文档库 最新最全的文档下载
当前位置:文档库 › 为什么接地网接地电阻要小于4欧及公式

为什么接地网接地电阻要小于4欧及公式

为什么接地网接地电阻要小于4欧及公式
为什么接地网接地电阻要小于4欧及公式

为什么接地网接地电阻要小于4欧?

单一接地体的对地电压曲线及接触电压接触电动势和接触电压接触电动势是指接地电流自接地体流散,在大地表面形成不同电位时,设备外壳与水平距离 0.8m 处之间的电位差。接触电压是指加于人体某两点之间的电压。如图所示。当设备漏电,电流 IE自接地体流入地下时,漏电设备对地电压为 UE,对地电压曲线呈双曲线形状。当人在 a处触及漏电设备外壳,其接触电压为其手与脚之间的电位差。人的脚在 a处对地电压为 Ua,人的手由于触及漏电设备,所以人的手对地电压与漏电设备对地电压相同,即为 UE,这样在 a处人所承受的接触电压 UC= UE- Ua。通常,按人体离开设备0.8m 考虑,在忽略人的双脚下面土壤的流散电阻的情况下接触电压与接触电动势相等。实际上,人脚下面土壤的流散电阻总是存在,以致接触电压总是比接触电动势要低一些,也就是比直接从对地电压曲线上取的电位差要低。保护接地的作用1、三相三线中性点不接地系统中的电气设备若没有采取保护接地,当电气设备一相绝缘损坏漏电使金属外壳带电时,操作人员误触及漏电设备,故障电流将通过人体和线路对地绝缘阻抗构成回路,如下图所示。绝缘阻抗是绝缘电阻和分布电容的并联组合,其接地电流的大小与线路绝缘的好坏、分布电容的大小及电网对地电压的高低成正比。线路的绝缘越坏,对地分布电容越大、电压越高、触电的危险性越大。若漏电设备已采取保护接地措施时,故障电流将会通过接地体流散,流过人体的电流仅是全部接地电流中的一部分。保护接地原理在两条通路中,电流的分配关系可表示为:Ir/I′e=Re/RrIe=I′e+Ir式中Ir———流经人体的电流;I′e———流经接地体的电流;Re———接地电阻;Rr———人体电阻;Ie———接地电流。从式中可以看出,接地电阻 Re 越小,流过人体的电流 I 也越小。因此,只要控制接地电阻值在一定范围内,就能减轻人身触电的危险。所以,保证最小的接地电阻是很重要的,在电气设备施工和运行时期内,均应保证接地电阻不大于设计或规程所规定的接地电阻值,否则是不能充分起到保护作用的。2、三相四线制中性点直接接地系统中的电气设备如不采取保护接地或接零的措施,一旦电气设备漏电,人体误触及漏电设备外壳时,加在人体的接触电压为相电压(220V),接地短路电流通过人体电阻 Rr与变压器工作接地电阻 RN组成串联电路,通过人体的接地电流通为:Ir=URr+RN式中Ir———流经人体的电流;U———漏电设备外壳对地电压(220V);Rr———人体电阻;RN———变压器中性点接地电阻。变压器中性点的工作接地电阻,一般规定在 4Ω以下,如人体电阻取 800Ω,则通过人体的电流为:Ir=U/(Rr+RN)=220(800 +4)A =0.274A =274mA 这样大的电流通过人体足以使人致命,是非常危险的。若漏电设备已采用保护接地时,则人体电阻和保护接地电阻并联。由于人体电阻比保护接地电阻大得多,接地短路电流绝大部分从接地电阻上通过,减轻了对人体触电伤害程度,如下图所示。现假设工作接地电阻 RN和保护接地电阻 R都为4Ω,电气设备一相绝缘破坏,接地短路电流为:Ie=U/(RN+RrRe(Rr+Re))=220/(4 +3.98)A =27.57A通过人体的电流为:Ir=(220 -27.57 ×4)800A =0.137A =137mA 中性点直接接地系统采用保护接地时人体触及漏电设备外壳示意从上述分析可知,中性点直接接地的电网采用保护接地虽比没有保护接地时触电的危险性有所减小,但通过人体的接地短路电流仍有可能使人致命,因此,在三相四线制中性点直接接地的低压配电系统中,电气设备如采用保护接地,根据国际IEC 标准应装设漏电保护器。保护接零的作用采用保护接零时,电气设备的金属外壳直接与低压配电系统的零线连接在一起。当其中任何一相绝缘损坏而使外壳带电时,形成相线和零线短路。由于相零回路阻抗很小,所以短路电流很大,使线路上的保护装置(如断路器、熔断器等)迅速动作,切除故障设备的电源,从而起到防止人身触电的保护作用,并减少设备损坏的机会。重复接地的作用(1)减轻零线断线时的触电危险如零线没有采用重复接地时发生零线断线,而且在断线后面的某一电气设备又发生一相碰壳接地短路故障,故障电流通过触及漏电设备的人体和变压器的工作接地构成回路。因为人体电阻比工作接地电阻 RN 大得多,所以人体几乎承受了全部相电压,造成严重的触

电危险。当零线采用了重复接地后,这时接地短路电流通过重复接地电阻 Re 和 RN 形成回路。在零线断线以后,电气设备外壳对地电压为 Ue= IeRe;在断线以前,电气设备外壳对地电压为U′e=IeRN。由于 Ue 和U′e都小于相电压,所以降低了触电危险程度。(2)降低漏电设备外壳的对地电压当没有采用重复接地时,一旦发生设备漏电时,设备外壳对地电压 Ue 等于单相短路电流 Ie 在零线电阻上产生的压降 UN,即 Ue= UN;当采用了重复接地后,设备外壳对地电压仅为零线压降 UN的一部分;即Ue≈Re(RN+Re)UN式中 Ue———设备对地电压;Re———重复接地电阻;RN———中性点接地电阻;UN———零线上的电压降。(3)缩短故障持续时间当发生碰壳接地短路时,因为重复接地在短路电流返回的途径上增加了一条并联支路,使单相短路电流增大,加速了线路保护装置的动作,缩短了故障持续时间。(4)改善配电线路的防雷架空线路零线上的重复接地,对雷电流具有分流作用,因此有利于防止雷电过电压。

