文档库 最新最全的文档下载
当前位置:文档库 › 金属固态相变原理.(DOC)

金属固态相变原理.(DOC)

金属固态相变原理.(DOC)
金属固态相变原理.(DOC)

第2篇热处理原理及工艺

第7章钢的热处理

教学目标:

搞清奥氏体、珠光体、贝氏体、马氏体等基本概念;

掌握共析分解、马氏体相变、贝氏体相变基本知识;

掌握相变产物的形貌和物理本质。

第8章金属固态相变原理

§8 钢的热处理

一、热处理的作用

机床、汽车、摩托车、火车、矿山、石油、化工、航空、航天等各行各业用的大量零部件需要通过热处理工艺改善其性能。

拒初步统计,在机床制造中,约60%~70%的零件要经过热处理;在汽车、拖拉机制造中,需要热处理的零件多达70%~80%,而工模具及滚动轴承,则要100%进行热处理。

总之,凡重要的零件都必须进行适当的热处理才能投入使用。

热处理的定义:将固态金属或合金在一定介质中加热、保温和冷却,以改变材料整体或表面组织,从而获得所需组织和性能的工艺过程。

热处理三大要素:加热、保温和冷却

通过以上三个环节,材料的内部组织发生了变化,因而性能也发生变化。

例如:碳素工具钢T8在市场购回的是球化退火的材料其硬度仅为20HRC,作为工具需经淬火并低温回火使硬度提高到60~63HRC,这是因为内部组织由淬火之前的粒状珠光体转变为淬火+低温回火的回火马氏体。

同一种材料,热处理工艺不一样其性能差别很大,导致性能差别如此大的原因是不同的热处理后内部组织截然不同。

表8-1 45号钢经不同热处理后的性能(试样直径15mm)

热处理工艺的选择要根据材料的成分来确定。材料内部组织的变化依赖于材料热处理和其他热加工工艺,材料性能的变化又取决于材料的内部组织变化。

所以,材料成分-加工工艺-组织结构-材料性能这四者相互依成的关系贯穿在材料制备的全过程之中。

我们的任务就是要了解和掌握其中的规律性。

二、热处理的基本要素

如上所述,热处理工艺中有三大基本要素:加热、保温、冷却。这三大基本要素决定了材料热处理后的组织和性能。

1、加热

按加热温度的高低,加热分为两种:一种是在临界点A1以下加热,此时一般不发生相变;另一种是在A1以上加热,目的是为了获得均匀的奥氏体组织,这一过程称为奥氏体化。

2、保温

保温是热处理的中间工序,其目的是既要保证工件“烧透”,又要防止工件脱碳、氧化等。

保温时间和介质的选择与工件的尺寸和材质有直接的关系。一般工件越大,导热性越差,保温时间就越长。

3、冷却

冷却是热处理的最终工序,也是热处理过程中最重要的工序。钢在不同冷却速度下可以转变为不同的组织形态。

图8-1 热处理工艺曲线示意图

三、热处理的分类

1、根据加热、冷却方式的不同及组织、性能变化特点的不同,热处理可分为下列几类:

普通热处理:退火、正火、淬火和回火。即所谓热处理的“四把火”。

表面热处理:感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、激光表面淬火和涂覆、渗碳、氮化和碳氮共渗等。

其它热处理:可控气氛热处理、真空热处理和形变热处理等。

2、按照热处理在零件生产过程中的工序和作用不同, 热处理工艺还可分为:

预备热处理:零件加工过程中的一道中间工序(也称为中间热处理),其目的是改善锻、铸毛坯件组织、消除应力,为后续的机加工或进一步的热处理作组织上的准备。

最终热处理:零件加工的最终工序。其目的是使经过成型工艺达到形状和尺寸要求的零件,通过热处理使零件具备最终的使用性能。

是预备还是最终热处理在材料的生产过程中是相对的。

四、钢的临界转变温度

根据铁碳相图,共析钢缓慢加热到超过A1温度时,全部转变为奥氏体;亚共析钢和过共析钢必须加热到A3和A cm以上才能获得单相奥氏体。

在实际热处理加热条件下,加热速度不可能是缓慢的,因此,相变是在不平衡条件下进行的;其次,再考虑到过冷或过热现象的存在,相变点与相图中的相变温度有一些差异。具体如下:

加热时相变温度偏向高温,冷却时偏向低温,这种现象称为滞后( 热滞或冷滞)。

在热处理工艺实施过程中,加热或冷却速度越快,则滞后现象越严重。

通常把加热时的实际临界温度标以右下标字母“c”表示,如Ac1、Ac3、Accm ;

而把冷却时的实际临界温度标以右下标字母“r” 表示,如Ar1、Ar3、Arcm 等。

临界温度:

平衡时:

A1、A3、Acm

加热时:

Ac1、Ac3、Accm

冷却时:

Ar1、Ar3、Arcm

图8-2 加热和冷却速度对钢的临界温度的影响

§8.1 钢在加热时的转变

一般而言,钢的热处理多数需要先加热得到奥氏体(奥氏体化、A 化),然后以不同速度冷却,使奥氏体转变为不同的组织,使钢具有不同性能。

加热时形成的奥氏体的质量(成分均匀性及晶粒大小等),对冷却转变后的组织、性能有极大的影响(组织遗传)。

因此,掌握热处理规律,首先要研究钢在加热时的变化—即奥氏体化过程。

§8.1.1 奥氏体的形成过程

一、共析钢奥氏体的形成

共析碳钢加热前为珠光体组织,一般为铁素体与渗碳体交替排列的层片状组织,加热过程中珠光体转变为奥氏体过程可分为四步进行:奥氏体形核、晶核的长大、未溶碳化物(Fe3C) 溶解、奥氏体成分均匀化。

①奥氏体晶核的形成

由Fe-Fe3C相图知,在P 转变为A 过程中,原F 的bcc晶格改组为A 的fcc晶格,原渗碳体的复杂斜方晶格转变为fcc晶格。

所以,奥氏体的形成过程就是晶格的改组和Fe、C原子的扩散过程。常将这一过程和奥氏体冷却过程的转变称为“相变重结晶”。

基于能量与成分条件,奥氏体晶核在珠光体中的铁素体与渗碳体两相交界处产生,两相交界面越多,奥氏体晶核越多。

②奥氏体晶核的长大

奥氏体晶核形成后,它的一侧与渗碳体相接,另一侧与铁素体相接。随着铁素体的转变(铁素体区域的缩小),以及渗碳体的溶解(渗碳体区域缩小),奥氏体不断向其两侧的原铁素体区域及渗碳体区域扩展长大,直至铁素体和渗碳体完全消失,奥氏体彼此相遇,形成一个个的奥氏体晶粒。

奥氏体形成时碳浓度分布情况——

图8-3 奥氏体形成时碳浓度分布示意图

③剩余渗碳体的溶解

由于铁素体转变为奥氏体速度远高于渗碳体的溶解速度,在铁素体完全转变之后尚有不少未溶解的“剩余渗碳体”存在,还需一定时间保温,让渗碳体全部溶解并转变为奥氏体。

④奥氏体成分的均匀化

即使渗碳体全部溶解,奥氏体内的成分仍不均匀,在原铁素体区域形成的奥氏体含碳量偏低,在原渗碳体区域形成的奥氏体含碳量偏高,还需保温足够时间,让碳原子充分扩散,奥氏体成分才可能趋于均匀。

