685米,垂直井深表遗憾350米,水平位移444.2米,最大井斜92°,水平段长160米;70年代扩大实验,推广定向井钻井技术;80年代通过进行集团化联合技术攻关,使得我国从定向井软件到定向井硬件都有了一个大的发展。 我国目前最深的水平井是胜利定向井公司完成的JF128井,井深达到7000米,垂深位移比最大的大位移井是胜利定向井公司完成的郭斜井,水平

导向钻井技术(讲课版)

导向钻井技术 (胜利钻井工程技术公司周跃云) 基本概念 在定向井、水平井钻井中,为了使井眼轨迹得到合理的控制,世界各国相继开发研究了各种相应的技术,这些技术大致可分为两方面:一是预测技术,一是导向技术。 预测技术是根据力学和数学理论,对影响井眼轨迹的各种因素进行分析研究,从而预测各种钻具组合可能达到的预期效果。但目前的预测技术水平远远低于所要求的指标。鉴于此,导向技术应运而生。 导向技术是根据实时测量的结果,井下实时调整井眼轨迹。井下导向钻井技术是连续控制井眼轨迹的综合性技术,它主要包括先进的钻头(一般为PDC钻头)、井下导向工具、随钻测量技术(MWD、LWD等)以及计算机技术为基础的井眼轨迹控制技术,其主要特点是井眼轨迹的随钻测量、实时调整。 导向钻井技术是随油藏地质的要求和钻井采油地面条件的限制而逐步发展起来的。在这种技术中,井下导向钻井工具处于核心地位,它决定导向钻井系统的技术水平,导向技术则是导向钻井系统的关键技术。

一、导向钻井的工具和仪器 定向井技术的进步与定向井工具和仪器的发展是相辅相成的,是密不可分的。定向井钻井实践的需要,设计开发了专门用于定向井的工具和仪器,并在钻井实践中得到完善和提高;随着定向井工具和仪器的发展,极大地推动了定向井工艺技术水平的进步;而工艺技术的进步,对定向井工具仪器又提出了更新更高的要求。胜利油田以及我国定向井发展的历程,充分地说明了这一辩证关系。 1.1 导向工具的主要类型 随着定向井、水平井和大位移延伸井的日益增多,各种相应的井下工具相继出现,如弯接头,变壳体马达,各种稳定器等。对这些工具一般要分为两大类:一为滑动式导向工具,二为旋转式导向工具。两者的主要区别在于导向作业时,上部钻柱是否转动,若不转动,则为滑动式导向工具,否者为旋转式导向工具。 1.1.1 滑动式导向工具 滑动式导向工具在导向作业时,转盘停止转动并被锁住,只有井底马达作业。调整好工具面,钻进一段时间后,再开动转盘,使整体钻柱旋转,以减少摩阻及改善井眼清洗程度,随后再根据需要进行定向作业。可以看出,这种作业方式要把大量的时间花费在定向作业上,尤其是深井作业更是如此。但其优点是成本低,易于实现。