这个问题其实很简单,LZ问的问题是“为什么工作接地电阻会是4欧姆”?那么,你要是不知道这个“4欧姆”是怎么来的,最好别说话。1、问:“4欧姆”是怎么来的?答:计算来的。2、问:依据什么计算来的?答:依据人所能承受的工频电流、人体的电阻、设备外壳的接地电阻、电源的中性点接地电阻等计算来的。3、问:怎么计算呢?答:人所能承受的工频电流:概率为50%时,成年男性的摆脱电流约为15.5mA,成年女性的摆脱电流约为10.5mA;概率为99.5%时,成年男性约为22.5mA,成年女性约为15mA。人的室颤域值50mA。对于50Hz工频电流,在1秒钟内,最大流过100mA电流时,人不会死亡。人体的电阻:在电压1000V,95%手掌面积接触带电体时的视在电阻为1500Ω。那么这个时候开始计算:无保护接地:I人=U/(R人+R中性点)有保护接地:I短路电流=U/[R中性点+R人·R外壳·(R 人+R外壳)] I人=(U-I短路电流·R保护接地电阻)/R人≤100mA这样就把R保护接地电阻求出来了。它就小于4欧姆就可以。

单一接地体的对地电压曲线及接触电压接触电动势和接触电压接触电动势是指接地电流自接地体流散,在大地表面形成不同电位时,设备外壳与水平距离 0.8m 处之间的电位差。接触电压是指加于人体某两点之间的电压。如图所示。当设备漏电,电流 IE自接地体流入地下时,漏电设备对地电压为 UE,对地电压曲线呈双曲线形状。当人在 a处触及漏电设备外壳,其接触电压为其手与脚之间的电位差。人的脚在 a处对地电压为 Ua,人的手由于触及漏电设备,所以人的手对地电压与漏电设备对地电压相同,即为 UE,这样在 a处人所承受的接触电压 UC= UE- Ua。通常,按人体离开设备0.8m 考虑,在忽略人的双脚下面土壤的流散电阻的情况下接触电压与接触电动势相等。实际上,人脚下面土壤的流散电阻总是存在,以致接触电压总是比接触电动势要低一些,也就是比直接从对地电压曲线上取的电位差要低。

保护接地的作用

1、三相三线中性点不接地系统中的电气设备若没有采取保护接地,当电气设备一相绝缘损坏漏电使金属外壳带电时,操作人员误触及漏电设备,故障电流将通过人体和线路对地绝缘阻抗构成回路,如下图所示。绝缘阻抗是绝缘电阻和分布电容的并联组合,其接地电流的大小与线路绝缘的好坏、分布电容的大小及电网对地电压的高低成正比。线路的绝缘越坏,对地分布电容越大、电压越高、触电的危险性越大。若漏电设备已采取保护接地措施时,故障电流将会通过接地体流散,流过人体的电流仅是全部接地电流中的一部分。

保护接地原理:

在两条通路中,电流的分配关系可表示为:

Ir/I`e=Re/Rr

Ie=I`e+Ir 式中

Ir———流经人体的电流; I′e———流经接地体的电流;

Re———接地电阻; Rr———人体电阻; Ie———接地电流

从式中可以看出,接地电阻 Re 越小,流过人体的电流 I也越小。因此,只要控制接地电阻值在一定范围内,就能减轻人身触电的危险。所以,保证最小的接地电阻是很重要的,在电气设备施工和运行时期内,均应保证接地电阻不大于设计或规程所规定的接地电阻值,否则是不能充分起到保护作用的。

2、三相四线制中性点直接接地系统中的电气设备如不采取保护接地或接零的措施,一旦电气设备漏电,人体误触及漏电设备外壳时,加在人体的接触电压为相电压(220V),接地短路电流通过人体电阻 Rr与变压器工作接地电阻 RN组成串联电路,通过人体的接地电流通为:

Ir=URr+RN 式中

Ir———流经人体的电流;

U———漏电设备外壳对地电压(220V);

Rr———人体电阻;

RN———变压器中性点接地电阻。

变压器中性点的工作接地电阻,一般规定在 4Ω以下,

如人体电阻取 800Ω,则通过人体的电流为:

Ir=U/(Rr+RN)=220(800 +4)A =0.274A =274mA

接地电阻测量方法介绍

接地电阻测量方法介绍 1 仪表测量法 在隔离变压器B的电源两端中,分别接上电流表、电压表、开关,如图1。当开关闭合后,用电流表测出线路的电流。用高内阻电压表测出接地极E与临时接地极P之间电阻RE的电位差V。最后用RE=V/I 公式计算出接地电阻值。 2 摇表测量法 测量前,首先将电位探测针P和电流探测针C分别插入地中,使它们与接地极E成一条直线,E、P、C三点间距离为20m。随后将E、P、C用专用导线接到摇表相应的接线柱上。测量时,以2r/s的速度摇动并对指示数逐渐进行调节,便可以直接从刻度盘上读出被测的接地电阻值。 3 万用表测量法 1)三角形测量法。在接地体E的3m处,分别插入临时接地极P和辅助接地极C,使它们之间的夹角为30°~60°,如图2。然后用高精确度的万用表分别测出REP、REC、RPC电阻。最后用下列公式计算出接地电阻值。 RE=1/2(REP+REC+RPC)。 2)直线测量法。在接地极E的3m和6m处,分别插入临时接地极P 和辅助接地极C,如图3。若用万用表测得:RE+RP=8Ω,RP+RC=10

Ω,RE+RC=6Ω,则可以用解三元一次方程组方法,分别求出RE、RP、RC的接地电阻值。 接地网接地电阻测试的原理方法及意义 一、概述近些年来,国内多处变电站因雷击形成扩大事故,多数与地网接地电阻不合格有关,接地网起着工作接地和保护接地的作用,当接地电阻过大则:发生接地故障时,使中性点电压偏移增大,可能使健全相和中性点电压过高,超过绝缘要求的水平而造成设备损坏。在雷击或雷电波袭击时,由于电流很大,会产生很高的残压,使附近的设备遭受到反击的威胁,并降低接地网本身保护设备(架空输电线路及变电站电气设备)带电导体的耐雷水平,达不到设计的要求而损坏设备。同时接地系统的接地电阻是否合格直接关系到变电站运行人员、变电检修人员人身安全;但由于土壤对接地装置具有腐蚀作用,随着运行时间的加长,接地装置已有腐蚀,影响变电站的安全运行;因此,必须大力加强对地网接地电阻的定期监测;运行中变电站地网接地电阻的测量,由于受系统流入地网电流的干扰以及试验引线线间的干扰,使测试结果产生较大的误差。特别是大型接地网接地电阻很小(一般在0.5Ω以下),即使细微的干扰也会对测试结果产生很大的影响;如果对地网接地电阻测试不准确,不仅损坏设备,而且会造成诸如地网误改造等不必要的损失,结合我对接地网接地阻抗测试方法的研究,现总结如下: 二、接地电阻测试原理及方法:测试接地装置的接地阻抗时电流极要布置的尽量远,通常电流极与被试接地装置边缘的距离dcG应为被试接地装置最大对角线长度D的4~5倍(平行布线法),在土壤电阻率

