文档库 最新最全的文档下载
当前位置:文档库 › 大学物理实验思考题汇总(1)

大学物理实验思考题汇总(1)

大学物理实验思考题汇总(1)
大学物理实验思考题汇总(1)

金属线胀系数的测定

1.为什么要在温度和千分表稳定的时候读数?

测定固体的线性膨胀系数时,温度会逐渐上升,并超越你设定的温度值,再继续等待,温度会降低,直至温度稳定至千分表10秒钟不转动一格,再读数,能减小系统误差。

2.隔热棒的作用是什么?与被测物接触的一端为什么是尖的?

隔热和力的传递作用,做成尖的,接触面积最小民间小样品与千分表的热传递。隔热和力的传递作用。一端是尖的,是减少样品与测量设备(千分尺)的热传递,保证千分尺测试到的就是样品的受热伸长量.

3.为什么被测物体与千分表探头需保持在同一直线?

只有受力在同一直线,千分表才能测出样品的真实伸长量,否则只是伸长量的分量。

4.两根材料相同,粗细、长度不同的金属棒,在同样的温度变化范围内,他们的线膨胀系数是否相同?

线膨胀系数是材料的属性,只要是同一材料就一样。

落球法液体粘滞系数测量

1.斯托克斯公式的应用条件是什么?本实验是怎样去满足这些条件的?又如何进行修正的?

无限宽广的液体,无涡流,液体静止,小球刚性,表面光滑,恒温条件,无初速

度下落,匀速过程满足该公式;

本实验采用刚性小球,使小球的半径远小于液面,体积可忽略不计,放入小球时尽量轻来满足公式适用条件;

修正:d/2R。前乘修正系数2.4;d/2h前乘修正系数3.3.

2.在特定的液体中,如果钢珠直径增大一些,测量结果如何变化?如

果钢珠从高处掷下,测量结果如何变化?

钢珠直径增大,测量结果变大,钢珠从高处掷下,测量结果变小。

3.讨论本实验造成不确定度增大的主要因素是什么,如何改进?

小球受容器体积限制,使小球尽可能在中央下落;

小球有初速度,释放小球尽量轻。

杨氏模量的测定

1.本实验中必须满足哪些实验条件?

金属丝必须材质和尺寸均均匀;韧性要好,能够承重一定规格的钩码;金属丝长度要足够,一般要求两米左右。

2.为什么要使钢丝处于伸直状态?

因为拉直后才能保证加力后正确测出钢丝伸长量。

3.如何判断在整个加减砝码过程中钢丝是弹性形变?

在增砝码过程和减砝码过程中,相同质量砝码的情况,前后两次测得金属丝的长度没有很大差别,说明金属丝进行的是弹性形变。

4.要减小E的测量误差,本实验采取了什么措施?

调节望远镜时,要仔细调节目镜,消除视差。

整个测量过程中的动作要轻,保持整个测量装置稳定。如果发生变动必须重新调节,重新开始实验。

每一次加减砝码的间隔时间尽量保持相等。取放砝码时一定要轻拿轻放,避免摆动。

测量钢丝直径时应用螺旋测微器多测几次,每次取不同点不同方向进行测量,取平均。

为了正确测量加力后的伸长量,必须事先进行预加力3千克左右。

光杠杆放大法测量细钢丝的微小长度变化,用逐差法求平均微小长度变化,减小误差.

5. 试设计用本实验所用的光杠杆及望远镜标尺系统,测量固体薄膜厚度(比如纸张)的原理及方法.

参考思路:

根据杨氏弹性模量实验中的光杠杆放大法原理,把物体伸长量△L看做薄片的厚度进行设计。薄片可以多片一起测,提高厚度变化值;还可以多片一起放上然后逐片减少。具体测量过程自己考虑设计。

设固体薄膜的厚度为x ,将待测物置于光杠杆小镜后脚下,从光杠杆望远镜系统中读出水平叉丝对应数α0,然后将待测物从光杠杆小镜后脚下轻轻取出,读出望远镜中水平叉丝对应数α1,则友光杠杆望远镜测量原理及方法可得:

基本长度测量

1.测量一个直径为2厘米左右的钢球的直径,要求准确到千分之

一 厘米,问需用什么仪器?说明理由.

螺旋测微器,其因为精度是0.01mm=0.001cm 。

2.螺旋测微计上的棘轮有何用途?

棘轮机构有控制被测物体被夹紧的力度的功能,在物体即将被加紧的时候,要放弃旋转粗调螺丝,使用棘轮调节,当棘轮发出吱吱声时,就意味物体刚好被夹。

3.当螺旋测微计上的半刻线“似露非露”时,如何判断其是否露出? 微分筒读数很大,换句话说就是还差一点到零刻度,那就没过半刻度线.如果微分筒读数很小,也就是过了零刻度一点,那也就过了半刻度线。

4.你能否用游标卡尺的原理设计一个可以精确测量角度的“角游标尺”? 利用游标读数原理来直接测量角度.有一个可转动的圆盘(即主尺),在圆盘的边缘标有表示圆心角的刻度,在圆盘的外侧有一个固定不动的圆弧状的游标尺.主尺上29°对应的弧长与游标尺上30格对应的弧长相等.主尺精确到1°,游标卡尺(游标尺上有30个等分刻度)精确到°=2′。

电表的改装与校准

1.测量电流计内阻应注意什么?是否还有别的办法来测定电流计内阻?能否用欧姆定律来进行测定?能否用电桥来进行测定?

设计电路时候,所用的电源内阻不能太大,而且要注意接触电阻.替代法,半偏法,电势差计法等等。

M

x 0

1αα-=

欧姆定律指的是伏安法,用伏安法测量的系统误差不能减小,不用伏安法.

一般可以用电桥测量.

惠斯通电桥测量电阻

1.电桥由哪几部分组成?电桥平衡的条件是什么?

由电源、开关、检流计和桥臂电阻组成,电桥平衡的条件是Rx=(R1/R2)R3。

2.用滑线式惠斯通电桥测量电阻时,把R和R,交换位置后,待测电阻R X的计算公式与交换前的计算公式有何不同?

原来是R

X =K*R

,换位置后就是R

=K*R

X

,即RX=R0/K

旋光仪测旋光液体的浓度

1.用偏振片观察光的偏振现象实验中,交换两个偏振片位置再做同样观测,所得结果一样吗?

一样。两个偏振片性能一样。

2.旋光仪为何有两个读数窗,只读一个窗口的示数行吗?

首先,偏心差是有转盘轴与刻度盘轴的中心不严格重合所造成的.

具体说,转盘上的角度是需要的数据,而从一边刻度盘得到的是测量数据,两者的偏差就是偏心差.但是,只要去刻度盘的两边的两个数据的平均值就能得到需要的数据.

3. 根据半荫法原理,测量所用仪器的透过起偏镜和石英片的两束偏振光振动面的夹角20,并画出所用方法的与图4类似的矢量图.

4.为什么在装待测液的试管中不能留有较大气泡?如有小气泡应该如何处置?

为了避免气泡带来的影响,如果让气泡在管中,光线过来的时候会有影响。

晃动试管,使气泡移动到管侧壁凸起处,并且放置试管时也应使凸起处偏上。光的等厚干涉及应用

1.实验中,除讨论的玻璃块之间空气层两表面反射光外,其他表面所反射的光之间能否产生干涉?