下图表示共析钢奥氏体形成的四个基本阶段:奥氏体晶核的形成;奥氏体晶核的长大;剩余渗碳体的溶解;奥氏体成分的均匀化。

图8-4 奥氏体形成的四个基本阶段

上述分析表明,珠光体转变为奥氏体并使奥氏体成分均匀必须有两个充要条件:一是温度条件,要在Ac1以上加热;二是时间条件,要求在Ac1以上温度保持足够时间。

在一定加热速度条件下,超过Ac1的温度越高,奥氏体的形成与成分均匀化需要的时间愈短;在一定的温度(高于Ac1)条件下,保温时间越长,奥氏体成分越均匀。

二、非共析钢奥氏体的形成

亚共析钢与过共析钢加热转变为A过程与共析钢转变过程是一样的,即在Ac1温度以上加热无论亚共析钢或是过共析钢中的P均要转变为A。不同的是亚共析钢的先析出F的转变与过共析钢的Fe3CⅡ的溶解。

先析出F的完全转变要在Ac3以上,Fe3CⅡ的完全溶解要在温度Accm 以上。即亚共析钢加热后组织全为奥氏体需在Ac3以上、过共析钢要在Accm以上,即表象点必须处在A的单相区。

图8-5 非共析钢奥氏体的形成

§8.1.1 奥氏体的形成过程

如果亚共析钢仅在Ac1~Ac3温度之间加热,无论加热时间多长,组织中仍为铁素体与奥氏体共存;

对过共析钢在Ac1~Accm温度之间加热,组织中应为二次渗碳体与奥氏体共存;

在这种情况下,经加热保温在随后冷却过程中,组织转变也仅是奥氏体向其它组织的转变,其中的铁素体或二次渗碳体在冷却过程中不会发生转变。

总结奥氏体化过程:即 Fe 、C 原子扩散和晶格改组的过程---

共析钢:加热到Ac 1 以上时,P →A 。

共析钢A 化过程:形核、长大、Fe 3C 完全溶解、C 的均匀。 亚(过)析钢的A 化:P→A 后,先共析F 或Fe 3C Ⅱ溶解。

图 8-6 共析钢的奥氏体形成过程示意图

§8.1.2 影响奥氏体转变速度的因素

奥氏体的形成是通过形核与长大过程进行的,整个过程受原子扩散所控制,因此,凡是影响扩散、形核与长大的一切因素,都会影响奥氏体的转变速度。 一、加热温度和保温时间

加热温度越高,原子扩散速度越大,奥氏体化越快;保温时间越长,奥氏体化所需加热温度相对可以降低。详见下图——

图 8-7 共析钢的奥氏体化曲线(原始状态:875℃退火

)

A

形成过程中孕育期的

概念:

由于形成奥氏体需要原子的扩散,而扩散需要一定的时间,故P 在保温一段时间后才开始形成A 晶核,这段时间称为“孕育期”。

二、加热速度

热速度V 越大,则孕育期越短,A 化开始和终了温度越高,所需时间越短;加热速度V 越小,则孕育期越长,A 化开始和终了温度越低,所需时间越长。

三、原始组织

原始组织中Fe3C 为片状时,Fe3C 片间距越小,相界面积越大,奥氏体形核速度越大此时奥氏体中的C 浓度梯度也越大,扩散距离短,奥氏体长大速度越快。

四、钢的碳含量

C%↑→界面多→核心多→转变快。

五、合金元素

Co 、Ni 、Cu :增加C 扩散速度,加快A 化过程;

Cr 、Mo 、V 、Ti 等:与C 亲和力大,形成难溶化合物, 显著降低C 扩散速度,减慢奥氏体化过程; Si 、Al 、Mn 等:不影响奥氏体化过程。

由于合金元素的扩散速度比碳慢得多,所以一般合金钢的热处理加热温度一般较高,保温时间更长。

图 8-8 加热速度对奥氏体转变的影响(示意图)

图 8-9 渗碳体片间距d 0对长大速度的影响

§8.1.3 奥氏体的晶粒度及其影响因素

晶粒度:表征晶体内晶粒大小的量度,通常用长度,面积,体积或晶粒度级别表示。

一般根据标准晶粒度等级图确定钢的奥氏体晶粒大小。

标准晶粒度等级分为8级: 1 -4级为粗晶粒度,5 -8级为细晶粒度,超过8级的为超细晶粒小于1级的为超粗晶粒。

图 8-10 标准晶粒等级(放大100倍)

奥氏体晶粒度N 与晶粒数量n 的关系:

式中:n -放大100倍时,每平方英寸(6.45cm 2)视场中观察 到的平均晶粒数。

每mm 2面积平均晶粒数: 一、奥氏体的晶粒度

钢在加热后形成的奥氏体组织,特别是奥氏体晶粒大小对冷却转变后钢的组织和性能有重要影响。一般来说,奥氏体晶粒越细,钢热处理后的强度越高,塑性越好,冲击韧性越高。

1

2-=N n 3

02+=N n

衡量A晶粒大小有三种晶粒度:起始晶粒度;本质晶粒度;实际晶粒度。

⑴起始晶粒度

起始晶粒度定义:钢在临界温度以上A形成刚结束,其晶粒边界刚刚相互接触时的晶粒大小。

起始晶粒度与形核率N和长大速度G有关。增大N,降低G,可细化A 起始晶粒;反之,粗化起始晶粒。

例如:增大加热速度,则A转变温度升高,形核率增加,A起始晶粒细化。

⑵本质晶粒度

本质晶粒度定义:表征钢在加热时奥氏体晶粒长大的倾向。一般采用标准试验方法(YB27-64)测定:即钢加热到930℃±10℃、保温8小时、冷却后测得的晶粒度叫本质晶粒度。

如果测得的晶粒细小,则该钢称为本质细晶粒钢。这种钢的奥氏体晶粒随温度升高到某一温度时,才迅速长大。

如果测得的晶粒粗大,则该钢称为本质粗晶粒钢。这种钢的奥氏体晶粒随温度的升高而且迅速长大。

图8-11本质细晶粒和本质粗晶粒示意图

⑶实际晶粒度

实际晶粒度定义:某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢冷却后的组织和性能。

实际晶粒度尺寸一般大于起始晶粒尺寸,取决于加热温度和保温时间。

二、影响奥氏体晶粒度的因素

奥氏体晶粒长大,实质为晶界迁移,而晶界迁移的实质就是原子在晶界附件的扩散过程,故凡影响晶界原子迁移的因素均影响奥氏体晶粒的长大。

⑴加热温度和保温时间

随加热温度升高,原子迁移能力增加,晶粒将逐渐长大。温度越高,或在一定温度下保温时间越长,奥氏体晶粒越粗大。

⑵加热速度

加热速度越大,过热度越大,A形成的实际温度越高,形核率较大,A起始晶粒度越细小。但是,当加热温度高到一定程度,保温时A晶粒长大速度过快,反而易获得粗晶粒组织。因此,快速加热时,保温时间不能过长,否则晶粒反而更加粗大。

生产上采用“短时快速加热工艺”来获得超细化的晶粒。

⑵钢的化学成分

碳含量:在一定C 含量范围内,随着A 中C含量的增加,由于C 在A中的扩散速度及Fe的自扩散速度增加,晶粒的长大倾向增加;当C 含量超过一定量后,C 能以未溶碳化物的形式存在,A晶粒长大受第二相的阻碍作用,反而使A晶粒长大倾向减小。