阶梯水平井钻井技术

阶梯水平井钻井技术 冯志明 颉金玲 (大港油田集团公司定向井技术服务公司,天津大港 300280) 摘要 阶梯水平井是在水平井完成第1水平靶区后,通过降斜、稳斜、增斜段的调整,进入并完成第2水平靶区井段的水平井钻井技术。该技术将水平井技术又推上了一个新的高度。使水平井的应用扩展到常规油气层,连续薄油层、断块油层等复杂油气田。文中从施工难点、优化工程设计、井眼轨迹控制3方面论述了阶梯水平井的钻井技术。列举了TZ406井、YX2P1井、LN61-H1井3口阶梯水平井的施工数据。针对TZ406井施工经过、施工要点、施工技术措施,对阶梯水平井的设计、轨道控制技术、施工难点经验、体会和认识,做了全面的论述。现场应用表明:阶梯水平井显著地增加了产量,大幅度地提高勘探开发的综合经济效益,必将成为油气田开发的重要手段之一。 主题词 水平井 导向钻井 井眼轨迹 工程设计 钻具组合 作者简介 冯志明,1966年生。1987年毕业于重庆石油学校钻井工程专业,工程师。 颉金玲,1945年生。毕业于华东石油学院,现任副经理,高级工程师。 阶梯水平井是指在一个井眼中连续完成具有一定高度差的两个或者多个水平井段,形成具有两个或多个台阶的井眼轨迹,用一个井眼开采或者勘探两个或多个层叠状油藏、断块油藏的水平井井型。利用阶梯水平井连续在这两个油层中水平延伸一定长度,节约了重复钻井的投资,增加了单井产量,可取得最佳的开发效果。 一、施工难点 1口成功的阶梯式水平井,能实现取代2口或多口水平井的开发目的,既节约投资,又能获得好的效益。常用于阶梯式水平井开发的区块具有以下特点:(1)层叠式或不整合薄油藏;(2)断块油藏;(3)上部油层断失或尖灭,存在下部可供开采的油藏。 1.目的层油层薄,区块复杂,井眼轨迹拐点多,不平滑,不利于送钻和钻压传递,控制和调整井眼轨道工作量大。着陆、阶梯过渡段控制困难。 2.对钻井装备、钻井液净化设备要求高,井眼的净化和携砂难度大,大斜度井段易形成岩屑床,造成井下复杂情况发生,需要有足够的动力,配套齐全的净化设备。 3.钻具组合、监测仪器等针对性强,技术含量高,钻柱受力复杂。 二、优化工程设计 1.优化井身剖面设计 阶梯水平井的地质设计,通常只给定AB段、CD段两个阶梯水平段的入窗窗口和目标靶区,工程设计则需要满足以下3个方面的条件。(1)满足地质对轨迹控制的要求:即中靶要求。(2)井下专用钻具、工具、仪器装备能满足设计井眼轨迹控制的要求。(3)完井电测、下套管、固井等完井工艺技术水平须满足开放要求。 阶梯式水平井,与普通水平井不同的是怎样依据地质要求,对第1水平段终点到第2水平段终点间的井身剖面进行设计。 2.优化井身结构 根据TZ406井、YX2P1井和LN61-H1井的施工技术,结合国内外其它地区阶梯水平井的施工经验、油层特点和完井方式,一般认为技套必须封固目的层以上的异常高压以及易垮塌、破碎带等不稳定地层,以保证水平井安全、快速地钻井和完井。 三、井眼轨迹控制技术 1.合理的钻具组合设计 分析近年来完成的数十口水平井资料,总结出几套适合于常规水平井和阶梯水平井施工,目前国内工艺技术和装备又能够实现的钻具组合结构。 (1)侧钻钻具组合。钻头+螺杆钻具+定向接头+无磁钻铤+MWD短节+钻铤+钻杆。该钻具组合常用于回填导眼后的侧钻井段和第1造斜井段的施工,平均造斜率达10~12(°)/30m。 (2)钻盘微转增斜钻具组合。钻头+稳定器+无磁钻铤+MWD短节+无磁钻挺+稳定器+钻铤+ 22石油钻采工艺 2000年(第22卷)第5期DOI:10.13639/j.od pt.2000.05.006

羽状水平井钻井工艺

定向羽状水平井钻井工艺 定向羽状水平井技术适合于开采低渗透储层的煤层气,集钻井、完井与增产措施于一体。其主要机理在于多分支井眼在煤层中形成网状通道,促进微裂隙的扩展,又能连通微裂隙和裂缝系统,提高单位面积内的气液两相流的导流能力,大幅度提高了井眼波及面积,降低煤层气和游离水的渗流阻力,提高气液两相流的流动速度,进而提高煤层气产量和采出程度。 一、钻井设备: 1.钻机、钻塔、钻铤和钻具。 2.造斜工具 中、长半径造斜工具(包括P5LZ165、PSLZ197、P5LZ120三种尺寸系列、多种结构规格的固定弯壳体造斜马达)和短半径造斜工具。 3.水平井测井仪器。包括钻杆输送式、泵送式两种测井仪器和下井工具,以及湿式接头和锁紧装置等。 4.射孔工具。包括旋转弹架和旋转枪身等2种高强度定向射孔枪和传爆接头。 5.完井工具。包括金属棉筛管、新型套管扶正器及其它9种完井工具 6.铰接式钻具 羽状分支水平井的井眼轨迹是空间弯曲线,既有井斜的变化又有方位的变化,通常需要在钻铤或钻杆连接处加装一个具有柔性连接的铰接式接头。这种接头具有万向节的功能,在一定角锥度范围内可以任意方向转动,同时具有密封功能。此外,采用铰接式钻具组合,最大限度降低扭矩、摩阻和弯曲应力。 7.可回收式裸眼封隔器/斜向器