光是有一段段离散的脉冲组成,要同一个脉冲才能产生干涉,否则因为相位不恒定而不产生干涉,这就导致了必然要求两块表面之间的距离很小。所以就只有玻璃块之间空气层两表面,其他的不要考虑。

空绝绝热指数的测定

1.实验时若放气不充分,则所得γ值是偏大还是偏小?为什么?

变大,由r=log(p1/p0)/log(p1/p2)

可得,放气不充分,p2变大

2.为什么瓶内温度恢复不到先前记录的“室温"?

温度传感器由于多方面的因素可能会产生偏差,使得温度恢复不到先前记录的“室温"。

3.为什么实验测量值远小于1.40?

等温过程k=1、绝热过程k=1.4

因为有热传导,使实际过程偏向于等温过程。所以,空气绝热指数的测定实验中,测量值远小于理论值1.40。

4.泊松公式成立的条件是什么?为什么说由本实险测得的结果比较粗糙?

准稳态法测定导热系数和比热

三线摆

1.用三线摆测刚体转动惯量时,为什么必须保持下盘水平?

使转动的轴线与悬线的轴线重合,两盘如果不水平的话,就会导致摆动时不做简谐振动,出现螺线摆运动从而导致误差偏大

2.在测量过程中,如下盘出现晃动,对周期有测量有影响吗?如有影

响,应如何避免?

有影响。当三线摆在扭动的同时产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差,其误差的大小是与晃动的轨迹以及幅度有关的。

让摆幅小一些;停止摆动,重新启动。不要晃动仪器。可避免晃动。

3.三线摆放上待测物后,其摆动周期是否一定比空盘的转动周期大?为什么?

加上待测物体后三线摆的摆动周期不一定比空盘的周期大。由下圆盘对中心轴转动惯量公式可知,若J/m>J0/m0,加上待测物体后,三线摆的摆动周期变大;若J/m<J0/m0,加上待测物体后,三线摆的摆动周期变小。

不一定,还与物体的形状及质量有关。

4.测量圆环的转动惯量时,若圆环的转轴与下盘转轴不重合,对实验结果有何影响?

重力影响振动,增添额外误差。

5.如何利用三线摆测定任意形状的物体绕某轴的转动惯量?

可利用平行轴定理先测定物体绕与特定轴平行的过物体质心的轴的转动惯量J',仪器可用扭摆或三线摆.若特定轴与过质心轴的距离为L,则物体绕特定轴转动的转动惯量J=J'+mL2。

6.三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化?对测量结果影响大吗?为什么?

对于阻尼不大的欠阻尼来说周期不变的,周期为T=2∏/(k^2-w^2)^(1/2)其中k 为振动系统固有频率,w为阻尼系数。对于阻尼过大的过阻尼来说,周期将会发生变化物体将以非周期运动。

惯性称的定标与物体惯性质量的测定

1.何谓惯性质量?何为引力质量?在普通物理力学课中是怎样表述二者的关系的?

惯性质量是量度物体惯性的物理量,物理学中规定各物体的惯性质量与它们在相同的力作用下获得的加速度数值成反比。引力质量是量度物体引力性质的物理量,在相对距离不变的前提下,物体间引力大小与两个物体引力质量的乘积成正比。物体的惯性质量和引力质量是等效的。因此,在中学物理教学中,不必区分惯性质量和引力质量。

2.怎样测量惯性秤的周期,测量时要注意什么问题?

用周期测试仪测若干个周期的总值,再平均。要注意:装置应水平;必须使砝码和待测物的质心位于通过秤台圆孔中心的垂直线上,经保证在测量时有一固定不变的臂长;振动台启动时,水平推移不超过2 cm,并使各次测量秤台的水平位移都相同;挡光杆应通过光电探孔的竖直连线;摆动几个周期后再计时。

3.惯性秤放在地球不同高度处测量同一物体,所测结果能否相同?如果将其置于月球上去做此实验,结果又将如何?用天平做以上的称量将如何?用弹簧秤测又将如何?

不同高度或在月球上,对测惯性质量无影响,所测结果相同,对测引力质量有影响,所测结果不相同。高度越高,惯性质量越接近引力质量。

用天平测量:结果相同。

理由:天平测质量,质量不随位置的变化而变化。

用弹簧测力计测量:结果不同。

理由:弹簧称测力,高度不同,重力不同,因此示数就不同。

4.处于失重状态的某空间里有两个完全不同的物体,能用天平或弹簧秤区分其引力质量的差异吗?(不能,因为天平或弹簧秤依赖于重

力才能工作)

能用惯性秤区分其惯性质量的差异吗? (能,因为惯性秤不依赖于重力就能工作)

5.作T一m i,关系曲线并分析惯性秤的振动周期的平方是否与其上负载m i,成比例,如果成比例估计空秤的惯性质量m o是多少?

霍尔效应实验

地磁场水平分量的测量

分光计的调整就用透射光栅测定光波波长

1.对于同一光源,分别利用棱镜和光栅分光,所产生的光谱有何区别?

光栅分光,提供的色散量更大,谱线分开更大,而且可以提供许多干涉级次,分辨率也更高,但是缺点是光栅通过衍射,把光线能量分散了,谱线的亮度会下降。棱镜分光,提供的色散量不是很大,谱线分开的角度不大,分辨率不高,也就是说谱线宽度没有光栅的细,他主要是利用了不同光的折射率的不同进行分光的。不过谱线亮度会很好,因为并没有形成许多干涉级,能量比较集中!

2.分析光栅面和入射平行光不严格垂直时对实验有何影响?

衍射图形会发生偏移,理论上是:d (sinφ±sinθ)=kλ,φ是衍射角,θ是平行光的入射角.

3.推导出d和λ的不确定度公式,为减少测量误差,根据观察到的各级谱线的强弱及不确定度公式,决定测量第几级的θk较为合理。

迈克尔逊干涉仪的调整和使用

1.在什么条件下产生等倾干涉条纹?什么条件下产生等厚干涉条纹?等厚干涉,要求平行光源入射上下表面不平行劈尖,发生干涉的三点要求都必须

有,同频,同振动方向,固定相位差.光源要求时间空间相干性都好,劈尖顶角要求要小.

等倾干涉,是锥形光线入射上下表面平行的平行平板,要求发生干涉的三点都有,光源要求时间和空间相干性,平行平板要求厚度不能太大!

对于本实验,1、当M 与M′平行——等倾干涉

2、当M 与M′之间有微小夹角、形成楔形空气薄层时——等厚干涉

(M 和M′为镜片)

2.迈克耳孙干涉仪产生的等倾干涉条纹与牛顿环有何不同?

迈克尔逊干涉仪产生的是等倾干涉条纹,条纹的明暗变化,和入射角度有关,相同入射角的位置干涉条纹明暗情况一致,条纹间距,条纹粗细都不等,影响条纹干涉变化的主要原因是光源入射角度的问题。牛顿环是等厚干涉条纹,条纹的明暗变化,和上下表面中间加的空气厚度有关,相同厚度的位置,干涉条纹明暗一致(迈克耳逊干涉仪等倾干涉形成的空气劈尖是上下表面平行的),条纹间距和粗细也都不等,但是两者条纹粗细,条纹间隔计算公式完全不一样!另外牛顿环中心是零级干涉,迈克耳逊干涉仪中心是最大级干涉!

3.为什么在观察激光非定域干涉时,通常看到的是弧形条纹?怎样才能看到圆形条纹?

如果两个反射镜绝对符合理想的垂直状态,看到的是等倾干涉的圆形条纹,

如果两个反射镜不再符合理想的垂直状态,看到的是等厚干涉的平行条纹,也称劈尖,

弧形条纹是过渡状态,两个反射镜正在偏离绝对符合理想的垂直状态.