合金元素:Ti 、V 、Nb 、Al 、Zr(锆)等元素,与C形成碳化物、氧化物和氮化物弥散分布在晶界上,能阻碍晶粒长大,有利于得到本质细晶粒钢;Mn 和P,促进晶粒长大,含有这类元素的钢一般为本质粗晶粒钢。

§8.2 钢在冷却时的转变

研究奥氏体冷却转变常用——

等温转变曲线:即TTT曲线(过冷奥氏体在一定温度下随时间变化,组织转变情况)

连续冷却转变曲线:即CCT曲线(过冷奥氏体依冷却速度变化,组织转变情况)。

TTT曲线是选择热处理冷却制度的参考;

CCT 曲线更确切反映热处理冷却状况,作为选择热处理冷却制度的依据。

图8-12 热处理工艺曲线示意图

变变A

开始转

终了P →

B

B 下

B 上A →M

A

§8.2.1 过冷奥氏体的等温转变

当温度在A 1以上时,奥氏体是稳定的,不发生转变。当温度降到A 1

以下后,奥氏体即处于过冷状态,这种奥氏体叫过冷奥氏体(过冷A )。 过冷A 是不稳定的,会转变为其它的组织。 钢在冷却时的转变,实质上是过冷A 的转变,而过冷A 的转变也是一个点阵重构过程,属于相变重结晶。

一、共析钢过冷奥氏体的等温转变 ⑴等温转变曲线 ( TTT 曲线或 C 曲线 )

过冷A 的等温转变:

过冷A: T < A1 时,A 不稳定。 A 等温转变曲线(TTT 或C 曲线) 高温转变:A1~550℃ 过冷A →P 型组织 中温转变:550℃~MS 过冷A →贝氏体(B) 低温转变:MS ~Mf 过冷A →马氏体(M)

等温转变曲线:过冷A 系曲线,可以通过体积膨胀法、磁性法和金相法测定。

孕育期:过冷A 的稳定性大小。C 曲线中,鼻尖处(550℃)的孕育期最短,处于该温度的

图 8-13 共析钢过冷奥氏体等温转变曲线

图 8-14 共析钢的C 曲线

过冷A稳定性最小,孕育期最短。

等温转变包含两个区:分别是高温转变区(A1-550℃的珠光体转变区)和中温转变区(550℃-M S的贝氏体转变区)。M S 温度以下的低温区为马氏体转变,不属于等温转变。

⑵高温转变( P转变)

转变温度:A1-550℃

转变产物:珠光体型组织,是铁素体和渗碳体的机械混合物,渗碳体呈层片状分布在铁素体基体上,转变温度越低,层间距越小。按层间距大小,珠光体型组织分为:珠光体(P)----层间距较大,索氏体(S)----层间距居中,屈氏体(T)----层间距最小

它们都是珠光体类型的组织,只是层间距不同而已,P型组织—F+层片状Fe3C,见下图---

珠光体P,3800X 索氏体S,8000X

图8-15

屈氏体T,8000X

表 8-2 过冷A 高温转变产物的形成温度和性能

能分辩片层的放

形成温度(

>2000×

35~40HRC

600~550

T

屈氏体

>1000×25~35HRC 650~600S 索氏体<500×170~200HB A1~650P 珠光体大倍数

硬度℃)符号名称过冷A 高温转变产物的形成温度和性能

实际上,这三种组织都是珠光体,其差别只是珠光体组织的“片间距”大小,形成温度越低,片间距越小。这个“片间距”越小,组织的硬度越高。屈氏体的硬度高于索氏体,远高于粗珠光体。

奥氏体转变为珠光体的过程也是形核和长大的过程

当奥氏体过冷到A1以下时,首先在奥氏体晶界上产生渗碳体晶核,通过原子扩散,渗碳体依靠其周围奥氏体不断地供应碳原子而长大。

同时,由于渗碳体周围奥氏体含碳量不断降低,从而为铁素体形核创造了条件,使这部分奥氏体转变为铁素体。由于铁素体溶碳能力低 (<0.0218%C),所以又将过剩的碳排挤到相邻的奥氏体中,使相邻奥氏体含碳量增高,这又为产生新的渗碳体创造了条件。如此反复进行,奥氏体最终全部转变为铁素体和渗碳体片层相间的珠光体组织。

图 8-16 珠光体转变过程示意图

转变机制:奥氏体(fcc)转变为珠光体 (F 为bcc ,Fe 3C 为复杂斜方)的过程是形核和长大的过程,期间伴随着晶格的改组和 Fe 、C 的扩散,属于扩散型转变。

转变组织的性能:由于P 的塑性主要来自F ,而Fe 3C 阻止滑移的进行,故P 的片间距越小,则强度、硬度和韧性提高。与细晶强化的原理类似。

⑶中温转变(B 转变): C 原子扩散, Fe 原子不扩散

转变温度: 550℃~Ms(240℃)

转变产物:贝氏体(B),渗碳体分布在碳过饱和的铁素体基体上的两相混合物 。

上贝氏体(B 上):550℃ ~350℃,呈羽毛状,小片状的渗碳体分布在成排的铁素体片之间。强度低、韧性差,机械性能较差。

下贝氏体(B 下):350℃ ~Ms :在光学显微镜下为黑色针状,在电子显微镜下可看到在铁素体针内沿一定方向分布着细小的碳化物( Fe 2.4C )颗粒。韧性高,综合机械性能好。

1300电子显微照片5000

光学显微照片1300×电子显微照片5000×45钢,上B+下B ,×

400

45钢, 上B+下B ,X 400 光学显微照片1300X 电子显微照片5000X 图 8-17 上贝氏体显微照片

F 针内定向分布着细小Fe 2.4

C 颗粒电子显微照片12000×T8钢,下B ,黑色针状光学显微照片×

400

T8钢,下B ,黑色针状光学显微照片400X F 针内定向分布着细小Fe2.4C 颗粒 电子显微照片 12000× 图 8-18 下贝氏体显微照片

上贝氏体光学显微照片 500X 上贝氏体电子显微照片 5000X

下贝氏体光学显微照片 500X 下贝氏体电子显微照片 12000X

图 8-19 上下贝氏体显微照片

两种贝氏体性能比较

B 上:铁素体片较宽,强度较低;同时渗碳体分布在铁素体片之间,容易引起脆断,因此强度和韧性都较差。

B下:铁素体针细小,无方向性,碳的过饱和度大,位错密度高,且碳化物均匀分布在铁素体之上、弥散度大。所以硬度高,韧性好,具有较好的综合机械性能。

转变过程:

在中温区发生奥氏体转变时,由于温度较低,铁原子扩散困难,只能以共格切变的方式来完成原子的迁移,而碳原子尙有一定的扩散能力,可以通过短程扩散来完成原子迁移。

所以贝氏体转变属于半扩散型相变。在贝氏体转变中,存在着两个过程,一是铁原子的共格切变,二是碳原子的短程扩散。

按照转变温度的不同,上、下贝氏体的形成过程也有差异---

当温度较高( 550℃-350℃ ) 时:

条状或片状铁素体从奥氏体晶界开始向晶内以同样方向平行生长。随着铁素体的伸长和变宽,其中的碳原子向条间的奥氏体中富集,最后在铁素体条之间析出渗碳体短棒,奥氏体消失,形成上贝氏体。