斜向器是分支井钻井的关键技术工具,对分支井的钻井起着至关重要的作用,它在分支点处引导钻头偏离原井眼按预定方向进行分支井眼的钻进。煤层气钻进中的斜向器是可回收式带裸眼封隔器的,它由斜向器和封隔器两部分组成,斜向器的斜面上开有送入和回收的孔眼,用于施工作业中送入和回收斜向器,可膨胀式封隔器用于固定和支撑斜向器。 8.井眼轨道控制 由于煤层可钻性好,钻速快,单层厚度薄(3~6m),井眼轨迹控制难度大。为将井眼轨迹控制在煤层内,可采用“LWD+泥浆动力马达”或地质导向钻井技术。实现连续控制,滑动钻进,提高轨迹控制精度,加快钻进速度。同时要避免井眼轨迹出现较大的曲率波动。钻进中尽量避免大幅度变动下部钻具组合结构、尺寸和钻进参数,并控制机械钻速在一定范围内变化,防止井眼出现小台肩现象。 9.其它工具和装备。例如专用取心工具、无磁钻挺、纺锤形稳定器等多种工具和装备。 二、材料: 钻井液:油基钻井液、水基钻井液、无土相钻井液和气基钻井液。 套管等。 三、工艺流程: 1.煤层气羽状水平井完井方法 分支井作为水平井与定向井的集成与发展,其技术难点不再是钻井工艺技术而是完井技术。同水平井及直井相比,分支井完井要复杂的多,主要是分支井根部的连接密封以及分支井眼能否再次进入的问题。目前,国外分支水平井的完井方法主要有三种:裸眼完井、割缝衬管完井和侧向回接系统完井。裸眼完井较为常见,但易出现井壁坍塌等问题。割缝衬管完井虽然能克服这一缺陷,但安装比较困难。如果水平段的岩性比较硬可用裸眼完井或割缝衬管完井,一般较软岩石可用水平井回接系统完井。实际操作中,可根据具体情况进行设计对于煤层气定向羽状分支水平井的完井方式,工艺较简单。如要采用裸眼完井,直接投产。2.钻出工艺 目前国外主要采用以下四种方法钻出分支井: 1)开窗侧钻

浅谈水平井钻井工程技术的应用-工程技术论文-工程论文

浅谈水平井钻井工程技术的应用-工程技术论文-工程论文 ——文章均为WORD文档,下载后可直接编辑使用亦可打印—— 摘要:油气开发中,水平井钻井工程技术主要应用于较薄油气层、裂缝性油气藏的开发过程中。近年来,我国逐渐将油气开发重点转移到低渗透油气藏、裂缝性油气藏的开发中来,这就需要进一步加大对水平井钻井工程技术的研究力度。本研究主要探讨了油气开采中水平井钻井工程技术的现状及应用情况,并对水平井钻井工程技术的作用进行了分析,以期为我国油气开发效果的提高提供帮助。 关键词:水平井;钻井技术 水平井钻井主要通过增加地上集水建筑物、地下油气资源之间的接触面积,来达到提升石油开采效率的目的。经过几十年来的不断开发与利用,我国油气资源的储量逐渐降低,油气资源的开发难度不断上

升、开发环境日趋恶化。在这样的背景下,必须不断对油气开采技术进行创新,提高油气开采水平,避免不必要的资源浪费,实现石油行业的持续健康发展。 1水平井钻井工程技术的现状及应用情况 我国在水平井钻井方面起步相对较晚,技术水平与国外发达国家相比仍有很大的差距。但是,经过不断研究与实践,近年来,我们已经在水平井钻井方面取得了突破性的进展,技术水平得到明显提高,并在实践过程中不断改进、完善。就我国水平井钻井现阶段的情况来看,针对不同的储层及不同类型的油气藏,已经形成了有针对性的水平井[1]。实践发现,水平井钻井工程技术具有操作简单、效率高、产量高、成本低、污染少等一系列优势。水平井钻井技术在石油开采过程中的有效应用,有利于提高油气采收率、油气开采产量,还为实现不同油气藏之间的转换开发与利用提供了新的方法。随着节能降耗与绿色环保理念的不断深入人心与国家可持续发展战略的持续推进,能源短缺问题、能源供求矛盾问题越来越受关注,提高油田开发效率与质量,是现阶段石油行业面临的首要问题[2]。在这样的背景下,必须进一步加大对水