另,如果两个反射镜不平整,条纹会变形,属于技术问题非理论问题,要注意区别.看到要看圆形条纹,要仔细调节反射镜的角度,如果条纹太稀,说明两个反射镜间隔太小,要用手轮加大.

4.分析扩束激光和钠光产生的圆形干涉条纹的差别。

分析扩束激光和钠光面光源装置产生的圆形干涉条纹的差别只有一点,就是最大光程差的区别。由于扩束激光的相干性比钠光灯好的多,因此其波列长度也长,继而相干光束的最大光程差等于波列长度。因此用扩束激光干涉,能看到条纹的最大光程差大于用钠光时的。

医学影像学题库及答案

医学影像学题库及答案 第一章总论 一、填空题 1、医学影像学包括、、、和等项内容。 2、X线具有穿透性、、和、和电离效应等特性,它们分别 是、、和基础。 X线穿透性 受、和的影响。 3、在阅片时, 应分析病变的要点是、、 、、、和等。 4、人体组织器官有不同的和差,使透过人体后的剩余X线量不均匀。 5、人为引入一种物质到人体器官或间隙使其产生密度差异而形成的对比称对比。引入的这种物质称引入这种物质的方法称。 6、X线图像特点包括、、和等。 7、数字X线成像包括、和。 8、水的CT值为 HU,骨皮质的CT值约为 HU,空气的CT值约为 HU 9、在T1加权像上水和大部病变(如肿瘤.炎症.变性.坏死.液化.水肿)为即长T1信号。T1加权像上的即短T1信号通常为脂肪和亚急性血肿。在T2加权像上,水和大部分病变呈高信号即信号。

二、名词解释 人工对比自然对比 CT MRI PACS 介入放射学 CR DDR CT值 T1 T2 MRA T1WI T2WI

三、选择题(可单选或多选) 1、摄胸部平片显示心肺等结构属于()。 A、人工对比 B、天然对比 C、造影检查 D、特殊检查 2、最适合心血管造影的造影剂()。 A、硫酸钡 B、泛影葡胺 C、欧乃派克 D、碘化油 3、X线图像显示的不同灰度与X线透过的物质密度的关系是()。 A、物质密度高,吸收X线量多,显白影 B、物质密度低,吸收X线量少,显黑影 C、物质密度高,吸收X线量少,显黑影 D、物质密度低,吸收X线量多,显白影 4、CT值为负值可能为() A、脂肪 B、气体 C、肌肉组织 D、血液 5、数字X线成像特点是() A、数字化图像,清晰度、分辨率高,对比好。 B、曝光宽容度大: C、X线剂量低: D、多种后处理功能:调整窗位窗宽、图像放大等。 6、骨皮质在MRI图像上的表现正确的是() A、长T2信号 B、长T1信号 C、短T2信号 D、短T1信号 7、MRI在哪些方面优于CT() A、脑垂体病变 B、脊髓病变 C、肺内病变 D、关节积液 8、有关磁共振成像特点正确的是() A、磁共振信号高低与密度无关。 B、无骨伪影干扰 C、体内顺磁性金属异物不影响图像失真 D、自旋回波序列血管内流动的血液无信号

大学物理实验思考题完整版(淮阴工学院)

实验一:物体密度 1、量角器的最小刻度是0.5.为了提高此量角器的精度,在量角器上附加一个角游标,使游标30个分度正好与量角器的29个分度的等弧长。求:(1、)该角游标的精度;( 2、)如图读数 答案:因为量角器的最小刻度为30’.游标30分度与量角器29 分度等弧长,所以游标精度为30/30=1,图示角度为149。45’ 2、测定不规则的固体密度时,若被测物体浸入水中时表面吸附着水泡,则实验结果所得密度值是偏大还是偏小?为什么? 答案:如果是通过观察水的体积的变化来测量不规则物体的体积,那么计算的密度会减小,因为质量可以测出,而吸附气泡又使测量的体积增大(加上了被压缩的气泡的体积)所 以密度计算得出的密度减小 实验二:示波器的使用 1、示波器有哪些组成部分?每部分的组成作用? 答案:电子示波器由Y偏转系统、X偏转系统、Z通道、示波管、幅度校正器、扫描时间校正器、电源几部分组成。 Y偏转系统的作用是:检测被观察的信号,并将它无失真或失真很小地传输到示波管的垂直偏转极板上。 X偏转系统的作用是:产生一个与时间呈线性关系的电压,并加到示波管的x偏转板上去,使电子射线沿水平方向线性地偏移,形成时间基线。 Z通道的作用是:在时基发生器输出的正程时间内产生加亮信号加到示波管控制栅极上,使得示波管在扫描正程加亮光迹,在扫描回程使光迹消隐。 示波管的作用是:将电信号转换成光信号,显示被测信号的波形。 幅度校正器的作用是:用于校正Y通道灵敏度。 扫描时间校正器的作用是:用于校正x轴时间标度,或用来检验扫描因数是否正确。 电源的作用是:为示波器的各单元电路提供合适的工作电压和电流。 2、为什么在实验中很难得到稳住的李萨如图形,而往往只能得到重复变化的某一组李萨如图形? 答案:因为在实验中很难保证X、Y轴的两个频率严格地整数倍关系,故李莎茹图形总是在不停旋转,当频率接近整数倍关系时,旋转速度较慢; 实验三:电位差计测量电动势 1、测量前为什么要定标?V0的物理意义是什么?定标后在测量Ex时,电阻箱为什么不能在调节? 答案:定标是因为是单位电阻的电压为恒定值,V0的物理意义是使实验有一个标准的低值,电阻箱不能动是因为如果动了电阻箱就会改变电压,从而影响整个实验;为了保持工 作电流不变.设标准电压为En,标准电阻为Rn,则工作电流为I=En/Rn,保持工作电流不变,当测量外接电源时,调节精密电阻Ra,使得电流计示数为零,有E=I*Ra,若测试过程中调节了电位器Rc,则导致I产生变化,使测得的E不准(错误)