当温度较低( 350℃-Ms ) 时:

碳原子扩散能力低,铁素体在奥氏体的晶界或晶内的某些晶面上长成针状。尽管最初形成的铁素体固溶碳原子较多,但碳原子不能长程迁移,因而不能逾越铁素体片的范围,只能在铁素体内一定的晶面上以断续碳化物小片的形式析出,从而形成下贝氏体。

⑷低温转变(M转变)

温度低于Ms点时,发生马氏体转变,是一个连续冷却转变过程,后续专门讨论。

材料成型原理考试试卷B-答案

2.内应力按其产生的原因可分为 热应力 、 相变应力 和 机械应力 三种。。 11、塑性变形时不产生硬化的材料叫做 理想刚塑性材料 。 12、韧性金属材料屈服时, 密席斯屈服 准则较符合实际的。 13、硫元素的存在使得碳钢易于产生 热脆 。 14、应力状态中的 压 应力,能充分发挥材料的塑性。 15、平面应变时,其平均正应力 m 等于 中间主应力 2。 16、钢材中磷使钢的强度、硬度提高,塑性、韧性 降低 。 17、材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫 超塑性 。 18、材料经过连续两次拉伸变形,第一次的真实应变为 1=0.1,第二次的真实应变为 2=0.25,则总的真实应变 =0.35。 19、固体材料在外力作用下发生永久变形而不破坏其完整性的能力叫材料的 塑性 。 1、液态金属的流动性越强,其充型能力越好。 ( √ ) 2、金属结晶过程中,过冷度越大,则形核率越高。 ( √ ) 3、实际液态金属(合金)凝固过程中的形核方式多为异质形核。 ( √ ) 4、根据熔渣的分子理论,B>1时氧化物渣被称为碱性渣。 ( √ ) 5、根据熔渣的离子理论,B2>0时氧化物渣被称为碱性渣。 (√ ) 6、合金元素使钢的塑性增加,变形拉力下降。 ( × ) 7. 合金钢中的白点现象是由于夹杂引起的。 ( × ) 8 . 结构超塑性的力学特性为m k S 'ε=,对于超塑性金属m =0.02-0.2。 ( × ) 9. 影响超塑性的主要因素是变形速度、变形温度和组织结构。 ( √ ) 10.屈雷斯加准则与密席斯准则在平面应变上,两个准则是一致的。 ( × ) 11.变形速度对摩擦系数没有影响。 ( × ) 12. 静水压力的增加,有助于提高材料的塑性。 ( √ ) 13. 碳钢中冷脆性的产生主要是由于硫元素的存在所致。 ( × ) 14. 塑性是材料所具有的一种本质属性。 ( √ ) 15. 在塑料变形时要产生硬化的材料叫变形硬化材料。 ( √ ) 16. 塑性变形体内各点的最大正应力的轨迹线叫滑移线。 ( √ ) 17. 二硫化钼、石墨、矿物油都是液体润滑剂。 ( × ) 18.碳钢中碳含量越高,碳钢的塑性越差。 ( √ ) 3. 简述提高金属塑性的主要途径。 答:一、提高材料的成分和组织的均匀性 二、合理选择变形温度和变形速度 三、选择三向受压较强的变形方式 四、减少变形的不均匀性

《合金固态相变》教学大纲

《合金固态相变》教学大纲 课程编号:2080113 学时:40 (实验学时另计,8学时) 学分:2.5 一、课程基本情况 1.课程名称:合金固态相变 2.课程性质:必修课程 3.适用年级专业:四年制材料科学与工程、材料成型与控制工程专业,三年级本科生 4.先修课程:材料科学基础、金属学、物理化学 5.教材:“合金固态相变”,赵乃勤主编,中南大学出版社,2008 6.开课单位:材料科学与工程学院 二、课程性质目的、任务和基本要求 1.性质目的和任务 固态相变是材料科学与工程专业的主要专业课之一,它是以物理、数学、物理化学和金属学原理等课程为基础,着重讲授与合金固态相变有关的基本理论,主要包括金属(特别是钢)在加热、冷却过程中相变的基本原理和规律以及组织结构与性能之间的关系,为提高产品质量、充分发挥现有材料的潜力、合理制定热处理工艺、发展新材料和新工艺打下坚实的基础。本课程的内容应适当反映现代固态相变理论的发展和成就。 2. 课程的基本要求 学生通过学习本课程,应达到:1.掌握金属材料中相变的基本理论,重点是钢中组织转变的基本规律;2.有运用金属材料中相变基本规律,分析和研究金属热处理工艺问题的能力; 3.初步掌握成分组织与性能之间的关系,从而对金属材料具有一定的分析和研究能力。 三、课程教学环节、内容及学时分配 (一)课程内容 第一章绪论 合金固态相变的定义。金属固态相变在工业中的地位和作用。本课程的研究对象、内容以及与其它课程的关系。 教学重点:固态相变的一般特征,包括驱动力和阻力,相变的形核、长大、扩散、相界面等。 第二章合金固态相变的常用研究方法 具体介绍研究物相类型、分布和相变过程的各种手段。 教学重点:材料的物相种类、相分布和相变过程所采用的不同研究手段,并对各研究手段在相变研究中的用途和基本原理有所了解。

最新固态相变原理考试试题+答案资料

固态相变原理考试试题 一、(20分) 1、试对固态相变的相变阻力进行分析 固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量。 界面能:是指形成单位面积的界面时,系统的赫姆霍茨自由能的变化值。与大小和化学键的数目、强度有关。为表面张力, 为偏摩尔自由能,为由于界面面积改变而引起的晶粒内部自由能变化 (1)共格界面的化学键数目、强度没有发生大的变化,σ最小;半共格界面产生错配位错,化学键发生变化,σ次之;非共格界面化学键破坏最厉害,σ最大。 (2)应变能 ①错配度引起的应变能(共格应变能):共格界面由错配度引起的应变能最大,半共格界面次之,非共格界面最小。 ②比容差引起的应变能(体积应变能):和新相的形状有关,,球状由于比容差引起的应变能最大,针状次之,片状最小。 2、分析晶体缺陷对固态相变中新相形核的作用 固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核的形成,缺陷将消失,缺陷的能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核。 (1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核。 (2)位错: ①形成新相,位错线消失,会释放能量,促进形核 ②位错线不消失,依附在界面上,变成半共格界面,减少应变能。 ③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核。 ④位错是快速扩散的通道。 ⑤位错分解为不全位错和层错,有利于形核。 Aaromon总结: 刃型位错比螺型位错更利于形核;较大柏氏矢量的位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成。 (3)晶界:晶界上易形核,减小晶界面积,降低形核界面能 二、(20分) 已知调幅分解浓度波动方程为: ,其中: 1、试分析发生调幅分解的条件 只有当R(λ)>0,振幅才能随时间的增长而增加,即发生调幅分解,要使R(λ)>0,得G”<0且| G”|>2η2Y+8π2k/λ2 令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项8π2k/λ2很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,8π2k/λ2下降,易满足| G”|>2η2Y+8π2k/λ2,可忽略梯度项,调幅分解能发生。 2、说明调幅分解的化学拐点和共格拐点,并画出化学拐点、共格拐点和平衡成分点在温度——成分坐标中的变化轨迹 化学拐点:当G”=0时。即为调幅分解的化学拐点; 共格拐点:当G”+2η2Y=0时为共格拐点,与化学拐点相比共格拐点的浓度范围变窄了,温度范围也降低了。 3、请说明调幅分解与形核长大型相变的区别