接地网电阻计算公式

接地网电阻计算公式 三维方法设计变电站的接地电阻 陈光辉1 江建武2 (1 深圳市长科防雷技术有限公司,深圳) (2 深圳供电局变电部,深圳) 【摘要】用三维方法设计变电站的接地电阻,可使接地电阻比传统设计更加准确,结合现有国内外接地新材料.新技术,新 工艺,可使变电站接地网接地电阻达到最佳效果 【关键词】三维地网设计、新材料,新工艺施工。 前言 目前,由于征地等原因,变电所的占地面积越来越小,有的GIS 室内型110kV 变电站占地面积仅有1500m2, 且大部分建在山上,这些地方往往电阻率很高,欲在这样的地方不扩网、不外引,在原地使其工频接地电阻达到 规程要求标准,用常规方法很难实现。我公司在实践过程中,采用三维方法设计,即A-T-N 方案,成功解决了 土壤电阻率300Ωm,占地面积为5000m2 情况下的接地电阻R≤0.5Ω的国家规定标准。 1 A 方案 用常规的方法实现工频接接地电阻RA,主要是用于解决地网的电位分布均匀,均衡最大值下的冲击电压,以 及降低水平网的工频接地电阻,它可以利用工地的自然接地体,如建筑物、自来水管等来完成网格式接地网的接 地电阻,它是在不扩网、不外引、不使用任何降阻剂的情况下计算出的工频接地阻抗值,计算公式采用部颁《交流 电气装置的接地》[1]有关规定的公式进行。 a e R a R 1 = (1) 1 3ln 0 0.2 L S S L a ? ?? ? ? ?? ? = ?(2) ?? ? ??= + + ? ? B

hd S L B S Re 5 9 ln 2 0.213 (1 ) π ρρ (3) S h B 1 4.6 1 + = (4) 式中:Ra—任意形状边缘闭合接地网的接地电阻(Ω); Re—等值(即等面积、等水平接地极总长度)方形接地网的接地电阻(Ω); S—接地网的总面积(m2); d—水平接地极的直径或等效直径(m); h—水平接地极的埋设深度(m); LO—-接地网的外缘边线总长度(m); L—水平接地极的总长度(m)。 简化后的计算方法: S R a ′ = 0.5ρ(5) 式中:ρ—土壤电阻率(Ωm); S—地网面积(m2)。 上式公式中, a R 和土壤电阻率ρ成正比,和地网占地面积S 成反比。如果取p=300Ωm,欲达到R=0.5Ω面 积S 则必须达到90000m2。 在正方型接地网中,当网格数超过16 个时,基本(1)式=(5)式;当网格数少于16 个时,a R > R′a 。 日本川漱太朗公式为: ?? ? ?? ? + ? ′

接地电阻摇表使用方法及标准

接地电阻摇表使用方法 及标准 Revised as of 23 November 2020

接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一。 以ZC29B-2型摇表测试方法如下: (1)在E-E两个接线柱测量接地电阻时,用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。测量屏蔽体电阻时,应松开镀铬铜板,一个E接线柱接接地体,另一个E接线柱接屏蔽。 (2)P柱接随仪表配来的20m纯铜导线,导线另一端接插针。 (3)C柱接随仪表配来的40m纯铜导线,导线的另一端接插针2。 2 接地电阻测试仪设置的技术要求 (1)接地电阻测试仪应放置在离测试点1~3m处,放置应平稳,便于操作。 (2)每个接线头的接线柱都必须接触良好,连接牢固。 (3)两个接地极插针应设置在离待测接地体左右分别为20m和40m的位置;如果用一直线将两插针连接,待测接地体应基本在这一直线上。 (4)不得用其他导线代替随仪表配置来的5m、20m、40m长的纯铜导线。 (5)如果以接地电阻测试仪为圆心,则两支插针与测试仪之间的夹角最小不得小于120°,更不可同方向设置。 (6)两插针设置的土质必须坚实,不能设置在泥地、回填土、树根旁、草丛等位置。 (7)雨后连续7个晴天后才能进行接地电阻的测试。 (8)待测接地体应先进行除锈等处理,以保证可靠的电气连接。 3 接地电阻测试仪的操作要领

药物分析常用计算公式

色谱外标法含量计算 对:对照品溶液样:供试品溶液峰的峰面峰的峰面积计算公式 对:对照品稀释平均重:供试品平均100 =含Spe.AV均 对照品比样:供试品稀释对:对照品取样×含———————————————————————————————————————W样:供试品取样量———————

供试品标示Spec色谱外标法均匀度计算对:对照品溶液样:供试品溶液主峰的峰面峰的峰面对照品比值平AV计算公式 对:对照品稀释样:供试品稀释体V样样×VA×100%=含量积AVGSpec. ×积 W对:对照品取样量A对×V对Spec.:供试品标示量对照品比值=W对×含量 AVG:对照品比值平均———————————————————————————————————————系数A= |100-含量平值 ———————均值| 色谱外标法溶出度计算供试品标示量:Spec.样:供试品溶液主A含量标准差S=系数 峰的峰面积计算公式对:对照品溶液主AA+1.80S 判断值为 峰的峰面积样:供试品稀释体V对W样×样×AV100%×=溶出度