(完整版)大学物理实验试卷1

《大学物理实验》试卷2 专业班级 姓名 学号 开课系室物理实验中心 考试日期2003年12月14日上午7:30-9:30 题号一二三四五六总分得分 阅卷人

一、单项选择题(20分,每题2分) 1.在光栅测量波长的实验中,所用的实验方法是[ ] (A)模拟法(B)稳态法(C)干涉法(D)补偿法 2.用箱式惠斯登电桥测电阻时,若被测电阻值约为4700欧姆,则倍率应选[ ] (A)0.01 (B) 0.1 (C) 1 (D) 10 3.用某尺子对一物体的长度进行15次重复测量,计算得A类不确定度为0.01mm,B类不确定度是0.6mm,如果用该尺子测量类似长度,应选择的合理测量次数为(A)1次(B)6次(C)15次(D) 30次 4.用惠斯登电桥测电阻时,如果出现下列情况,试选择出仍能正常测 量的情况[ ] (A)有一个桥臂电阻恒为零(B)有一个桥臂电阻恒为无穷大 (C)电源与检流计位置互换(D)检流计支路不通(断线) 5.研究二极管伏安特性曲线时,正确的接线方法是[ ] (A)测量正向伏安特性曲线时用内接法;测量反向伏安特性曲线时用外接法(B)测量正向伏安特性曲线时用外接法;测量反向伏安特性曲线时用内接法(C)测量正向伏安特性曲线时用内接法;测量反向伏安特性曲线时用内接法(D)测量正向伏安特性曲线时用外接法;测量反向伏安特性曲线时用外接法6.在测量钢丝的杨氏模量实验中,预加1Kg砝码的目的是[ ] (A)消除摩擦力(B)使系统稳定 (C)拉直钢丝(D)增大钢丝伸长量 7.调节气垫导轨水平时发现在滑块运动方向上不水平,应该[ ] (A)只调节单脚螺钉(B)先调节单脚螺钉再调节双脚螺钉(C)只调节双脚螺钉(D)先调节双脚螺钉再调节单脚螺钉 8.示波管的主要组成部分包括[ ] (A)电子枪、偏转系统、显示屏(B)磁聚集系统、偏转系统、显示屏(C)控制极、偏转系统、显示屏(D)电聚集系统、偏转系统、显示屏9.分光计设计了两个角游标是为了消除[ ] (A)视差(B)螺距差(C)偏心差(D)色差 10.用稳恒电流场模拟静电场实验中,在内电极接电源负极情况下,用电压表找等 位点与用零示法找等位点相比,等位线半径[ ] (A)增大(B)减小(C)不变(D)无法判定是否变化

大学物理实验报告及答案

(此文档为word格式,下载后您可任意编辑修改!) 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的(1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 U 实验方法原理根据欧姆定律,R =,如测得U 和I 则可计算出R。值得注意的是,本实验待测电阻有两只, I 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置待测电阻两只,0~5mA 电流表1 只,0-5V 电压表1 只,0~50mA 电流表1 只,0~10V 电压表一只,滑线变阻器1 只,DF1730SB3A 稳压源1 台。 实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学生参照第2 章中的第2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录U 值和I 值。对每一个电阻测量3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由?U =U max ×1.5% ,得到?U 1 = 0.15V,?U2 = 0.075V ; (2) 由?I = I max ×1.5% ,得到?I 1 = 0.075mA,?I 2 = 0.75mA; (3) 再由u= R ( ?U )2 + ( ?I ) 2 ,求得u= 9 ×101?, u= 1?; R 3V 3I R1 R2 (4) 结果表示R1 = (2.92 ± 0.09) ×10光栅衍射实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。?, R 2 = (44 ±1)? (3) 观测汞灯在可见光范围内几条光谱线的波长实验方法原理

医学影像学重点 自己整理的

5、骨龄:是指骨的原始骨化中心和继发骨化中心的出现及骨骺和干骺端骨性愈合 的年龄。(对诊断内分泌疾病和一些先天性畸形综合征有一定价值) 6、骨质破坏:是局部骨质为病理组织所代替而造成的骨组织消失。(见于炎症、 肿瘤、肉芽肿) X线:骨质局限性密度下降,骨小梁消失,骨皮质边缘模糊。 1、骨质疏松:指一定体积单位内正常钙化的骨组织减少。即骨组织的有机成分和 钙盐都减少,但故内的有机成分和钙盐含量比例仍正常。X线:骨质局限性密度下降,骨小梁变细,间隙变宽。 2 骨质软化:骨质软化――指一定单位体积内骨组织的有机成分正常,而矿物质含 量减少。X线表现为骨密度减低,骨小梁和骨皮质边缘模糊 7、骨质坏死:是骨组织局部代谢停止,坏死的骨质称为死骨。形成死骨的原因主 要是血液供应中断(多见于慢性化脓性骨髓炎,也见于骨缺血性坏死和外伤骨折后)。 3、骨膜增生:骨膜反应是因骨膜受刺激,骨膜内层成骨细胞活动增加形成骨膜新 生骨。通常有病变存在。X线:骨骼密度上升,骨皮质、小梁增厚。 8、骨膜三角(Codman三角):恶性肿瘤累及骨膜及骨外软组织,刺激骨膜成骨, 肿瘤继而破坏骨膜所形成的骨质,其边缘残存骨质呈三角形高密度病灶,称为骨膜三角。是恶性骨肿瘤的重要征象。 9、 Colles骨折:又称伸展型桡骨远端骨折,为桡骨远端2~3㎝以内的横行或粉碎 骨折,骨折远端向背侧移动,断端向掌侧成角畸形,可伴尺骨茎突骨折。 Colles’骨折的临床和影像学特点

答:Colles’骨折为桡骨远端3cm范围内横行或粉碎性骨折,常见于中老年人,跌倒时,前臂旋前,手掌着地,引起伸展型桡骨远端骨折。观察患肢呈银叉畸形、刺枪刀样畸形。 X线表现为:桡骨骨折远端向桡侧、背侧移位,掌侧成角,可见骨折线。常合并下尺桡关节脱位和尺骨茎突骨折。 10、青枝骨折:在儿童,骨骼柔韧性大,外力不易使骨质完全断裂而形成不完全性 骨折,仅表现为骨小梁和骨皮质的扭曲,看不到骨折线或只引起骨皮质发生皱折、凹陷或隆突。 11、骨“气鼓”(骨囊样结核):骨干结核初期为骨质疏松,继而在骨内形成囊性 破坏,骨皮质变薄,骨干膨胀,故称为骨“气鼓”或骨囊样结核。 12、骺离骨折:发生在儿童长骨骨折时,由于骨骺尚未与干骺端愈合,外力可经过 骺板达干骺端而引起骨骺分离,即骺离骨折。 13、肺野:充满气体的两肺在胸片上表现为均匀一致较为透明的区域称为肺野。 14、肺纹理:在充满气体的肺野,可见由肺门向外呈放射分布的树枝状影,称为肺纹理。 15、肺门角:肺门上、下部相交形成一钝的夹角,称为肺门角,而相交点称肺门点, 右侧显示较清楚。 16、原发综合征:原发性肺结核(Ⅰ型),肺的原发病灶,淋巴管炎和肺门淋巴结 炎。多见于儿童和青少年,少数为成人。X线:典型表现呈“哑铃状”,包括: ①原发浸润灶②淋巴管炎③肺门纵膈淋巴结肿大 17、肺实变:终末细支气管以远的含气腔隙内的空气被病理性液体、细胞或组织所 代替,常见于大叶性肺炎、肺泡性肺气肿、肺出血、肺结核、肺泡癌等。 空洞:是由肺内病变组织发生坏死后,经引流支气管排出后形成的。