固态相变理论部分答案

《固态相变理论》作业3 1.试述贝氏体转变的基本特征。 答:1)孕育期的预相变:在贝氏体孕育期内,母相发生成分的预分配和结构的预转变。预相变期发生了原子的偏聚,形成贫碳区即为贝氏体相变的 形核位置。相变机制存在扩散和切变学派的争论。 2)贝氏体相变形核:贝氏体相变是非均匀形核,上贝氏体一般在奥氏体晶界处形核,而下贝氏体一般在奥氏体的晶内形核。 3)贝氏体的长大机制:存在三种观点1.马氏体型的贝氏体切变长大机制,这种学派认为,贝氏体长大与马氏体相似,以切变方式进行,但贝氏体 长大的速度比马氏体慢的多。判断依据是贝氏体的表面浮凸效应现象。 切变包括滑移切变和孪生切变。2.扩散台阶长大机制,台阶机制可以为 扩散长大所利用,也可以为切变长大利用。3.扩散-切变复合长大模型, 这种模型首要条件是界面位错必须是刃型位错或刃型分量为主导的。因 为只有刃型位错才能攀移,而螺位错是不能攀移的。 2.试述影响贝氏体性能的基本因素。 C。形态为答:1)上贝氏体的形成中温转变,在350~550℃,组织为BF+Fe 3 羽毛状上贝氏体的转变速度受碳在奥氏体中的扩散所控制。 2)下贝氏体的形成低温转变,小于350℃。BF大多在奥氏体晶粒内通过共格切变方式形成,形态为透镜片状。由于温度低,BF中的碳的过饱和 度很大。同时,碳原子已不能越过BF/A相界扩散到奥氏体中去,所以就 在BF内部析出细小的碳化物。同样,下贝氏体的转变速度受碳在铁素体 中的扩散所控制。 3)碳含量及合金元素的影响奥氏体中的碳含量的增加,转变时需要扩散的原子数量增加,转变速度下降。除了铝和钴外,合金元素都或多或少 地降低贝氏体转变速度,同时也使贝氏体转变温度范围下降,从而使珠 光体与贝氏体转变的C曲线分开。 4)奥氏体晶粒度大小的影响奥氏体晶粒度越大,晶界面积越少,形核部位越少,孕育越长,贝氏体转变速度下降。 5) 应力和塑性变形的影响拉应力加快贝氏体转变。在较高温度的形变使 贝氏体转变速度减慢;而在较低温度的形变使得转变速度加快。 6)冷却时在不同温度下停留的影响

金属材料工程专业指导性培养方案

金属材料工程专业指导性培养方案 部门:机械与汽车工程学院 部门负责人:许德章 审核:陶庭先 校长:干洪 制订日期:2013年4月 一、培养目标与基本要求 培养目标: 本专业培养德智体美全面发展、诚信实干、基础扎实、实践能力强、综合素质高、具有创新精神,具备金属材料基础理论、铸造及热处理、表面工程等专业方向相关的工程技术知识,能在冶金、金属材料的制备、金属材料的铸造成型及热处理、材料结构研究与分析、材料表面处理等领域从事科学研究、技术与产品开发、工艺和设备设计、生产和经营管理等方面的应用型高级工程技术人才。 基本要求: 1、热爱社会主义祖国,拥护中国共产党的领导,树立正确的人生观、世界观和价值观,具有良好的思想品德、社会公德和职业道德。 2、掌握专业所需的基础科学理论知识,掌握本专业扎实的专业基础理论及必要的专业知识,具有本专业所必需的基本技能,具有良好的业务素养。 3、掌握科学的思维方法,具有创新能力和较强实践能力,具有较强的终身学习能力、获取及处理信息能力。 4、具有良好的心理素质和适应能力,掌握科学锻炼身体的基本技能,受到必要的军事训练,达到国家规定的大学生体育和军事训练合格标准。 毕业生应获得的知识和达到的能力: 1、掌握金属材料的铸造成型及热处理、材料表面处理、材料耐蚀与磨损的基础理论,以及表面处理、腐蚀与防护、耐蚀与磨损等方面的专业知识和技能;

2、掌握金属材料铸造成型工艺及设备的设计与制造方法; 3、掌握电镀、化学镀、涂装、真空镀、离子喷涂等原理与工艺方法; 4、具有从事金属材料及其耐蚀、耐磨及防腐材料的研究,正确地制定生产工艺及选用设备的初步能力; 5、具有本专业必需的机械、电工与电子技术、计算机应用的基本知识和技能; 6、具有研究开发和应用新材料、新工艺和相关设备的初步能力; 7、具有较强的创新意识及获取知识和运用知识解决实际问题的能力。 业务范围: 1、从事金属材料的铸造成型及热处理、表面工程、材料的腐蚀与防护等行业的技术工作; 2、从事金属材料的设计、制备、成型及其性能的检测与分析; 3、从事材料生产组织、技术管理和材料性能的检测、缺陷分析等技术监督工作; 4、从事金属材料生产技术管理、设备维护运行管理和经营销售等工作; 5、从事金属材料工程方面的科研、教学等工作。 二、专业方向 金属材料工程 三、学制:本科四年 四、主干学科、主要课程、主要实践教学环节 主干学科:材料科学与工程 主要课程:马克思主义基本原理、毛泽东思想和中国特色社会主义理论体系概论、高等数学Ⅰ、大学英语、画法几何及机械制图I、机械设计基础Ⅱ、工程力学Ⅱ、材料化学、材料科学基础、材料力学性能、金属固态相变原理、金属材料学(Metal Material Science)、表面工程学、液态成型原理、电化学原理、铸造工艺学主要实践教学环节:专业认识实习、专业生产实习、专业综合设计/实验、毕业设计(论文) 五、课程配置流程图、专业教育内容与课程体系

2012相变原理习题

相变原理习题 一、选择题 1、使TTT曲线左移的因素有___________ 。 A 增加亚共析钢中含碳量 B 提高钢中含钨量 C 增加钢中含铜量 D 使奥氏体产生塑性变形 2、能使钢中马氏体转变开始温度(Ms)升高的因素有__________ 。 A 降低含Ni钢中的Ni含量 B 降低钢中含碳量 C 增大冷却速度 D 提高加热温度 3、高碳马氏体的形貌特征及亚结构是__________ 。 A 板条状及位错 B 凸透镜状及位错 C 凸透镜状及孪晶 4、加热时Fe3C全部溶入A的温度是__________ 。 A A c1 B A c3 C A ccm 5、上贝氏体贝氏体的强度,韧性下贝氏体。 A 高于优于 B 高于不如 C 低于优于 D 低于不如 6、中碳钢淬火后高温回火,可获得优良的综合机械性能。又称为。 A 固溶处理 B 调质 C 热稳定化 D 时效 7、出现了高温回火脆性后,如重新加热到650℃以上,然后快冷至室温,消除脆化。在脆化消除后,再 在450 650℃加热快冷 再发生脆化。 A 可可 B 可不 C 不可可 D 不可不 8、W18Cr4V在560℃回火后,在冷却过程中在250℃稍作停留,残余奥氏体将不再转变为马氏体,这一过程称为。 A 催化 B 相变 C 逆转变 D 稳定化 9.奥氏体核的长大是依靠____的扩散, 奥氏体(A)两侧界面向铁素体(F)及渗碳体(C)推移来进行的. (a)铁原子 (b)碳原子 (c)铁碳原子 (d)溶质原子 10.亚共析钢在A C3下加热后的转变产物为___. (a) F (b) A (c) F+A (d) P+F 11.提高钢中马氏体转变开始点(Ms)的因素有__________ 。 (a) 降低含Ni钢中的Ni含量 (b) 降低钢中含碳量 (c) 增加冷却速度 (d) 提高奥氏体化温度 12.低碳马氏体的形貌特征及亚结构是__________ 。 (a) 板条状及位错 (b) 凸透镜状及位错 (c) 凸透镜状及孪晶 13.共析钢在奥氏体的连续冷却转变产物中,不可能出现的组织是__________ 。 (a) P (b) S (c) B (d) M 14.一般认为共析钢的珠光体转变的领先相是____。 (a)渗碳体 (b)铁素体 (c)奥氏体 (d)渗碳体和铁素体