对×对VA.×Spec积 对:对照品稀释体V积对:对照品取样量W ×含量—————————————————————————————————————————————— 样:供试品溶液主A内:对照溶液内标A峰的峰面积峰面积色谱内标法含量计算 样:供试品稀释体V对:对照品取样量W计算公式: 积×含量 内VW对×A内× =校正因子(f)AV对对×W内×平均重:供试品平W内:对照溶液内标V均重稀释体积平均重W×V样×A样×W内100%××=f含量样W内′×Spec.×A内′ ×VA内':供试溶液内标A对:对照溶液主峰———————————————————————————————————————峰面积的峰面积——————— V内':供试溶液内标W内:内标物质取样色谱内标法均匀度计算稀释体积量×含量样:供试品溶液主A 峰的峰面积计算公式样:供试品取样量W对:对照品稀释体V 积样:供试品稀释体V样V内×:供试品标示量A样×Spec.W100%××f含量=.×SpecVA内′×内′积 ;含量平均值系数A= |100-|A内':供试溶液内标峰面积系数S=含量标准差;判断值为A+1.80S V内':供试溶液内标———————————————————————————————————————稀释体积——————— Spec.:供试品标示量 光谱法(有参照)含量计算A样:供试品吸光度A对:对照品吸光度 计算公式:V样:供试品稀释体V对:对照品稀释体积积A样×V样×W平均重×W对×100%=含量样WSpec.××V对×A 对W平均重:供试品平Spec.:供试品标示量———————————————————————————————————————均重 W样:供试品取样量——————— W对:对照品取样量光谱法(有参照)均匀度计算×含量 计算公式: A样:供试品吸光度A对:对照品吸光度 A样×V样×W对×100%=含量V样:供试品稀释体V对:对照品稀释体 .SpecV对×A对×积积

电缆隧道接地电阻计算书

接地电阻计算书 一、垂直接地体接地电阻计算: 1.单根接地体接地电阻计算: 计算公式:() (1) 式中:R v ——垂直接地极的接地电阻(Ω); ——土壤电阻率(1000Ω?m); ——垂直接地极的长度(1.5m); d ——接地极的直径(0.03m)。 数值代入公式计算得:R v=529.88(Ω) 2.间距为s的多根垂直接地极并联后的接地电阻计算: 计算公式: (2) 式中:R N——n根垂直接地极的并联接地电阻(Ω); ρ ——土壤电阻率(1000Ω?m); ι——垂直接地极的长度(1.5m); s ——接地极的间距(5m); n ——接地极的总根数(920); d ——接地极的直径(0.03m); 数值代入公式计算得:R N=97.82(Ω) 二、水平接地体接地电阻计算: 计算公式:() 式中:R h——水平接地极的接地电阻(Ω); ρ ——土壤电阻率(1000Ω?m);

L ——水平接地极的总长度(4600m); h ——水平接地极的埋设深度(0.2m); d ——水平接地极的等效直径(0.02m); A——水平接地极的形状系数(1)。 数值代入公式计算得:R h=0.81(Ω) 三、综合接地电阻计算: 计算公式: (3) 式中:——综合接地电阻(Ω); R N——垂直接地极的并联接地电阻(Ω); R h——水平接地极的接地电阻(Ω); R Nh——垂直接地极和水平接地极之间的互阻(Ω),可根据公式(4)计算; (4) 式中:ρ ——土壤电阻率(1000Ω?m); ——垂直接地极的长度(1.5m); ——水平接地极的总长度(4600m); 数值代入公式计算得: R Nh=0.60(Ω) Rz=0.81(Ω) 石墨基柔性接地体的接地电阻可用降阻效果系数带入进行计算:最终接地电阻为: =0.7×0.81=0.567(Ω)。

常用的计算公式

一:常用布宽计算公式 D:素材外径d:铁芯外径W:布宽T:布厚N:圈数π:圆周率 (1):N=(D-d)/2T (2) : D=d+2TN (3) : d=D-2TN (4) : T= (D-d)/2TN (A) W=dπN+1.27(适用于4圈内) (B) W=dπN+1.1(适用于4圈内) (C) W=【d+(N-1)T】πN (最为精确) (D) W={ d+【NT(N-1)】/2}π (此公式T为2倍布厚) 例如:D=10mm d=8mm T=0.1mm π=3.1416 求W:布宽和N:圈数 则N=(D-d)/2T = (10-8)/(2*0.1)=10圈 **如果用公式(A)则w=dπN+1.27=8*3.1416*10+1.27=252.6mm(此公式未考虑布厚,圈数多时误差大) ** 公式(C)则W=【d+(N-1)T】πn=【8+(10-1)*0.1】*3.1416*10=279.6mm(此公式考虑布厚) 二:常用物料用量计算公式 D=元径d=先径π=圆周率 L=长度W=宽度 (A)SLIT(或varn)用量公式计算:单位:米W1=slit宽度W2=间距N=为缠绕次数(1.2倍含宽放) (1)全满=1.2*(D+ d)/2*π* LN/W1(重叠需减去重叠宽度) 例如:D=10mm d=2mm π=3.1416 L=1000mm W=7mm 假设为外车slit全满 则用公式(1)=1.2*(D+ d)/2*π* LN/W1=1.2*(10+2)/2*(3.1416*1000*1)/7=3231 mm =3.231m (2) 半满=1.2*(Dπ+ dπ+2W2) * LN/2(W1+W2 ) (如交叉需乘交叉道数) 例如:D=10mm d=2mm π=3.1416 L=1000mm W1=7mm W2=7mm假设为外车slit交叉两道 则用公式(1)= 1.2*(Dπ+ dπ+2W2) * LN/2(W1+W2 ) =1.2*(10*3.1416+2*3.1416+2*20)*1000*2/2 (7+20) =3453.2 mm =3.453m (B)布料用量= 拉布长度= 裁布块数 (C)碳纤含量= 碳纤用量/ (GLASS用量+碳纤用量)*100% 假设:一支钓竿的碳纤用量= 0.15㎡玻纤用量= 0.05㎡ (D)纸带用量计算公式:(米) 用量= 1.4*【(D+ d)/2*π*L】/ 间距(*1.4倍含宽放用量) 假设D=10mm d=2mm π=3.1416 L=1000mm 间距=2mm 则用量= 1.4*【(D+ d)/2*π*L】/ 间距=1.4*【(10+2)/2*3.1416*1000】/ 2 = 13194.7 mm=13.19 m