大学物理实验答案.doc

实验7 分光计的调整与使用 ★1、本实验所用分光计测量角度的精度是多少?仪器为什么设两个游标?如何测量望远镜转过的角度? 本实验所用分光计测量角度的精度是:1'。为了消除因刻度盘和游标盘不共轴所引起的偏心误差,所以仪器设两个游标。望远镜从位置Ⅰ到位置Ⅱ所转过的角度为2 )_()('1'212?????+-= ,注:如越过刻度零点,则必须按式)(120360??--来计算望远镜的转角。 ★2、假设望远镜光轴已垂直于仪器转轴,而平面镜反射面和仪器转轴成一角度β,则反射的小十字像和平面镜转过1800后反射的小十字像的位置应是怎样的?此时应如何调节?试画出光路图。 反射的小十字像和平面镜转过180o 后反射的小十字像的位置是一上一下,此时应该载物台下螺钉,直到两镜面反射的十字像等高,才表明载物台已调好。光路图如下: ★3、对分光计的调节要求是什么?如何判断调节达到要求?怎样才能调节好? 调节要求:①望远镜、平行光管的光轴均垂直于仪器中心转轴;②望远镜对平行光聚焦(即望远调焦于无穷远);③平行光管出射平行光;④待测光学元件光学面与中心转轴平行。 判断调节达到要求的标志是:①望远镜对平行光聚焦的判定标志;②望远镜光轴与分光计中心转轴垂直的判定标志;③平行光管出射平行光的判定标志;④平行光管光轴与望远镜光轴共线并与分光计中心轴垂直的判定标志。 调节方法:①先进行目测粗调;②进行精细调节:分别用自准直法和各半调节法进行调节。 4、在分光计调节使用过程中,要注意什么事项? ①当轻轻推动分光计的可转动部件时,当无法转动时,切记不能强制使其转动,应分析原因后再进行调节。旋转各旋钮时动作应轻缓。②严禁用手触摸棱镜、平面镜和望远镜、平行光管上各透镜的光学表面,严防棱镜和平面镜磕碰或跌落。③转动望远镜时,要握住支臂转动望远镜,切忌握住目镜和目镜调节手轮转动望远镜。④望远镜调节好后不能再动其仰角螺钉。 5、测棱镜顶角还可以使用自准法,当入射光的平行度较差时,用哪种方法测顶角误差较小? ?2 1=A 的成立条件是入射光是平行的,当入射光的平行度较差时,此公式已不再适用,应用自准直法测三棱镜的顶角,用公式?-=1800 A 来计算,误差较小。

(完整版)医学影像学简答题(全)

一、星形细胞瘤的CT表现。 1.病变多位于白质。 2.Ⅰ级肿瘤平扫多呈低密度灶,边界清楚,占位效应轻,增强检查无或轻度强化。 3.Ⅱ~Ⅳ级肿瘤平扫多呈高、低或混杂密度肿块,边界不清,占位效应和瘤周水肿明显,增强检查多呈不规则花环样强化或附壁结节强化。 二、脑膜瘤的好发人群、好发部位、CT、MRI、鉴别诊断。(非常重要) 1.好发人群:中年女性。 2.好发部位:多位于脑外(矢状窦旁、大脑凸面、蝶骨嵴、嗅沟、桥小脑角、大脑镰、小脑幕)。 3.CT表现:平扫肿块呈等或稍高密度,类圆形,边界清楚,多以广基底与硬脑膜相连,瘤周水肿轻或无,增强检查病变多呈均匀明显强化。 4.MRI:平扫肿块在T1WI和T2WI上均呈等或稍高信号,增强T1WI 肿块呈均匀明显强化,邻近脑膜增厚并强化而形成脑膜尾征。 5.鉴别:星形细胞瘤,脑转移瘤,脑脓肿。 三、硬膜外血肿的CT表现。(非常重要) 1.颅板下梭形或半圆形高密度灶。 2.常伴有骨折。 3.血肿范围局限,不跨越骨缝。 4.占位效应较轻。 四、硬膜下血肿的CT表现。(非常重要) 1.颅板下新月形或半月形高密度影。 2.常伴有脑挫裂伤或脑内血肿。 3.脑水肿和占位效应明显。 五、脑梗死的分型及各自的CT表现。(熟悉) 缺血性梗死:

1.低密度梗死灶,部位和范围与闭塞血管供血区一致。 2.皮髓质同时受累。 3.占位效应较轻。 4.增强扫描可见脑回状强化。 出血性梗死: 1.低密度的梗死灶内可见高密度的出血灶。 2.占位效应明显。 腔隙性梗死: 1.低密度梗死灶。 2.无占位效应。 六、鼻咽癌的CT表现。(非常重要) 1.平扫表现为患侧咽隐窝变浅、消失或隆起。 2.咽顶、后、侧壁肿块突向鼻咽腔。 3.颈深淋巴结肿大。 4.增强检查病变呈不均匀明显强化。 七、癌性空洞、结核空洞和脓肿空洞的鉴别。(一般重要) 1、癌性空洞: 多见于老年患者。 多位于肺上叶前段和下叶基底段。 多为厚壁偏心空洞。 内壁不光整,可有壁结节,外壁可有分叶征及毛刺征。 常伴肺门、纵隔淋巴结增大。 2、结核空洞: 多位于上叶尖段、后段和下叶背段。 通常较小,壁薄,内壁光滑。 周围常有卫星病灶。

大学物理实验课后答案

实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电 流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。 实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交

《大学物理实验》试卷4答案

2004—2005学年第二学期 《大学物理实验》试卷参考答案及评分标准 一、填空题(20分,每题2分) 1.22u s +;222 22121x x x y x y σσ??? ? ????+???? ????。 2. 0.29%或0.3% ; 2.9%或3% 。 3.x,y 偏移出界 ;辉度太弱 (次序可以颠倒)。 4.伏安法;电桥法;替代法;欧姆表法 (次序可以颠倒) 。 5.恒定系统; 不定系统; 随机; 已定系统。 6.减小随机误差 , 避免疏失误差(次序可以颠倒)。 7.(3) (4) 。 8.毫米尺 ; 1/50游标卡尺 。 9.温差电效应;热磁效应;温度梯度电压;电极不等势电压 (次序可以颠倒)。 10.干涉法 ; 非电量电测法 。 11.选用高灵敏度的检流计、提高电源电压、减小桥臂电阻。(次序可以颠倒) 12.(1)存在;(2)不存在;(3)存在;(4)不存在。 13.数学 。 14.乙 , 丙 。 15.微小等量 ;6 。 16.电子枪 、 偏转板(次序可以颠倒)。 17.(436) 。 18.阳极光电流 ; 暗电流(漏电流) ; 拐点法 ; 交点法 。 19.粘附在小球表面的的液层与邻近的液层因为相对运动而产生的内摩擦力 。 二、判断题(“对”在题号前( )中打√,“错”打×)(15分,每题1分) 1、√ 2、√ 3、× 4、√ 5、× 6、× 7、√ 8、× 9、√ 10、× 11、√ 12、√ 13、× 14、× 15、× 三、简答题(共20分,每题5分) 1.答:(1)确定研究对象和内容,设计实验。 1分 (2)做实验,测量物理量的对应关系。 1分 (3)作物理量对应关系曲线,建立相应函数关系模型。 1分 (4)求解函数关系中的常数和系数,确定函数。 1分 (5)验证。 1分

大学物理实验内容

物理实验教程 3.2 钢丝杨氏模量的测定 3.5 固体的导热系数的测定 3.8 惠更斯电桥 3.14 示波器的使用 3.15 霍尔效应的应用 3.17 分光计的调节和使用 3.19 等厚干涉的应用 407宿舍