材料相变原理复习提纲

材料相变原理复习提纲 第1章 1分析固态相变的动力和阻力。 相变驱动力是使系统自由焓下降的因素,相变阻力是相变导致系统自由焓升高的因素。 △ G = △ G相变+△ G界面+△ G畸 式中△ G相变一项为相变驱动力。其值是新旧相自由焓之差。 相变阻力包括很多内容:如晶界能、相界面能、位错畸变能、孪晶界面能、层错能、表面能、相变潜热等。综合为界面能和畸变能。 2讨论固态相变新相形状的影响因素。 新相的形状决定于长大速率的方向性,它受晶面的界面张力、表面或界面杂质吸附、温度和浓度梯度等影响。如生铁中石墨沿基面方向长大,成为片状石墨;如沿垂直于基面方向长大,则成为扇形石墨的复合体,即球状石墨。 1. 以共析钢为例,说明奥氏体的形成过程 1奥氏体晶核的形成:奥氏体晶核易于在铁素体与渗碳体相界面形成2奥氏体的长大:奥氏体中的碳含量是不均匀的,与铁素体相接处碳含量较低,与渗碳体相接处碳含量较高,引起碳的扩散,破坏了原先碳浓度的平衡,为了恢复碳浓度的平衡,促使铁素体向奥氏体转变以及fe3c的溶解,直至铁素体全部转变为奥氏体为止。 3 残余渗碳体的溶解:铁素体比奥氏体先消失,因此还残留未溶解的渗碳体,随时间的延长不断融入奥氏体,直至全部消失。4奥氏体均匀化:残余渗碳体全部溶解时,奥氏体中的碳浓度依然是不均匀的,继续延长保温时间,通过碳的扩散,可使奥氏体碳含量逐渐趋于均匀。渗碳体残余的原因:相界面向铁素体中的推移速度比向渗碳体中推移速度快14.8倍,但是铁素体片厚度仅比渗碳体片大 7倍,所以铁素体先消失,还有相当数量的剩余渗碳体未完全溶解。

2. 奥氏体的晶粒度由几种表示方法?并讨论影响奥氏体晶粒度的影响因素 晶粒度是指晶粒大小,晶粒大小可用多种方法表示,晶粒大小与晶粒度级别(N)的关系为: n = 2N-1 n为放大100倍视野中单位面积内的数。N —般为1-8,级别越高,晶粒越细。 起始晶粒度;实际晶粒度;本质晶粒度。 本质细晶粒钢:5-8级;本质粗晶粒钢:1-4级。 奥氏体起始晶粒度大小决定于奥氏体的形核率(N)和长大速率(G。 n = 1.01(N/G)1/2 n为1mm面积内的晶粒数。 影响奥氏体晶粒长大的因素 1加热温度和保温时间的影响: 2加热速度的影响: 3钢中碳含量的影响: 4合金元素的影响: 3. 解释钢的组织遗传现象和断口遗传现象,分析产生原因,讨论防止方法。 具有粗大晶粒的原始奥氏体冷却得到的非平衡组织加热奥氏体化时,在一定的加热条件下,新形成的奥氏体晶粒会继承和恢复原始粗大的奥氏体晶粒。这种粗大奥氏体晶粒的遗传性,称为钢的组织遗传现象。 具有粗大晶粒的原始奥氏体冷却得到的非平衡组织加热奥氏体化时,以中等加热速 度加热到Ac3以上时,新形成的奥氏体晶粒会得到细化,不发生组织遗传,但这也—细晶组织却出现了粗晶断口,这种现象称为断口遗传现象。 产生原因: 组织遗传:合金钢以非平衡组织加热时,采用慢速加热和快速加热均容易出现组织遗传断口遗传:1.原始粗大奥氏体晶界上有 MnS沉淀粒子,使晶界强度下降。 2. 原奥氏体晶粒内的细小奥氏体晶粒空间取向一致,形成晶内织构,相当于粗大晶粒。 3. 原始奥氏体晶界富集C和Cr元素,形成碳化铬沿晶界析出,导致晶界结合力下降,引起粗大奥氏体晶界断裂。 防止方法:组织遗传:采用中等速度加热奥氏体化才有可能不出现组织遗传

(完整版)金属固态相变原理考试复习思考题

复习思考题 1.复习思考题 1.固态相变和液-固相变有何异同点? 相同点:(1)都需要相变驱动力(2)都存在相变阻力(3)都是系统自组织的过程 不同点:(1)液-固相变驱动力为自由焓之差△G 相变,阻力为新相的表面能△G表,基本能连关系为:△G = △G 相变+△G表,而固态相变多了一项畸变能△G畸,基本能连关系为:△G = △G 相变+△G界面+△G畸(2)固态相变比液-固相变困难,需要较大的过冷度。 2.金属固态相变有那些主要特征? 相界面;位向关系与惯习面;弹性应变能;过渡相的形成;晶体缺陷的影响;原子的扩散。 3. 说明固态相变的驱动力和阻力? 在固态相变中,由于新旧相比容差和晶体位向的差异,这些差异产生在一个新旧相有机结合的弹性的固体介质中,在核胚及周围区域内产生弹性应力场,该应力场包含的能量就是相变的新阻力—畸变自由焓△G畸。则有: △G = △G 相变+△G界面+△G畸 式中△G 相变一项为相变驱动力。它是新旧相自由焓之差。 当:△G 相变=G 新 -G 旧 <0 △G 相变小于零,相变将自发地进行 (△G界面+△G畸)两项之和为相变阻力。 (1)界面能△G界面 界面能σ由结构界面能σst和化学界面能σch组成。即:σ=σst+σch 结构界面能是由于界面处的原子键合被切断或被削弱,引起了势能的升高,形成的界面能。 (2)畸变能阻力—△G畸 4.为什么在金属固态相变过程中有时出现过渡相? 过渡相的形成有利于降低相变阻力, 5. 晶体缺陷对固态相变有何影响? 晶核在晶体缺陷处形核时,缺陷能将贡献给形核功,因此,晶体通过自组织功能在晶体缺陷处优先性核。 晶体缺陷对形核的催化作用体现在: (1)母相界面有现成的一部分,因而只需部分重建。 (2)原缺陷能将贡献给形核功,使形核功减小。 (3)界面处的扩散比晶内快的多。 (4)相变引起的应变能可较快的通过晶界流变而松弛。 (5)溶质原子易于偏聚在晶界处,有利于提高形核率。 6.扩散型相变和无扩散型相变各有那些特征? (1)扩散型相变 原子迁移造成原有原子邻居关系的破坏,在相变时,新旧相界面处,在化学位差驱动下,旧相原子单个而无序的,统计式的越过相界面进入新相,在新相中原子打乱重排,新旧相排列顺序不同,界面不断向旧相推移,此称为界面热激活迁移,是扩散激活能与温度的函数。 新相与母相的化学成分不同。 (2)无扩散型相变 相变的界面推移速度与原子的热激活跃迁因素无关。界面处母相一侧的原子不是单个而无序的,统计式的越过相界面进入新相,而是集体定向的协同位移。界面在推移的过程中保持宫格关系。 新相与母相的结构不同,化学成分相同态相变具有形核阶段? 固态相变分为有核相变与无核相变,大多数固态相变都是有核相变, 8.为什么金属固态相变复杂多样? 见4页。 9.晶粒长大的驱动力?晶粒长大时界面移动方向与晶核长大时的界面移动方向有何不同?为什么? 晶粒长大的驱动力:界面能或晶界能的降低。晶粒长大时界面移动方向与曲率中心相同,晶核长大时的界面移动方向与曲率中心相反。 10.什么是自组织?自组织的条件是什么? 如果系统在获得其空间结构,时间结构过程中没有特定的外界干预,而是一个自发的组织化,有序化,系统化的过程,称自组织。其条件是:(1)开放系统(2)远离平衡态(3)随机涨落(4)非线性相互作用