水平井钻井技术难点及对策分析

水平井钻井技术难点及对策分析 致密砂岩油气藏、页岩油气藏正成为我国油气勘探开发的主流和热點,这些非常规油气资源只有通过水平井开采才能获得更好的经济效益,随钻地质导向在水平井钻井过程中发挥重要的作用。文中对水平井地质导向技术现状进行了介绍,分析了录井地质导向技术存在的难点,并针对性的提出了相应的技术对策,对提高水平井油层钻遇率具有一定借鉴意义。 标签:水平井;钻井技术 前沿 油气田的开发过程中,水平井的钻井技术能够数倍提高油气的产量,效果突出。因此,在油田开采建设中,水平井钻井技术得以迅猛发展,施工技术水平也日渐成熟和完善,在很大程度上已成为油田高效勘探开发的关键技术之一。在薄油气田和浅层油田的开发建设上,水平井钻井技术可以大大提高油井产量,提高油田的采收优率,取得了良好的经济效益。由于水平井钻井的技术含量较高,开采施工过程难度较大。在实际应用过程中也存在诸多问题,分析如下。 1 水平井采收率的影响因素分析 气层厚度对采收率的影响。通过研究,我们发现在各向异性比为1,地层损害忽略不计,同时气体性质和地层温度都相同的情况下,水平井采收率与气层厚度成反比例关系,即气层厚度减小时,采收率增加。反之亦然。研究表明,宜选择气层厚度相对较小的水平井进行天然气的开采。 井段长度对采收率的影响。水平井采收率与井段长度成正比,产量随井段长度的增大而增加。所以水平井通常比垂直井的采收率要高。 各向异性对采收率的影响。各向异性表现在水平和垂直方向渗透率不相等。研究发现,水平井采收率各向异性比(水平渗透率与垂直渗透率之比)成反比,即随着各向异性比增加,油气藏垂直方向渗透率减小,采收率随之减小。所以垂直裂缝油气藏用水平井开采的效果相对于垂直井开采较好。 水平井在油气藏中的位置及地层损害对采收率的影响。水平井位置影响采收率的实质是偏心距(水平井与井中心距离),呈“倒U”趋势,当水平井位于气井中部时,有最大采收率。同时,当水平井长度一定时,随地层损害程度的增加,采收率降低,应注重储层保护,避免过度损失。 2 水平井钻井技术存在的问题分析 2.1 水平井钻井专业技术人员队伍水平还需提高

准噶尔盆地石炭系小井眼侧钻短半径水平井钻井技术

准噶尔盆地石炭系小井眼侧钻短半径水平井钻井技术 为落实排66区块地质储量,部署了准噶尔盆地石炭系首口短半径水平井——排664侧井,Φ244.5mm技套内侧钻Φ152.4mm井眼。文章介绍了轨道优化设计、石炭系地层侧钻方法、降低测量仪器磁干扰技术、钻具组合优化配套和井眼净化等工艺技术。该井的成功钻探不仅落实地质储量,同时为后续开发井提供了施工经验和技术支持。 标签:准噶尔盆地;石炭系地层;小井眼;短半径;水平井 1 简介 排664断块位于准噶尔盆地西部隆起车排子凸起北部,勘探程度较低,加上地质结构复杂,石炭系的岩性序列、储集空间、储盖组合、油藏类型等方面的资料缺乏,勘探成果难以突破。因此,在排664井老井眼基础上,利用小井眼短半径技术侧钻对目的储层进行勘探落实。该技术的实施不仅避开了上部复杂层段,而且降低勘探费用,缩短钻井周期,该井为准噶尔盆地石炭系地层小井眼侧钻短半径水平井首次成功实施。 2 主要技术难点 排664侧井是在排664井Φ244.5mm技术套管下部裸眼段侧钻Φ152.4mm井眼短半径水平井,自侧钻点以深均为石炭系地层,主要技术难点有以下几点:(1)石炭系侧钻困难,石炭系火成岩硬度高、可钻性差、侧钻困难;为减小套管磁干扰影响,侧钻点下压4m,提高了侧钻后轨迹控制难度。(2)套管(老技套)被磁化导致随钻仪器测量数据不准确,设计磁场强度为57μT,但实钻测量场强为100μT。(3)造斜率要求高,设计造斜率达80°/100m。(4)水平段长,设计水平段长529.52m,水平位移600m;钻压传递、钻进困难,根据摩阻扭矩模拟计算350m之前比较好控制,后续井段难度大[1]。(5)岩屑返出能力差。由于技术套管尺寸Φ244.5mm,侧钻井眼尺寸Φ152.4mm的现实情况,环空返速低,岩屑返出难;井眼小,钻进时间长,易形成岩屑床。 3 井身结构及井眼轨道优化设计 3.1 井身结构设计 根据老井的井身结构,结合地层特点、地层压力及钻井技术状况,参考已钻井实钻井身结构,以有利于安全、优质、高效钻井和保护油气层的原则进行设计,充分考虑地层的不确定性,以保证完成钻探目的。 3.2 井眼轨道优化设计 为降低技套磁干扰。直井段多钻进4m左右,至井深889m开始侧钻;按降