3.2钢丝杨氏模量的测定 【实验目的】 1.了解静态拉伸法测杨氏模量的方法 2.掌握光杠杆放大法测微小长度变化的原理和方法 3.学会用逐差法处理数据 【实验内容与步骤】 1.用拉伸法测钢丝的杨氏模量 1.1 调整杨氏模量测定仪 调节杨氏模量测定仪的底脚调整螺钉,使立柱铅直。调节平台的上下位置,使随钢丝伸长的夹具B 上端与沟槽在同一水平面上(为什么?)。加1Kg 砝码在砝码托盘上,将钢丝拉直,检查夹具B 是否能在平台的孔中上下自由地滑动,钢丝是否被上下夹子夹紧. 1.2 调整光杠杆镜尺组 光杠杆后两足置于沟槽内,前足置于夹具B 上,让平面镜竖直,镜尺组安放在光杠杆正前方约1.2m 处,并尽量使望远镜水平并与光杠杆镜面同高,标尺竖直。 调节望远镜(移动或转动望远镜支架)使得从望远镜上方沿镜筒轴线方向在平面镜中能看到标尺的像,调节望远镜的目镜,看清镜筒内的十字叉丝,调节望远镜的调焦旋钮,使标尺的像清晰并无视差。 仔细调节光杠杆,使与望远镜同高的标尺刻度像与十字叉丝的横叉丝重合。(为什么?) 1.3 测量n ? 轻轻的依次将1Kg 的砝码加到砝码托盘上(砝码托自重不计),记录不同力作用下望远镜中标尺读数'i n (共6次),然后将砝码再依次轻轻取下,再记录不同力作用下标尺读数" i n ,两次读数的平均值作为不同力作用下标尺的读数i n ,用逐差法求n ? 注意:测量时应随时注意检查和判断测量数据的合理性;加砝码时勿使砝码托摆动,并将砝码缺口交叉放置,以免倒落。 1.4 测L 、D 用钢卷尺测量光杠杆镜面到标尺的距离D 和上下夹具之间钢丝的长度L 。 1.5 测 b 用印迹法(即将光杠杆拿下放在纸上压出三个脚尖的迹点)测出光杠杆前足到后两足连线的垂直距离b 。 1.6 用螺旋测微计测量钢丝的直径d,选择上中下三处,每处都要在互相垂直方向上各测一次,

医学影像成像原理复习题资料讲解

医学影像成像原理复 习题

一、选择题 1.下列常用的临床检查方法中无电离辐射的是(c) A、CT和PET B、超声和CT C、超声和MRI D、CT和MRI E、PET和MRI 2.X线信息影像传递过程中,作为信息源的是(b) A、X线 B、被照体 C、增感屏 D、胶片 E、照片 3.X线胶片特性曲线组成,不包括(d) A、趾部 B、直线部 C、肩部 D、顶部 E、反转部 4.摄影时,可以人为控制的运动模糊是(a) A、呼吸 B、痉挛 C、胃蠕动 D、肠蠕动 E、心脏搏动 5.与散射线量产生无关的因素是(c) A、被照体厚度 B、被照体密度 C、被照体姿势 D、照射野面积 E、被照体体积 6.影响散射线因素的叙述,错误的是(a) A、物体越厚,产生散射线越少 B、管电压越高,产生散射线越多 C、物体受照面越大,产生散射线越多 D、X线波长越短,产生散射线越多 7.X线照片上相邻两点之间的密度差是(b) A、密度 B、对比度 C、清晰度 D、锐利度 E、失真度 8.减小运动模糊的叙述,错误的是(c) A、需固定肢体 B、缩短曝光时间

C、尽量缩短焦-片距 D、将肢体尽量移近胶片 E、选择运动小的机会曝光 9.使用增感屏摄影的论述,错误的是(b) A、影像颗粒性变差 B、增加影像的清晰度 C、增加影像的对比度 D、减少X线照射量 E、降低影像的清晰度 10.X线影像的转换介质,不包括(e) A、屏-片系统 B、影像增强器 C、成像板(IP) D、荧光屏 E、滤线栅 11.构成照片影像的几何因素是(a) A、失真度 B、对比度 C、颗粒度 D、锐利度 E、密度 12.胶片密度与曝光量成正比关系的是(c) A、足部 B、肩部 C、直线部 D、反转部 E、全部 13.屏-片系统X线信息影像传递过程中,作为信息载体的是(a) A、X线 B、胶片 C、被照体 D、增感屏 E、显影液 14.下到哪个不是影响X线照片对比度的因素(c) A、胶片γ值 B、X线质和量 C、被照体形态 D、增感屏的使用 E、冲洗技术 15.X线检查程序可以简化为(a) A、X线→被照物→信号→检测→图像形成 B、被照物→X线→信号→检测→图像形成 C、X线→被照物→检测→图箱像成→信号 D、被照物→X线→检测→信号→图像形成 E、X线→被照物→检测→信号→图像形成

大学物理实验思考题

测非线性电阻的伏安特性 [思考题]: ⒈从二极管伏安特性曲线导通后的部分找出一点,根据实验中所用的电表,试分析若电流表接,产生的系统误差有多大?如何对测量结果进行修正? 答:如图5.9-1,将开关接于“1”,称电流表接法。由于电压表、电流表均有阻(设为R L 与R A ),不能严格满足欧姆定律,电压表所测电压为(R L +R A )两端电压,这种“接入误差”或 “方法误差”是可以修正的。测出电压V 和电流I ,则V I =R L +R A , 所以R L =V I -R A =R L ′+R A ①。 接入误差是系统误差,只要知道了R A ,就可把接入误差计算出来加以修正。通常是适当选择电表和接法,使接入误差减少至能忽略的程度。 由①式可看出,当R A <>R A ,应采用接法。 ⒉根据实验中所用仪器,如果待测电阻为线性电阻,要求待测电阻R 的测量相对误差不大于4%,若不计接入误差,电压和电流的测量值下限V min 和I min 应取何值? 答:根据误差均分原则,电流表、电压表的准确度等级、量程进行计算.

迈克尔逊干涉仪的使用 [预习思考题] 1、根据迈克尔逊干涉仪的光路,说明各光学元件的作用。 答:在迈克尔逊干涉仪光路图中(教材P181图5.13--4),分光板G将光线分成反射与透射两束;补偿板G/使两束光通过玻璃板的光程相等;动镜M1和定镜M2分别反射透射光束和反射光束;凸透镜将激光汇聚扩束。 2、简述调出等倾干涉条纹的条件及程序。 答:因为公式λ=2△d △k 是根据等倾干涉条纹花样推导出来的,要用此 式测定λ,就必须使M1馆和M2/(M2的虚像)相互平行,即M1和M2相互垂直。另外还要有较强而均匀的入射光。调节的主要程序是: ①用水准器调节迈氏仪水平;目测调节激光管(本实验室采用激光光源)中心轴线,凸透镜中心及分束镜中心三者的连线大致垂直于定镜M2。 ②开启激光电源,用纸片挡住M1,调节M2背面的三个螺钉,使反射光点中最亮的一点返回发射孔;再用同样的方法,使M1反射的最亮光点返回发射孔,此时M1和M2/基本互相平行。 ③微调M2的互相垂直的两个拉簧,改变M2的取向,直到出现圆形干涉条纹,此时可以认为M1与M2/已经平行了。同方向旋动大、小鼓轮,就可以观察到非定域的等倾干涉环纹的“冒”或“缩”。 3、读数前怎样调整干涉仪的零点?