接地电阻测试仪测量方法详细介绍

目前,市场上存在的接地电阻测试仪有成百上千种,有进口的也有国产的,归纳起来,其测量方法只有三类:打地桩法、钳夹法、地桩与钳夹结合法。 一、打地桩法:地桩法可分为二线法、三线法和四线法 1.二线法:这是最初的测量方法:即将 一根线接在被测接地体上,另一根接辅助地极。此法的测量结果R=接地电阻+地桩电阻+引线及接触电阻,所以误差较大,现已一般不用。 2.三线法:这是二线法的改进型,即采用两个辅助地极,通过公式计算,在中间一根辅助地极在总长的0.62倍时,可基本消除由于地桩电阻引起的误差;现在这种方法仍然在用。但是此法仍不能消除由于被测接地体由于风化锈蚀引起接触电阻的误差。 3. 四线法:这是在三线法基础上的改进法。这种方法可以消除由于辅助地极接地电阻、测试引线及接触电阻引起的误差。 二、钳夹法:钳夹法分为单钳法和双钳法 1.双钳法:利用在变化磁场中的导体会产生感应电压的原理,用一个钳子通以变化的电流,从而产生交变的磁场,该磁场使得其内的导体产生一定的感应电压,用另一个钳子测量由此电压产生的感应电流,最后用欧姆定律计算出环路电路值。其适用条件一是要形成回路,二是另一端电阻可忽略不计。 2. 单钳法: 单钳法的实质是将双钳法的两个钳子做成一体,但如果发生机械损伤,邻近的两个钳子难免相互干扰,从而影响测量精度。仪器选择:目前市场支持此种方法的仪器有法国CA公司的CA6415钳式接地电阻测试仪,还有华谊仪表的MS2301钳式接地电阻测试仪等,我公司支持此种方法的仪器是ET3000双钳多功能接地电阻测试仪。 三、地桩与钳夹结合法:这种方法又叫选择电极法这种方法的测量原理同四线法,由于在利用欧姆定律计算结果时,其电流值由外置的电流钳测得,而不是象四线法

常用计算公式

常用公式 1、采出程度=累积产油量/动用地质储量(可采储量)*100% 阶段采出程度=(阶段内累计产油量/动用地质储量)*100% 2、采油(液)速度=核实年产油(液)量/动用地质储量(可采储量)*100% 3、剩余可采储量采油速度=当月平均日产油*当年日历天数/(当年可采储量-上年底累积产油量) 4、综合递减率:老井采取增产措施情况下的产量递减速度。 (1)、标定老井综合递减率: 标定老井综合递减率=[A*T-(B-C)]/(A*T)*100% 式中: A:上年末(12月)标定的日产油水平(t); T :当年1-n月的日历天数(d); A*T:老井当年1-n月的标定年累积产油量(t) B:当年1-n各月的年累积核实产油量(t) C:当年新井1-n月年累计产油量(t) (2)、同期老井综合递减率 同期老井综合递减率=(B - A)/B*100% A:上年老井在当年1-n月的累计产油量(t) B:上年老井在去年1-n月的累计产油量(t) (3)、对四季度老井综合递减率 对四季度老井综合递减率=(B/92-A/T)/(B/92)*100%

A:上年老井在当年1-n月的累计产油量(t) T:上年老井在当年1-n月的日历天数(d) B:上年老井在去年第四季度的产油量(t) (4)对12月老井综合递减率 对12月老井综合递减率=(B/31-A/T)/(B/31)*100% A:上年老井在当年1-n月的累计产油量(t) T:上年老井在当年1-n月的日历天数(d) B:上年老井在去年12月的产油量(t) 5、自然递减率:老井在未采取增产措施情况下的产量递减速度。(1)标定老井自然递减率 标定老井自然递减率=[A*T-(B-C-D)]/(A*T)*100% 式中: A 上年末(12月)标定的日产油水平(t); T 当年1-n月的日历天数(d); A*T 老井当年1-n月的标定年累积产油量(t) B 当年1-n各月的年累积核实产油量(t) C 当年新井1-n月年累计产油量(t) D 老井当年1-n月的年累积措施增产油量(t)。 (2)、同期老井自然递减率 同期老井自然递减率=(B -A- C)/B*100% A:上年老井在当年1-n月的累计产油量(t) B:上年老井在去年1-n月的累计产油量(t)

用摇表测接地电阻的方法和参数

一般使用的是摇表测量 接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一 你搞错了,你所说的这种ZC25-3型表是兆欧表,是不能用来测接地电阻的,只能测某线路或设备间的绝缘电阻或其对地的绝缘电阻,因为绝缘电阻越大越好,所以用兆欧(1000000欧),型号普遍都是为ZC25等 而接地电阻值是越小越好的,所以一般要求测能到0.01欧及以下,这种接地电阻仪型号一般为ZC29开头,上面一般有四个端子:C1、C2、P1、P2(还有一种三个端子,分别为E、P、C),其中C2和P2是连通的(带接地符号),直接接被测物接地极;然后P1端接20米线,拉直后将探针插入地下;C1端接40米线,拉直后要和接地极以及之前插入地下的探针在同一直线上,在这个位置插入第二根探针。

摇表的时候保持摇速120转/分,打好1x几,大转盘的一格就是几,转动大转盘使指针停在中间,大转盘上被箭头对准的数就是电阻值。 比如如打好1x0.1,大转盘上被箭头对准的数是2.2,电阻值就是为0.22欧。 摇表使用及接地电阻测试 收藏此信息打印该信息添加:佚名来源:未知 接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一。以ZC29B-2型摇表测试方法如下: (1)在E-E两个接线柱测量接地电阻时,用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。