水平井钻井技术介绍

水平井钻井技术介绍 水平井钻井技术第一章绪论水平井钻井技术是20世纪80年代国际石油界迅速发展并日臻完善的一项综合性配套技术,它包括水平井油藏工程和优化设计技术,水平井井眼轨道控制技术,水平井钻井液与油层保护技术,水平井测井技术和水平井完井技术等一系列重要技术环节,综合了多种学科的一些先进技术成果。由于水平钻井主要是以提高油气产量或提高油气采收率为根本目标,已经投产的水平井绝大多数带来了十分巨大的经济效益,因此水平井技术被誉为石油工业发展过程中的一项重大突破。第一节水平井的分类及特点水平井是最大井斜角保持在90°左右,并在目的层中维持一定长度的水平井段的特殊井。水平钻井技术是常规定向井钻井技术的延伸和发展。目前,水平井已形成3种基本类型,如图1—1所示。(1)长半径水平井(又称小曲率水平井):其造斜井段的设计造斜率K<6°/30m,相应的曲率半径R>286.5m。(2)中半径水平井(又称中曲率水平井);其造斜井段的设计造斜率K=(6°~20°) /30,相应的曲率半径R=286.5~86m。水平井剖平面示意图(3)短半径水平井(又称大曲率水平井):其造斜井段的设计造斜率K=(3°~10°) /m,相应的曲率半径R=19.1~5.73m。上述3种基本类型水平井的丁艺特点和各自的主要优缺点分别列于表l—l和表1—2。大斜度井、水平井和多井底井技术的应用都有一个共同的目的.这就是降低综合成本和提高油层的开采量。对于同一尺寸的井眼,直井由于出油(气)面积比较小、其几何条件所提供的效率就比较低.而水平井几何条件所提供的效率达到最高,如图1—2和图1—3 所示。大斜度井(井斜角大于60°的井)主要适用于层状油藏。多井底井(在一个井眼内钻几口井)主要用于很厚的垂直渗透油层(具有低孔隙率和垂直裂缝的块状石灰岩)或者短半径横向引流类的井。1.天然垂直裂缝在垂直裂缝油藏中,油气完全处在裂缝中,裂缝之间的非生产底层一般为6~60m 厚,所以垂直井可能只钻到一个产层.也可能一个产层也钻不到,而水平井可以与产层垂直相交,横向钻穿若干个产层裂缝.这样就比垂直井的开采量要高得多。2.水锥和气锥1)水锥水平井可以在油层的中上部造斜,然后在生产层中钻一定长度的水平井段。水平井不仅减少水锥的可能性如图1—4 所示。2)气锥水平井的井眼全部在油砂中有助于避免气锥问题。并可以控制采收率,不致于使气锥的压力梯度过高。水平井成功地减少了水锥、气锥等有害影响。3.低渗透性地层由于固井的影响,石灰岩油藏的孔隙度和渗透率即使在短距离内也可能有相当大的变化。与此相似.砂岩油藏中内部岩层构造倾角的变化也能造成孔隙度和渗透率的变化,这些油藏水平相交可以提高产量。4.薄油层对于薄油层.通过在油层的上下边界之间钻个水平井段可以大大地增加井与油层的接触表面积。对于厚的油层则可以优先选择成本较低的直井完井方法,或者考虑应用多底井的可能性(见图1—5)。5.不规则地层平钻井已经成功地应用产开发不规则油藏。这种含油地层互不关联,孤立存在,地震测量也难以指定其准确位置.所以钻直井或常规定向井很难钻到这类油藏。然而短半径水平井可以从现有直井中接近油藏的位置进行造斜.并且可以避免可能的水锥和气锥问题。6.溶解采矿很多矿藏当今采用溶解采矿法进行开采,水平井可以提高这些矿藏开采的经济效益。7.边际构造、丛式井和加密井水平井可能适用于边际构造,为了在短期内增加总的开采量可以钻从式水平井组(见图1—6)。8.层状油层水平井采油获得的产量增量取决于油层垂直渗透率的值。在垂直与水平渗透率之比值较低的情况下,如水平纹理的油层,大斜度井的效率要远高于水平井的效率。如图1—7。9.重油产层在重油产层中、水平钻井技术具有提高产量的能力。横穿油藏的水平井既可以作为生产井也可以作为注水井。水平井具有如下的优点和应用:(1) 开发薄油藏油田,提高单井产量。水平井可较直井和常规定向井大大增加泄油面积,从而提高薄油层中的油产量,使薄油层具有开采价值。(2) 开发低渗透油藏,提高采收率。(3) 开发重油稠油油藏。水平井除扩大泄油面积外,如进行热采,还有利于热线的均匀推进。(4) 开发以垂直裂缝为主的油藏。水平井钻遇垂直裂缝的机遇较直井大得多。(5) 开发底水和气顶活跃的油藏。水平井可以减缓水锥、气锥的推进速度,延长油