大学物理实验习题

大学物理实验习题一、选择题 1.下面说法正确的是: [ ] A:系统误差可以通过多次测量消除; B:偶然误差一定能够完全消除; C:记错数是系统误差; D:系统误差是可以减少甚至消除的; 2.几位同学关于误差作了如下讨论: 甲:误差就是出了差错,只不过是误差可以计算,而差错是日常用语,两者没有质的区别。 乙:误差和差错是两个完全不同的概念,误差是无法避免的,而差错是可以避免的。 丙:误差只是在实验结束后,对实验结果进行估算时需要考虑。丁:有测量就有误差,误差伴随实验过程始终,从方案设计、仪器选择到结果处理,均离不开误差分析。 正确的选择是: [ ] A:甲乙丙丁都对; B:乙和丁对,甲和丙错; C:只有丁对,其它均借; D只有丙对,其它都错; E:只有乙对,其它均错; F:甲错,其它都对。 3.请选出下列说法中的不正确者 [ ] A:当被测量可以进行重复测量时,常用重复测量的方法来减少测量结果的偶然误差。

B:对某一长度进行两次测量,其测量结果为10Cm和10.0Cm,则两次测量结果是一样的。. C:已知测量某电阻结果为R=,表明测量电阻的真值位于区间05 0.85.32[85.27~85.37]之外的可能性很小。 D:测量结果的三要素是测量量的最佳值(平均值),测量结果的不确定度和单位。 4.测量误差可分为系统误差和偶然误差,属于偶然误差的有: [ ] A:由于电表存在零点读数而产生的误差; B:由于多次测量结果的随机性而产生的误差; C:由于量具没有调整到理想状态,如没有调到垂直而引起的测量误差; D:由于实验测量公式的近似而产生的误差。 5.测量误差可分为系统误差和偶然误差,属于系统误差的有: [ ] A:由于电表存在零点读数而产生的误差; B:由于实验环境或操作条件的的微小波动所引起的误差; C:由于实验者在判断和估计读数上的变动性而产生的误差。 D:由于实验测量对象的自身涨落引起的测量误差; 6.被测量量的真值是一个理想概念,一般来说真值是不知道的(否则就不必进行测量了)。为了对测量结果的误差进行估算,我们用约

大学物理实验报告答案大全(实验数据)

U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理 根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由 U = U max ? 1.5% ,得到 U 1 = 0.15V , U 2 = 0.075V ; (2) 由 I = I max ? 1.5% ,得到 I 1 = 0.075mA , I 2 = 0.75mA ; (3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R 1 = 9 ? 101 &, u R 2 = 1& ; (4) 结果表示 R 1 = (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)& 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

医学影像成像原理复习题

一、选择题 1.下列常用的临床检查方法中无电离辐射的是(c) A、CT和PET B、超声和CT C、超声和MRI D、CT和MRI E、PET和MRI 2.X线信息影像传递过程中,作为信息源的是(b) A、X线 B、被照体 C、增感屏 D、胶片 E、照片 3.X线胶片特性曲线组成,不包括(d) A、趾部 B、直线部 C、肩部 D、顶部 E、反转部 4.摄影时,可以人为控制的运动模糊是(a) A、呼吸 B、痉挛 C、胃蠕动 D、肠蠕动 E、心脏搏动 5.与散射线量产生无关的因素是(c) A、被照体厚度 B、被照体密度 C、被照体姿势 D、照射野面积 E、被照体体积 6.影响散射线因素的叙述,错误的是(a) A、物体越厚,产生散射线越少 B、管电压越高,产生散射线越多 C、物体受照面越大,产生散射线越多 D、X线波长越短,产生散射线越多 7.X线照片上相邻两点之间的密度差是(b) A、密度 B、对比度 C、清晰度 D、锐利度 E、失真度 8.减小运动模糊的叙述,错误的是(c) A、需固定肢体 B、缩短曝光时间 C、尽量缩短焦-片距 D、将肢体尽量移近胶片

E、选择运动小的机会曝光 9.使用增感屏摄影的论述,错误的是(b) A、影像颗粒性变差 B、增加影像的清晰度 C、增加影像的对比度 D、减少X线照射量 E、降低影像的清晰度 10.X线影像的转换介质,不包括(e) A、屏-片系统 B、影像增强器 C、成像板(IP) D、荧光屏 E、滤线栅 11.构成照片影像的几何因素是(a) A、失真度 B、对比度 C、颗粒度 D、锐利度 E、密度 12.胶片密度与曝光量成正比关系的是(c) A、足部 B、肩部 C、直线部 D、反转部 E、全部 13.屏-片系统X线信息影像传递过程中,作为信息载体的是(a) A、X线 B、胶片 C、被照体 D、增感屏 E、显影液 14.下到哪个不是影响X线照片对比度的因素(c) A、胶片γ值 B、X线质和量 C、被照体形态 D、增感屏的使用 E、冲洗技术 15.X线检查程序可以简化为(a) A、X线→被照物→信号→检测→图像形成 B、被照物→X线→信号→检测→图像形成 C、X线→被照物→检测→图箱像成→信号 D、被照物→X线→检测→信号→图像形成 E、X线→被照物→检测→信号→图像形成 16.增感屏的核心结构是(b)

大学物理实验思考题答案

大学物理实验思考题答案

相关答案 力学和热学 电磁学 光学 近代物理 1. 是否可以测摆动一次的时间作周期值?为什么? 答:不可以。因为一次测量随机误差较大,多次测量可减少随机误差。 2. 将一半径小于下圆盘半径的圆盘,放在下圆盘上,并使中心一致,讨论此时三线摆的周期和空载时的周期相比是增大、减小还是不一定?说明理由。 答:当两个圆盘的质量为均匀分布时,与空载时比较,摆动周期将会减小。因为此时若把两盘看成为一个半径等于原下盘的圆盘时,其转动惯量I0小于质量与此相等的同直径的圆盘,根据公式(3-1-5),摆动周期T0将会减小。 3. 三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化?对测量结果影响大吗?为什么? 答:周期减小,对测量结果影响不大,因为

本实验测量的时间比较短。 实验2 金属丝弹性模量的测量 1. 光杠杆有什么优点,怎样提高光杠杆测量的灵敏度? 答:优点是:可以测量微小长度变化量。提高放大倍数即适当地增大标尺距离D或适当地减小光杠杆前后脚的垂直距离b,可以提高灵敏度,因为光杠杆的放大倍数为2D/b。 2. 何谓视差,怎样判断与消除视差? 答:眼睛对着目镜上、下移动,若望远镜十字叉丝的水平线与标尺的刻度有相对位移,这种现象叫视差,细调调焦手轮可消除视差。 3. 为什么要用逐差法处理实验数据? 答:逐差法是实验数据处理的一种基本方法,实质就是充分利用实验所得的数据,减少随机误差,具有对数据取平均的效果。因为对有些实验数据,若简单的取各次测量的平均值,中间各测量值将全部消掉,只剩始末两个读数,实际等于单次测量。为了保持多次测量的优越性,一般对这种自变量等间隔变化的情况,常把数据分成两组,两组逐次求差再算这个差的平均值。

大学物理实验理论考试题及答案

一、 选择题(每题4分,打“ * ”者为必做,再另选做4题,并标出选做记号“ * ”,多做不给分,共40分) 1* 某间接测量量的测量公式为4323y x N -=,直接测量量x 和y 的标准误差为x ?和y ?,则间接测 量量N 的标准误差为?B N ?= ; 4 322 (2) 3339N x x y x x x ??-= =?=??, 333 4 (3) 2248y N y y y y x ??= =-?=-??- ( ) ( ) []2 1 2 3 2 2 89y x N y x ? +?=? 2*。 用螺旋测微计测量长度时,测量值=末读数—初读数(零读数),初读数是为了消除 ( A ) (A )系统误差 (B )偶然误差 (C )过失误差 (D )其他误差 3* 在计算铜块的密度ρ和不确定度ρ?时,计算器上分别显示为“8.35256”和“ 0.06532” 则结果表示为:( C ) (A) ρ=(8.35256 ± 0.0653) (gcm – 3 ), (B) ρ=(8.352 ± 0.065) (gcm – 3 ), (C) ρ=(8.35 ± 0.07) (gcm – 3 ), (D) ρ=(8.35256 ± 0.06532) (gcm – 3 ) (E) ρ=(20.083510? ± 0.07) (gcm – 3 ), (F) ρ=(8.35 ± 0.06) (gcm – 3 ), 4* 以下哪一点不符合随机误差统计规律分布特点 ( C ) (A ) 单峰性 (B ) 对称性 (C ) 无界性有界性 (D ) 抵偿性 5* 某螺旋测微计的示值误差为mm 004.0±,选出下列测量结果中正确的答案:( B ) A . 用它进行多次测量,其偶然误差为mm 004.0; B . 用它作单次测量,可用mm 004.0±估算其误差; B = ?==? C. 用它测量时的相对误差为mm 004.0±。 100%E X δ= ?相对误差:无单位;=x X δ-绝对误差:有单位。 6* 在计算数据时,当有效数字位数确定以后,应将多余的数字舍去。设计算结果的有效数字取4位,