《金属固态相变原理》考试试卷(B卷)

贵州大学2014—2015学年第一学期 《金属固态相变原理》考试试卷(B卷)班级姓名学号 题号一二三四五总得分评卷人审核人 得分 一、名词解释(每题3分,共15分) 1、同素异构转变: 2、回火抗力: 3、本质晶粒度: 4、奥氏体稳定化: 5、化学热处理: 二、填空题(每空1分,共15分) 1、奥氏体是溶于中所形成的固溶体。 2、共析钢淬火后在回火过程中,由于组织发生了变化,钢的也随之发生改变。其基本趋势是随回火温度升高,钢的和下降,和提高。 3、正火的冷却速度比退火,故正火的组织比较,它的强、硬度比退火。 4、淬火钢的回火,本质上是分解以及析出、聚集长大的过程。广义的回火概念应当是指将淬火后合金固溶体加热到低于相变临界点温度,保温一段时间后再冷却到室温的工艺方法。回火转变是典型的型转变。 三、判断题(每题3分,共12分) 1、珠光体形成时一般在奥氏体晶内形核。 2、钢中的合金元素和碳一样,在贝氏体转变时会发生重新分布。

3、共析钢和过共析钢的连续冷却转变中无贝氏体转变区。 4、等温淬火后的组织不需要再进行回火。 四、论述题(共34分) 1、若按所有的八面体间隙位置均填满碳原子计算,单位晶胞中应含20%的碳原子,但实际上碳在 -Fe中的最大溶解度仅为2.11%,为什么?(6分) ●试分析马氏体转变与贝氏体转变有哪些主要异同点?(8分) ●简述片状珠光体的形成机理。(10分) ●淬火的目的是什么?亚共析钢和过共析钢的淬火加热温度应如何选择?试从

获得的组织及性能等方面加以说明。(10分) 五、分析题(每题12分,共24分) 1、高速钢(高碳高合金工具钢)有时采用分级淬火法,即工件从分级浴槽中取出后常常置于于空气中冷却,但如果当工件尚处于100~200℃时使用水清洗,将会发生什么问题?为什么? 2、试分析φ10mm的45钢(退火状态),经下列温度加热并水冷后所获得的组织: ①700℃ ②760℃ ③840℃

固态相变试题库及答案

固态相变课程复习思考题2012-5-17 1.说明金属固态相变的主要分类及其形式 2.说明金属固态相变的主要特点 3.说明金属固态相变的热力学条件与作用 4.说明金属固态相变的晶核长大条件和机制 5.说明奥氏体的组织特征和性能 6.说明奥氏体的形成机制 7.简要说明珠光体的组织特征 8.简要说明珠光体的转变体制 9.简要说明珠光体转变产物的机械性能 10.简要说明马氏体相变的主要特点 11.简要说明马氏体相变的形核理论和切边模型 12.说明马氏体的机械性能,例如硬度、强度和韧性 13.简要说明贝氏体的基本特征和组织形态 14.说明恩金贝氏体相变假说 15.说明钢中贝氏体的机械性能 16.说明钢中贝氏体的组织形态 17.分析合金脱溶过程和脱溶物的结构 18.分析合金脱溶后的显微组织 19.说明合金脱溶时效的性能变化 20.说明合金的调幅分解的结构、组织和性能 21.试计算碳含量为2.11%(质量分数)奥氏体中,平均几个晶胞有一个碳原子? 22.影响珠光体片间距的因素有哪些? 23.试述影响珠光体转变力学的因素。 24.试述珠光体转变为什么不能存在领先相 25.过冷奥氏体在什么条件下形成片状珠光体,什么条件下形成粒状珠光体 26.试述马氏体相变的主要特征及马氏体相变的判据 27.试述贝氏体转变与马氏体相变的异同点 28.试述贝氏体转变的动力学特点 29.试述贝氏体的形核特点 30.熟悉如下概念:时效、脱溶、连续脱溶、不连续脱溶。 31.试述Al-Cu合金的时效过程,写出析出贯序 32.试述脱溶过程出现过渡相的原因 33.掌握如下基本概念: 固态相变、平衡转变、共析相变、平衡脱溶、扩散性相变、无扩散型相变、均匀形核、形核率

固态相变 习题

第一章自测题试卷 1、固态相变是固态金属(包括金属与合金)在()和()改变时,()的变化。 2、相的定义为()。 3、新相与母相界面原子排列方式有三种类型,分别为()、()、(),其中()界面能最低,()应变能最低。 4、固态相变的阻力为()及()。 5、平衡相变分为()、()、()、()、()。 6、非平衡相变分为()、()、()、()、()。 7、固态相变的分类,按热力学分类:()、();按原子迁动方式不同分类:()、();按生长方式分类()、()。 8、在体积相同时,新相呈()体积应变能最小。 A.碟状(盘片状)B.针状 C.球状 9、简述固态相变的非均匀形核。 10、简述固态相变的基本特点。 第二章自测题试卷 1、分析物相类型的手段有()、()、()。 2、组织观测手段有()、()、()。 3、相变过程的研究方法包括()、()、()。 4、阿贝成像原理为()。 5、物相分析的共同原理为()。 6、扫描电镜的工作原理简单概括为:()。 7、透射电子显微镜的衬度像分为()、()、()。 第三章自测题试卷 1. 根据扩散观点,奥氏体晶核的形成必须依靠系统内的(): A.能量起伏、浓度起伏、结构起伏 B. 相起伏、浓度起伏、结构起伏 C.能量起伏、价键起伏、相起伏 D. 浓度起伏、价键起伏、结构起伏 2. 奥氏体所具有的性能包括:() A.高强度、顺磁性、密度高、导热性差; B.高塑性、顺磁性、密度高、导热性差; C.较好热强性、高塑性、顺磁性、线膨胀系数大; D.较好热强性、高塑性、铁磁性、线膨胀系数大。 3. 影响奥氏体转变的影响因素包括()、()、()、()。 4.控制奥氏体晶粒大小的措施有:(),(),(),()。 5.奥氏体是Fe-C合金中的一种重要的相,一般是指(),碳原子位于()。 6. 绘图说明共析钢奥氏体的形成过程。 7. 奥氏体易于在铁素体和渗碳体的相界面处成核的原因是什么? 8. 简述连续加热时奥氏体转变的特点。 9. 说明组织遗传的定义和控制方法。 10. 从奥氏体等温形成动力学曲线出发说明珠光体到奥氏体的转变特征。 第四章自测题试卷 1、填空题 1) 根据片层间距的大小,可以将珠光体分为________ 、________、________。 2) 获得粒状珠光体的途径有________ 、__________ 、___________ 、___________ 。 3) 珠光体的长大方式有__________ 、___________ 、___________。