苏里格气井水平井钻井液技术方案

苏里格气井水平井钻井液技术方案 苏里格气井水平井钻井液最关键的技术是井眼净化、大斜度井段“双石层”和水平段泥岩的垮塌、预防PDC 钻头的泥包、润滑性、产层保护等。 1 基本情况 直井段:保持了本区块直井、定向井钻井液方案。 斜井段: 继续采用强抑制无土相复合盐钻井液体系。 水平段:采用无土相酸溶暂堵钻井液体系。 2 技术难点 2.1 苏里格区块直井段安定底直罗组、延长底部纸纺组顶部易垮塌。 2.2 苏里格区块刘家沟组与石盒子组地层承压能力低,普遍存在渗透性漏失和压差性漏失。尤其是苏5区块漏 失最为频繁。 2.3“双石层”、煤层和水平段泥岩的垮塌,是导致水平井易发生复杂和故障的致命的因素。 2.4如何优化钻井液体系、性能、组分,通过钻头选型,水力参数优化,是预防PDC钻头泥包和提高斜井段机械钻速的关键。 2.5 如何通过改善泥饼质量,提高钻井液的润滑性是水平井钻井液防卡润滑的关键。 3 技术方案 3.1表层技术方案 3.1.1表层钻井液配方 表层及导管钻进严格按《苏里格气田表层钻井液技术》执行,打导管采用白土浆小循环,导管打完后固定、找正、坐实、水泥回填,侯凝2-3小时,开钻过程中监控导管情况。 若流砂层未封住(流沙层50米以上),采用白土浆钻井,0.1%CMC+5-6%白土,密度:1.03---1.05g/cm3,粘度:40-50s ;钻穿流沙层50-80米之后,采用低固相钻井液体系,密度:1.01---1.03g/cm3,粘度:31-35s。 若流砂层已完全封住,用清水聚合物钻井液体系,配方为0.2%CMP +0.2%ZNP-1。钻井液性能:密度:1.00---1.02g/cm3,粘度:31-32s。 3.1.2下表层表套前技术措施 打完表层后配白土浆(约40-50方)密度:1.03-1.05g/cm3,粘度:40-50s,采用地面小循环清扫井

水平井钻井技术概述

第一章定向井(水平井)钻井技术概述第一节定向井、水平井的基本概念 1.定向井丛式井发展简史 定向井钻井被(英)T .A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然是直井。 定向井首先是从美国发展起来的,在十九世纪后期,美国的旋转钻井代替了顿钻钻井。当时没有考虑控制井身轨迹的问题,认为钻出来的井必定是铅垂的,但通过后来的井筒测试发现,那些垂直井远非是垂直的。并由于井斜原因造成了侵犯别人租界而造成被起诉的案例。最早采用定向井钻井技术是在井下落物无法处理后的侧钻。早在1895年美国就使用了特殊的工具和技术达到了这一目的。有记录定向井实例是美国在二十世纪三十年代初在加利福尼亚享廷滩油田钻成的。 第一口救援井是1934年在东德克萨斯康罗油田钻成的。救援井是指定向井与失控井具有一定距离,在设计和实际钻进让救援井和失控井井眼相交,然后自救援井内注入重泥浆压死失控井。 目前最深的定向井由BP勘探公司钻成,井深达10,654米; 水平位移最大的定向井是BP勘探公司于己于1997年在英国北海的Rytch Farm 油田钻成的M11井,水平位移高达1,0114米。 垂深水平位移比最高的是Statoil 公司钻成的的33/9—C2达到了1:3.14; 丛式井口数最多,海上平台:96口;人工岛:170口; 我国定向井钻井技术发展情况 我国定向井钻井技术的发展可以分为三个阶段,50—60年代开始起步,首先在玉门和四川油田钻成定向井及水平井:玉门油田的C2—15井和磨三井,其中磨三井总井深1685米,垂直井深表遗憾350米,水平位移444.2米,最大井斜92°,水平段长160米;70年代扩大实验,推广定向井钻井技术;80年代通过进行集团化联合技术攻关,使得我国从定向井软件到定向井硬件都有了一个大的发展。 我国目前最深的水平井是胜利定向井公司完成的JF128井,井深达到7000米,垂深位移比最大的大位移井是胜利定向井公司完成的郭斜井,水平位移最大的大位移井是大港定向井公司完成的井,水平位移达到2666米,最大的丛式井组是胜利石油管理局的河50丛式井组,该丛式井组长384米,宽115米,该丛式井平台共有钻定向井42口。 2.定向井的分类 按定向井的用途分类可以分为以下几种类型: 普通定向井 多目标定向井 定向井丛式定向井 救援定向井 水平井 多分枝井(多底井)