大学物理实验实验步骤总结

液体表面张力 1、不加水,调零(-80mv~0mv ) 2、两点定标(定标后不再动“mv ”旋钮):挂上砝码盘(不能使用手,必须用镊子小心挂上)依次加入第一个砝码,记录数据u1,加入第二个砝码,记录数据u2,加入第三个砝码,不用记录数据,取下第三个砝码,待稳定后记录数据u2’,取下第二个砝码,记录数据u1’,取下第一个砝码和砝码盘。 U=FB U 为单个砝码电压:(u1+u1’)/2=u01; (u2+u2’)/2=u02; U=(u02-u01)*10^-3(mv 换算成V) F 为单个砝码重力:F=0.5*10^-3(单个砝码质量,换算成kg )*9.8 B 为仪器灵敏度:B=U/F 3、挂上吊环(吊环应多次调整水平,可利用旋转吊环观察吊环是否水平;用镊子挂上用镊子取下)。在培养皿中装上水,培养皿先擦干净后,装水并保证培养皿外表面没有水。吊环下沿应完全浸没(浸没1mm 左右即保证完全浸没)。转动放置培养皿转台下部的升降螺丝,将吊环拉离水面,此时,观察环浸入液体中及从液体中拉起时的电压值,记录即将脱离水面的最大电压值U1,吊环完全脱离水面悬空后的电压值U2(U1,U2测量过程中若未观察到最大值可重复试验直到测量到为止;U1-U2约为40~60) B D D U U )(212 1+-= πσ σ为所求表面张力系数。 4、仪器整理:除了培养皿内表面可以有水外其他地方都不能有水,吊环、砝码盘、砝码需擦干后放入盒内,关闭电源,仪器归位摆放整齐。 电子示波器的调节和使用 1、开机找亮点(三个信号都断开):内部信号(TIME/DIV )关闭(逆时针旋转到底);5个小旋钮所有缺口竖直向上;SOURCE 打到CH1/CH2;MODE 打到AUTO ;按下交替出发(TRIG.ALT );断开外接信号(CH1/CH2都打到GND );灰度关到最小(逆时针旋转到底)。开机,灰度顺时针旋转到最大,屏幕中心出现亮点。 2、调节直线(接通CH1/CH2):打开函数发生器,将CH2调节到SIN 正弦信号。(函数发生器显示屏幕下方的蓝色按钮对应屏幕上对应符号,调节频率在数字键盘上按键,左右按键可调节光标位置)。(默认频率CH1为1CH2为1.5) 调出水平有限线段(接通CH1):接通函数发生器上的CH1信号;示波器上CH1打到AD/DC ;MODE (示波器面板下方中间)打到CH1;内部信号关掉(TIME/DIV 逆时针旋转到底)。此时屏幕出现水平线段,按指定要求调节到指定长度(双色旋钮和左右按键合作调节)。 调出竖直有限线段(接通CH2):接通函数发生器上的CH2信号;示波器上CH2打到AD/DC ;MODE (示波器面板下方中间)打到CH2;内部信号关掉(TIME/DIV 逆时针旋转到底)。此时屏幕出现竖直线段,按指定要求调节到指定长度(双色旋钮和左右按键合作调节)。 3、调出正弦波型(接通内部信号+CH1/CH2) 调出通道1的正弦波型(CH1+内部信号):函数发生器上CH1选择SIN 波型,并打开CH1信号;示波器上CH1打到AD/DC ;MODE 打到CH1;内部信号打开(TIME/DIV 顺时针旋转到底)。此时屏幕上出现通道1的正弦波型,通过调节左右旋钮和SWP.V AR 旋钮调整出指定完整波形个数。 调出通道2的正弦波型(CH2+内部信号):函数发生器上CH2选择SIN 波型,关闭CH1信号并打开CH2信号;示波器上CH2打到AD/DC ;MODE 打到CH2;内部信号打开

医学影像学简答题(全)

一、星形细胞瘤得CT表现。 1、病变多位于白质。 2、Ⅰ级肿瘤平扫多呈低密度灶,边界清楚,占位效应轻,增强检查无或轻度强化。 3、Ⅱ~Ⅳ级肿瘤平扫多呈高、低或混杂密度肿块,边界不清,占位效应与瘤周水肿明显,增强检查多呈不规则花环样强化或附壁结节强化。 二、脑膜瘤得好发人群、好发部位、CT、MRI、鉴别诊断。(非常重要) 1、好发人群:中年女性。 2、好发部位:多位于脑外(矢状窦旁、大脑凸面、蝶骨嵴、嗅沟、桥小脑角、大脑镰、小脑幕)。 3、CT表现:平扫肿块呈等或稍高密度,类圆形,边界清楚,多以广基底与硬脑膜相连,瘤周水肿轻或无,增强检查病变多呈均匀明显强化。 4、MRI:平扫肿块在T1WI与T2WI上均呈等或稍高信号,增强T1WI 肿块呈均匀明显强化,邻近脑膜增厚并强化而形成脑膜尾征。 5、鉴别:星形细胞瘤,脑转移瘤,脑脓肿。 三、硬膜外血肿得CT表现。(非常重要) 1、颅板下梭形或半圆形高密度灶。 2、常伴有骨折。 3、血肿范围局限,不跨越骨缝。 4、占位效应较轻。 四、硬膜下血肿得CT表现。(非常重要) 1、颅板下新月形或半月形高密度影。 2、常伴有脑挫裂伤或脑内血肿。 3、脑水肿与占位效应明显。 五、脑梗死得分型及各自得CT表现。(熟悉) 缺血性梗死: 1、低密度梗死灶,部位与范围与闭塞血管供血区一致。

2、皮髓质同时受累。 3、占位效应较轻。 4、增强扫描可见脑回状强化。 出血性梗死: 1、低密度得梗死灶内可见高密度得出血灶。 2、占位效应明显。 腔隙性梗死: 1、低密度梗死灶。 2、无占位效应。 六、鼻咽癌得CT表现。(非常重要) 1、平扫表现为患侧咽隐窝变浅、消失或隆起。 2、咽顶、后、侧壁肿块突向鼻咽腔。 3、颈深淋巴结肿大。 4、增强检查病变呈不均匀明显强化。 七、癌性空洞、结核空洞与脓肿空洞得鉴别。(一般重要) 1、癌性空洞: 多见于老年患者。 多位于肺上叶前段与下叶基底段。 多为厚壁偏心空洞。 内壁不光整,可有壁结节,外壁可有分叶征及毛刺征。 常伴肺门、纵隔淋巴结增大。 2、结核空洞: 多位于上叶尖段、后段与下叶背段。 通常较小,壁薄,内壁光滑。 周围常有卫星病灶。 3、脓肿空洞:

相关文档
相关文档 最新文档