施工常用计算公式大全

施工常用计算公式大全 各类钢材理论重量计算公式大全,欢迎收藏哦! 1. 钢板重量计算公式 公式:7.85 X长度(m)X宽度(m)X厚度(mm) 例:钢板6m(长)X 1.51m(宽)X 9.75mm厚) 计算:7.85X6X1.51 X9.75=693.43kg 2. 钢管重量计算公式 公式:(外径-壁厚)X壁厚mn X 0.02466 X长度m 例:钢管114mm外径)X 4mm壁厚)X 6m长度)计算:(114-4)X 4X0.02466X6=65.102kg 3. 圆钢重量计算公式 公式:直径mrr X直径mn X 0.00617 X长度m 例:圆钢①20mm直径)X 6m(长度) 计算:20X20X 0.00617X6=14.808kg 4. 方钢重量计算公式 公式:边宽(mm)X边宽(mm)X长度(m)X 0.00785 例:方钢50mm边宽)X 6m(长度) 计算:50X50X 6X0.00785=117.75(kg) 5. 扁钢重量计算公式 公式:边宽(mm)X厚度(mm)X长度(m)X 0.00785 例:扁钢50mm边宽)X 5.0mm(厚)X 6m(长度) 计算:50X5X6X0.00785=11.7.75(kg) 6. 六角钢重量计算公式 公式:对边直径X对边直径X长度(m)X 0.00068 例:六角钢50mm(直径)X 6m(长度) 计算:50X50X 6X0.0068=102(kg) 7. 螺纹钢重量计算公式 公式:直径mrr X直径mn X 0.00617 X长度m 例:螺纹钢①20mm直径)X 12m低度) 计算:20X20X 0.00617X12=29.616kg 8. 扁通重量计算公式 公式:(边长+边宽)X 2X厚X 0.00785 X长m 例:扁通100mm X 50mm< 5mm厚X 6m(长) 计算:(100+50)X 2X 5X 0.00785X 6=70.65kg 9. 方通重量计算公式 公式:边宽mm X4X厚X 0.00785 X长m 例:方通50mm< 5mm厚X 6m低) 计算:50X4X5X0.00785X 6=47.1kg 10. 等边角钢重量计算公式 公式:边宽mm X厚X 0.015 X长m粗算) 例:角钢50mm< 50mn X 5 厚X 6m(长) 计算:50X5X0.015X 6=22.5kg(表为22.62) 11. 不等边角钢重量计算公式

接地电阻降阻方法

接地电阻降阻方法(总8页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1 引言 变电站接地网对于电力系统的可靠运行和变电站工作人员的人身安全起着重要作用,其接地电阻、跨步电压与接触电压是变电站接地系统的重要技术指标,是衡量接地系统的有效性、安全性以及鉴定接地系统是否符合要求的重要参数。然而,有些变电站由于受地理条件的限制,不得不建在高土壤电阻率地区,导致这些变电站的接地电阻、跨步电压与接触电压的设计计算值偏高,无法满足现行标准的要求。近年来,随着电力系统短路容量的增加,由于接地不良引起的事故扩大问题屡有发生,因此接地问题越来越受到重视。在设计施工过程中如何合理确定接地装置的设计方案,降低接地电阻,这是变电站电气设计施工的重点之一。 2 变电站接地网电阻偏高的原因 变电站接地网电阻偏高的原因有多方面的,归纳起来有以下几个方面的原因。 2.1客观条件方面 一是土壤电阻率偏高。特别是山区,由于土壤电阻率偏高,对系统接地电阻影响较大;二是土壤干燥。干旱地区、沙卵石土层等相当干燥,而大地导电基本是靠离子导电,干燥的土壤电阻率偏高。 2.2勘探设计方面 在地处山区复杂地形地段的变电站,由于士壤不均匀,土壤电阻率变化较大,这就需要对每处地网进行认真的勘探、测量。根据地形、地势、地质情况,设计出切合实际的接地装置。如果不根据每处地网的地形、地势情况合理设计接地装置并计算其接地电阻,而是套用一些现成的图纸或典型设计,那么就从设计上就留下了先天性不足,造成地网接地电阻偏高。 2.3施工方面

对于不同地区变电站的接地来说,精心设计重要,但严格施工更重要。因为对于地形复杂,特别是位于山岩区的变电站,接地地网水平接地沟槽的开挖和垂直接地极的打入都十分困难,而接地工程又属于隐蔽工程,如施工过程中不能实行全过程的技术监督和必要的监理,就可能出现如下一些问题:一是不按图施工。尤其是在施工困难的山区,屡有发生水平接地体敷设长度不够,少打垂直接地极等;二是接地体埋深不够。山区、岩石地区,由于开挖困难,接地体的埋深往往不够,由于埋深不够会直接影响接地电阻值;三是回填土的问题,有关规范要求用细土回填,并分层夯实,在实际施工时往往很难做到,尤其是在岩石地段施工时,由于取土不便,往往采用开挖出的碎石及建筑垃圾回填,这样还会加快接地体的腐蚀速度;四是采用木炭或食盐降阻,这是最普遍的做法。采用木炭或食盐降阻,会在短期内收到降阻效果,但这是不稳定的。因为这些降阻剂会随雨水而流失,并加速接地体的腐蚀,缩短接地装置的使用寿命。 2.4运行方面 有些接地装置在建成初期是合格的,但经一定的运行周期后,接地电阻就会变大,除了前面介绍的由于施工时留下的隐患外,以下一些问题也值得注意:一是由于接地体的腐蚀,使接地体与周围土壤的接触电阻变大,特别足在山区酸性土壤中,接地体的腐蚀速度相当快,会造成一部分接地体脱离接地装置;二是在接地引下线与接地装置的连接部分因锈蚀而使电阻变大或形成开路:三是接地引下线接地极受外力破坏时误损坏等。 3 接地电阻降阻方法 为了达到降低接地网接地电阻之目的,首先需要从理论上研究降低接地电阻的方法。由公式(1)可以看出,降低接地电阻有以下两种途径,一是增大接地体几何尺寸,以增大接地体的电容;二是改善地质电学性质,减小地的电阻率和介电系数。 接地网是在接地系统的基础,由接地环(网)、接地极(体)和引下线组成,以往常有种误解,把接地环作为接地的主体,很少使用接地体,在接地要求不高或地质条件相当优越的情况下,接地环也能够起到接地的作用,但是通常的情况下,这是不可行的,接

圆柱形导体接地电阻的计算

电磁场仿真实验报告

2010级4班 吴开宇2010302540009

圆柱形导体接地电阻的计算 一、基本原理 一般来说,接地电阻由连接导线的电阻、连接导线和接地体的接触电阻、接地体本身的电阻和电流流入大地时所具有的电阻组成。由于前三项与最后一项相比很小,可忽略不计,所以接地电阻为电流从接地体流入地中时所具有的电阻,即:R=U/I(其中U为接地体对于无穷远的电压,I为流经接地体而注入大地的流散电流)。 二、相关数据 试求长为1m,直径0.05m,与大地垂直的、上圆柱表面与地面持平的管形接地体电阻(电阻率ρ1= 1.5×10-7Ω·m)。 我们无法建一个无穷大的土壤模型,而离开接地电极距离为接地电极尺寸10倍以内的土壤对接地电阻值有较大影响,因此一个长宽高分别为4m、4m、20m 的长方体土壤块基本满足我们的精度要求(电阻率ρ2=500Ω·m)。