超长水平井及丛式水平井钻井技术

超长水平井及丛式水平井钻井技术 1. 钻超长水平井的技术挑战 1)井眼清洁; 2)高摩阻扭矩,需要高抗扭抗拉和耐压钻杆; 3)大斜度长裸眼稳斜段,套管的安全顺利下入; 4)平台设备能力配套与常规井差别,常规超深井考虑钻机的动力和提升载荷能力,而超长水平井侧重考虑水力和顶驱输送扭矩能力; 5)井斜大,裸眼段长,井眼侵泡周期时间长,影响井壁稳定性; 6)普通井的经验很多不适合超长水平井,超长水平井一旦出现失误,惩罚比普通井严重; 7)储层埋藏深度不确定性和仪器精度误差对钻井轨迹调整影响; 8)钻杆伸缩性大,在接近完钻深度只能单根钻,对复杂情况处理活动空间小。 井眼清洁; 井眼清洁在超长水平井中是个很关键的因素,制约超长水平井延伸能力。斜井清洁跟直井区别很大,至少需要比直井很长的循环周时间,而且在程序方法处理上也大大不同,随着井斜的增加,井眼清洁难度加大,岩屑上返更加困难,需要循环时间更长。 一.影响井眼清洁因素: ⑴井眼大小⑻岩屑尺寸 ⑵钻杆尺寸⑼滑动定向比例 ⑶排量⑽钻井速度 ⑷转盘转速⑾井壁稳定性 ⑸泥浆流变性⑿岩屑分散性 ⑹井眼轨迹 ⑺泥浆环空流态 二.井眼清洁原理 井眼清洁有两种方式,一从井眼机械直接运除出来,二通过分散,岩屑溶解在泥浆,这对于大尺寸浅表层采用海水钻就利用这个原理,边钻边造浆,把分散的岩屑带至地面直接排海,间隔打高粘把有颗粒形状的岩屑返出,达到井眼清洁。 a)钻具的转速是井眼清洁的关键因素 在斜井中,井眼高边高速流体清砂作用象传送带,岩屑沉至井眼底边低速层,最终降至井眼底边形成岩屑床,中间岩屑运移长短的距离与井斜角度、排量、转速、流体的流变性及泥浆比重相关,岩屑运移传送带速度与排量相关。 钻具转速扮演在高角度井眼清砂关键因素,因为活动流体处于井眼高边,钻具和岩屑都倾向于井眼底边,通过钻具机械的搅动,将岩屑搅起至传送带上,且钻具的搅动,在钻具上会产生牵引力,部分岩屑也会伴随钻具转动螺旋上升,通过这两者的作用将岩屑带至地面,而钻具转速由井眼大小和单位进尺快慢决定,在12-1/4"、17-1/2"井段至少需要120RPM,8-1/2"井段需要70RPM以上,但高齿轮传送带仍需要钻具转速达到120RPM以上,钻具钻速越高,在钻具周围牵带岩屑越多,超过钻具接头的高度,另外使流体原自由流动高速通道变窄,产生紊流,进而搅动岩屑床,利于清砂,但这种高转速当时也许只将部分岩屑带出来,

水平井钻井技术概述完整版

水平井钻井技术概述 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第一章定向井(水平井)钻井技术概述 第一节定向井、水平井的基本概念 1.定向井丛式井发展简史 定向井钻井被(英)T .A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然是直井。 定向井首先是从美国发展起来的,在十九世纪后期,美国的旋转钻井代替了顿钻钻井。当时没有考虑控制井身轨迹的问题,认为钻出来的井必定是铅垂的,但通过后来的井筒测试发现,那些垂直井远非是垂直的。并由于井斜原因造成了侵犯别人租界而造成被起诉的案例。最早采用定向井钻井技术是在井下落物无法处理后的侧钻。早在1895年美国就使用了特殊的工具和 技术达到了这一目的。有记录定向井实例是美国在二十世纪三十年代初在加利福尼亚享廷滩油田钻成的。 第一口救援井是1934年在东德克萨斯康罗油田钻成的。救援井是指定向井与失控井具有一定距离,在设计和实际钻进让救援井和失控井井眼相交,然后自救援井内注入重泥浆压死失控井。 目前最深的定向井由BP勘探公司钻成,井深达10,654米; 水平位移最大的定向井是BP勘探公司于己于1997年在英国北海的Rytch Farm 油田钻成的M11井,水平位移高达1,0114米。 垂深水平位移比最高的是Statoil 公司钻成的的33/9—C2达到了1:; 丛式井口数最多,海上平台:96口;人工岛:170口; 我国定向井钻井技术发展情况 我国定向井钻井技术的发展可以分为三个阶段,50—60年代开始起步,首先在玉门和四川油田钻成定向井及水平井:玉门油田的C2—15井和磨三 井,其中磨三井总井深1685米,垂直井深表遗憾350米,水平位移米,最 大井斜92°,水平段长160米;70年代扩大实验,推广定向井钻井技术; 80年代通过进行集团化联合技术攻关,使得我国从定向井软件到定向井硬件都有了一个大的发展。 我国目前最深的水平井是胜利定向井公司完成的JF128井,井深达到7000米,垂深位移比最大的大位移井是胜利定向井公司完成的郭斜井,水平位移最大的大位移井是大港定向井公司完成的井,水平位移达到2666米,最大的丛式井组是胜利石油管理局的河50丛式井组,该丛式井组长384米,宽115米,该丛式井平台共有钻定向井42口。 2.定向井的分类 按定向井的用途分类可以分为以下几种类型: 普通定向井 多目标定向井 定向井丛式定向井 救援定向井 水平井 多分枝井(多底井) 国外定向井发展简况

浅谈水平井开采技术

浅谈水平井开采技术 浅谈水平井开采技术 摘要:在国内石油行业里,水平井技术应用日益广泛。自1996年以来,随着油田强化应用水平井的钻井数量增加,综合效益取得了提高。因为水平井的增加和发展,水平井的使用范围不断扩大,所以也遇到了一些新的问题和一些相关的配套技术,尤其是近年来,水平井技术在世界上发展迅速,我们需要借鉴水平井开发新技术和新方法,因此,本文进行了这项工作的研究。本文阐述了水平井发展现状,介绍了国内外水平井适应性筛选方法,侧重于介绍水平井的技术措施,包括水平井压裂、水平井酸化,水平井调堵技术,并介绍了水平井开发新技术和新方法。 关键词:水平井增产措施调堵提高采收率 一、国内外水平井技术发展概况 在水平井钻井技术发展上,中国是最早进行研究的国家之一。1960年代,在四川,打成了磨3井和巴24井两口水平井,但限于技术水平落后,未取得效益。我国石油工业在“八五”和“九五”期间进行了各种技术的研究与应用,并进行了不同类型的储层水平井试验和应用,取得了很多进步。几乎包括所有的储层类型,大多数的水平井与直井显示出极大的优越性,并取得了显著的规模经济效益。 水平井技术是在1928年提出的,1940年代,已成为一个非常有前途的油气田开发、提高采收率的重要技术。1980年代,在美国、加拿大、法国和其他国家的工业领域里广泛应用,从而形成一个研究与应用水平井技术的高潮。如今水平井钻井技术逐渐成熟,并在此基础上,发展了各种水平井技术。目前,水平井技术的发展在国外主要有以下两个特点: 1.应用欠平衡钻井技术,减少钻井液对油层的浸泡和损害,加快机械钻速,简化井下矛盾,使水平井、多底井、多分支井在较简化的完井技术下,就可以达到高产。 2.水平井技术由单个水平井向整体井组开发、多底井、多分支水

相关文档
相关文档 最新文档