圆柱形导体接地体接地电阻计算的物理模型 三、实验步骤 0、定义分析类型。 进入Main Menu>Preferences,在弹出的对框中选中“Electric”,点击“OK”(command: /COM, Electric)。 1、进入前处理菜单。 进入Main Menu>Preprocessor,点开菜单即可(command: /PREP7)。 2、建立一个圆柱体模型。 点击Modeling>Create>Volumes>Cylinder>Solid Cylinder。在弹出的对话框中,“WPX”和“WPY”分别为圆心在工作平面上的X和Y坐标,“Radius”为圆柱体的半径,“Depth”为圆柱体的深度;依次填入“0,0,0.025,-1”,点击“OK”。这样

各种临床常用的公式

各种临床常用的公式(心外) 各种临床常用的公式 1. 补钠计算器 男性可选用下列公式 应补钠总量(mmol)=[142-病人血Na+(mmol/L)]×体重(kg)×0.6 应补氯化钠总量(g)=[142-病人血Na+(mmol/L)] ×体重(kg) ×0.035 应补生理盐水(ml)=[142-病人血Na+(mmol/L)] ×体重(kg)×3.888 应补3%氯化钠=[142-病人血Na+(mmol/L)] ×体重(kg)×1.1666 应补5%氯化钠(ml) =[142-病人血Na+(mmol/L)] ×体重(kg)×0.7 女性可选用下列公式 应补钠总量(mmol) =[142-病人血Na+(mmol/L)] ×体重(kg)×0.5 应补氯化钠总量(g)=[142-病人血Na+(mmol/L)] ×体重(kg)×0.03 应补生理盐水(ml) =[142-病人血Na+(mmol/L)] ×体重(kg)×3.311 应补3%氯化钠(ml)=[142-病人血Na+(mmol/L)] ×体重(kg)×3.311 应补5%氯化钠(ml)=[142-病人血Na+(mmol/L)] ×体重(kg)×0.596 注:①上述式中142为正常血Na+值,以mmol/L计。 ②按公式求得的结果,一般可先总量的1/2~1/3,然后再根据临床情况及检验结果调整下一步治疗方案。 ③单位换算: 钠:mEq/L×2.299=mg/dlmg/dl×0.435=mEq/L mEq/L×1/化合价=mmol/L 氯化钠:g×17=mmol或mEq,(mmol)×0.0585=g/L 2.补液计算器 (1)根据血清钠判断脱水性质: 脱水性质血 Na+mmol/L 低渗性脱水 >130 等渗性脱水 130~150 高渗性脱水 >150 。 (2)根据血细胞比积判断输液量: 输液量=正常血容量×(正常红细胞比积/患者红细胞比积) (3)根据体表面积计算补液量: 休克早期800~1200ml/(m2?d); 体克晚期1000~1400ml(m2?d); 休克纠正后补生理需要量的50~70%。 (4)一般补液公式: 补液量=1/2累计损失量+当天额外损失量+每天正常需要量 2. 补铁计算器

常用计算公式

三极管的电流放大 b c I I β= 三极管的输入电阻 r ) (26) 1(300mA I mV E be β++= LC 振荡器的正弦波频率 LC f o π21= 运算放大器的反相电路输出电压 i F O U R R U 1 ? = 运算放大器的同相电路输出电压 i F O U R R U 1(1 + = 运算放大器的反相加法运算电路输出电压 )( 313212111 i F i F i F O U R R U R R U R R U ++?= 直流电机电枢电动势 n C n a pN E e a Φ=Φ= 60 注:p ——磁极对数; N ——电枢绕组总的有效导体根数 a ——电枢绕组并联支路对数 Φ——每极气隙磁通 n ——电机转速 电机转矩 a T a I C I a pN T Φ=Φ= π2 n P T M 55 .9= 注:P M ——电机的功率(W ) 三相交流电机同步转速 p f n 1 160 .9= 三相交流电机转差率

111)(/n n n n n s ?=Δ= 三相交流电机输入电功率 1111cos 3?I U P = 同步发电机输出频率 60 Zn f = 步进电机步距角 R R t s mKZ NZ N ° =°= = 360360θθ 步进电机转速 R NZ f n 60= 常用物理量 摩尔气体常数: )/()00026.031441.8(molK J R ±= 玻耳兹曼常数: K J k /10)000044.0380662.1(23?×±=引力常数: 2211/10)0041.06720.6(kg Nm G ?×±=标准重力加速度: 2/80665.9s m g m =阿伏加德罗常数: 12310)000031.0022045.6(?×±=mol N A 普朗克常数: Js h 3410)000036.0626176.6(?×±=电磁波在真空中 s m c /1099792458.28×= 的传播速度 真空介电常数: m F /10854187818.8120?×=ε真空磁通率: m H m H /105663706144.12/104770??×=×=πμ元电荷: C e 1910)0000046.06021892.1(?×±=电子质量: kg m e 3010)0000047.09109534.0(?×±=质子质量: kg m p 2710)0000086.06726485.1(?×±=

接地电阻计算要求

标准接地电阻规范要求 一、规范值; 1、独立的防雷保护接地电阻应小于等于(≤)10欧; 2、独立的安全保护接地电阻应小于等于(≤)4欧; 3、独立的交流工作接地电阻应小于等于(≤)4欧; 4、独立的直流工作接地电阻应小于等于(≤)4欧; 5、防静电接地电阻一般要求小于等于(≤)100欧。 6、共用接地体(联合接地)应不大于接地电阻1欧。 【避雷针的地线属于防雷保护接地,如果避雷针接地电阻和防静电接地电阻都是按要求设置的,那么就可以将防静电设备的地线与避雷针地线接在一起,因为避雷针的接地电阻比静电接地电阻小10倍,因此发生雷电事故时,大部分雷电将从避雷针地泄放,经过防静电地的电流则可以忽略不计。】 二、接地分三种 1、保护接地:电气设备的金属外壳,混凝土、电杆等,由于绝缘损坏有可能带电,为了防止这种情况危及人身安全而设的接地。1Ω以下。 2、防静电接地:防止静电危险影响而将易燃油、天然气贮藏罐和管道、电子设备等的接地。 3、防雷接地:为了将雷电引入地下,将防雷设备(避雷针等)的接地端与大地相连,以消除雷电过电压对电气设备、人身财产的危害的接地,也称过电压保护接地。

注意的是.三种接地要分离设置. 三、接地线的标识: 区分线别接地体规定 保护接地线黄绿双色线三种接地体间的距离必须大于20米 防静电接地线绿色线 防雷接地线镀锌圆钢 四、接地要求: 交流电气装置的接地应符合下列规定: 1 、当配电变压器高压侧工作于小电阻接地系统时,保护接地网的接地电阻应符合下式要求: R≤2000/I (12.4. 1-1) 式中 R――考虑到季节变化的最大接地电阻(Ω); I――计算用的流经接地网的人地短路电流(A)。 2、当配电变压器高压侧工作于不接地系统时,电气装置的接地电阻应符合下列要求: 1)高压与低压电气装置共用的接地网的接地电阻应符合下式要求,且不宜超过4Ω: R≤120/I (12.4.1-2) 2)仅用于高压电气装置的接地网的接地电阻应符合下 式要求,且不宜超过100,: 尺≤250/I (12.4.1-3) 式中 R――考虑到季节变化的最大接地电阻(Ω);

常用的计算公式大全

齐全的计算公式 在实际生活中我们往往会遇到各种各样的计算,为此特向大家提供各种换算公式,以供参考。 1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2) 1平方米(m2)=10.764平方英尺(ft2) 1平方英寸(in2)=6.452平方厘米(cm2) 1公顷(ha)=10000平方米(m2)=2.471英亩(acre) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2 ) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2 ) 1平方英尺(ft2)=0.093平方米(m2) 1平方米(m2)=10.764平方英尺(ft2) 1平方码(yd2)=0.8361平方米(m2) 1平方英里(mile2)=2.590平方公里(km2) 体积换算 1美吉耳(gi)=0.118升(1)1美品脱(pt)=0.473升(1) 1美夸脱(qt)=0.946升(1)1美加仑(gal)=3.785升(1) 1桶(bbl)=0.159立方米(m3)=42美加仑(gal)1英亩·英尺=1234(注本文介绍的生活常用资料,销售小技巧,一些小方法的消防安全法律知识所

立方米(m3 ) 1立方英寸(in3)=16.3871立方厘米(cm3)1英加仑(gal)=4.546升(1) 10亿立方英尺(bcf)=2831.7万立方米(m3) 1万亿立方英尺(tcf)=283.17亿立方米(m3) 1百万立方英尺(MMcf)=2.8317万立方米(m3) 1千立方英尺(mcf)=28.317立方米(m3) 1立方英尺(ft3)=0.0283立方米(m3)=28.317升(liter)1立方米(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl)长度换算 1千米(km)=0.621英里(mile)1米(m)=3.281英尺(ft)=1.094码(yd) 1厘米(cm)=0.394英寸(in)1英寸(in)=2.54厘米(cm) 1海里(n mile)=1.852千米(km)1英寻(fm)=1.829(m) 1码(yd)=3英尺(ft)1杆(rad)=16.5英尺(ft) 1英里(mile)=1.609千米(km)1英尺(ft)=12英寸(in) 1英里(mile)=5280英尺(ft)1海里(n mile)=1.1516英里(mile)质量换算 1长吨(long ton)=1.016吨(t)1千克(kg)=2.205磅(lb) 1磅(lb)=0.454千克(kg)[常衡] 1盎司(oz)=28.350克(g) 1短吨(sh.ton)=0.907吨(t)=2000磅(lb) (注本文介绍的生活常用资料,销售小技巧,一些小方法的消防安全法律知识所

基于矩量法的接地网接地电阻计算

收稿日期 :2008205228 基金项目:国家自然科学基金(60673084);湖南省自然科学基金(06JJ3075);湖南省科技计划(05FJ3008);湖南省电力科研基金 (20061001);福建省电力科研基金([2007]372235). 作者简介:杨易 (1982-),男,硕士研究生,主要从事集成电路测试与诊断、接地系统数值计算与仿真研究.通讯作者:彭敏放,女,博士,教授;E 2mail:peng m infang@hnu .cn 第23卷第2期 2008年6月 电力科学与技术学报 JO URNAL O F E I ECTR I C P OW ER SC I ENCE AN D TECHN OLO G Y Vol .23No .2Jun .2008  基于矩量法的接地网接地电阻计算 杨易 1 ,彭敏放1 ,王嘉家1 ,黄红荔 2 (1.湖南大学电气与信息工程学院,湖南长沙 410082; 2.福建电力职业技术学院,福建泉州 362000) 摘 要:矩量法是一种适用于任意结构接地网接地参数精确计算的方法,但是在应用矩量法计算接地网接地电阻 及其他参数时,特别是在计算非均匀土壤接地参数时,由于需要使用格林公式进行互阻计算,往往计算量十分巨大,不便于使用计算机进行软件实现.基于此提出一种新的优化算法,将矩量法与MAT LAB 算法结合,从而节省了计算时间,并提高了计算精度,适用于多层土壤和不规则接地网参数的数值计算. 关 键 词:接地电阻;矩量法;格林公式;接地网 中图分类号:T M 862 文献标识码:A 文章编号:167329140(2008)022******* An a lgor ith m for ground i n g resist ance ba sed on the Ga lerk i n ’s m om en t m ethod Y ANG Yi 2m in 1 ,PE NG M in 2fang 1 ,WANG J ia 2jia 1 ,HUANG Hong 2li 2 (1.College of Electrical and I nf or mati on Engineering,Hunan University,Changsha 410082,China; 2.Fujian Electrical Technol ogy College,Quanzhou 362000,China ) Abstract:Galerkin πs moment method is used t o calculate accurately gr ounding para meter of gr ounding syste m s with any for m in non 2homogeneous s oil .However,when app lying such method t o the calculati on of gr ounding grids resistance or other para meters,es pecially in non 2homogeneous s oil,the p r ocess ti m e is enor mous and theref ore,there is great difficult t o calculate the para meter using computer .I n this paper,we p resent a ne w app r oach which makes it p ractical t o calculate the gr ounding grid resistance by synchr o 2nizing the t w o app r oaching bet w een moment method and algorith m ofMAT LAB.So making use of this ap 2p r oach greatly enhance the p recisi on of calculati on and s peed in non 2homogeneous s oil .Key words:gr ounding resistance;momentMethod;Green Functi on;gr ounding grid

相关文档