金属固态相变原理

*本答案基本根据录音整理所得,课本有的标了页码* 金色固态相变原理 简答题 1.简述共析钢加热奥氏体化的过程。(P42) 答:(1)奥氏体形核奥斯体的形核是通过形核和长大完成的。奥氏体的晶核是依靠系统的能量起伏、浓度起伏和结构起伏形成的;(2 )奥氏体晶核长大奥氏体的长大过程是两个新旧界面向原来的铁素体和渗碳体中推移的过程,驱动力为奥氏体中的碳浓度差;(3)剩余碳化物的溶解奥氏体中铁素体的溶解速度大了渗碳体的溶解速度,使渗碳体过剩而逐渐溶入奥氏体中;(4)奥氏体的均匀化继续加热或保温,借助碳原子的扩散使碳原子的分布趋于均匀。 2.马氏体相变的主要特征有哪些?(P76) 答:(1)切变共格和表面浮突现象马氏体转变时奥氏体中的原子基集体有规则的向新相中迁移,形成切变共格界面,表面产生浮突效应;(2)无扩散性仅由面心立方点阵通过切边改组为体心立方点阵,而无成分的变化;(3)具有特定的位向关系和惯习面;(4)在一个温度范围内完成相变温度在Ms-Mf完成,但是转变不能完全进行,有一定量的残余奥氏体存在;(5)可逆性 3.什么是第一类回火脆性,避免其发生的方法有哪些?(P143) 答:在250-400°C之间出现的回火脆性称为第一类回火脆性,也称低温回火脆性,也称为不可逆回火脆性。 避免方法:(a)降低钢中杂质元素的含量;(b)用Al脱氧或加入Nb、V、Ti等合金元素以细化奥氏体晶粒;(c)加入Mo、W等能减轻第一类回火脆性的合金元素;(d)加入Cr、Si以调整发生第一类回火脆性的温度范围,使之避开所需的回火温度;(e)采用等温淬火工艺代替淬火加回火工艺。 4.板条马氏体和片状马氏体那种会出现显微裂纹,为什么?(根据录音所得) 答:片状马氏体。显微裂纹是片状马氏体形成是产生的,先形成的第一片马氏体贯穿整个晶粒,将奥氏体晶粒分成两个部分,而后形成的马氏体片大小受到限制,所以马氏体的大小是不同的。后形成的马氏体片不断的撞击先形成的马氏体。由于马氏体的形成速度非常快,所以相互撞击,同时还与奥氏体晶界撞击,产生较大的应力场,另外片状马氏体的含碳量比较高,不能通过滑移和孪晶等变形方式消除应力,所以片状马氏体容易出现显微裂纹。 板条马氏体之间的夹角比较小,基本上是平行的,相互撞击的几率较小,残余奥氏体的存在可以缓解应力,所以板条马氏体没有出现显微裂纹。 5.什么是材料的热处理?其目的是什么?常见的热处理工艺有哪些?(根据录音所得)答:材料的热处理是通过特定的加热保温和冷却方式来获得工程上所需的组织的一种工艺过程的总称。目的:改变金属及合金的内部组织结构使其满足服役条件所提出的性能要求。常见的热处理工艺有淬火、正火、退火和回火。 6.如何区别高碳钢中的回火马氏体与下贝氏体?(根据录音所得) 答:(1)高碳钢回火马氏体表面浮突呈锥字型,它的相变是通过共格切变机制完成的。而下贝氏体的表面浮突是不平行的相交成V字形,而且它的铁素体不是通过切变共格完成的;(2)高碳钢回火马氏体中存在位错和孪晶,而下贝氏体中的铁素体中只有位错盘结没有孪晶结构存在,其韧性较好。(3)下贝氏体中碳沿着与贝氏体长轴呈50-60°倾斜的直线规则排列与相间析出相似。回火马氏体中碳在铁素体中是均匀分布的。 7.奥氏体的晶核最容易在什么地方形成?为什么?(P40)

金属固态相变原理名词解释

1.固态相变:金属盒陶瓷等固体材料在温度和压力改变时,其内部组织或结构会发生变化,即从一种相状态到另一种相状态的转变 2.平衡转变;在缓慢加热或冷却时所发生的能获得复合平衡状态图的平衡组织的相变。 3.共析相变;合金在冷却时由一个固相分解为两个不同固相的转变 4.平衡脱溶相变;在缓慢冷却条件下,由过饱和固溶体中析出过剩相的过程 5.扩散性相变;相变时相界面的移动是通过原子近程或远程扩散而进行的相变也称非协调型 6.无扩散性相变;相变过程中原子不发生扩散,参与转变的所有原子的运动是协调一致的相变也称协同型 7.均匀形核;晶核在母相中无择优地任意均匀分布 8.形核率;单位时间形成的晶核数 9.混晶;置换固溶体,两种或多种元素相互溶解而形成的均匀晶相 10.异常长大:正常晶粒长大过程被第二相微粒、织构、表面热蚀沟等阻碍,使得大多数晶粒不能长大,从而使少数较大的晶粒得以迅速长大。 11.奥氏体;碳及各种化学元素在γ-Fe中形成的固溶体 12.珠光体;共析碳钢加热奥氏体化后缓慢冷却,在稍低于A1温度时奥氏体将分解为铁素体和渗碳体的混合物称为珠光体 13.粒状珠光体;通过片状珠光体中渗碳体的球状化而获得的 14.贝氏体;钢在奥氏体化后被过冷到珠光体转变温度区间以下,马氏体转变温度区间以上这一中温度区间(所谓“贝氏体转变温度区间”)转变而成的由铁素体及其内分布着弥散的碳化物所形成的亚稳组织,即贝氏体转变的产物。 15.马氏体;对固态的铁基合金(钢铁及其他铁基合金)以及非铁金属及合金而言,是无扩散的共格切变型相转变,即马氏体转变的产物。就铁基合金而言,是过冷奥氏体发生无扩散的共格切变型相转变即马氏体转变所形成的产物。铁基合金中常见的马氏体,就其本质而言,是碳和(或)合金元素在α铁中的过饱和固溶体。就铁-碳二元合金而言,是碳在α铁中的过饱和固溶体。 16.屈氏体;通过奥氏体等温转变所得到的由铁素体与渗碳体组成的极弥散的混合物。是一种最细珠光体类型组织,其组织比索氏体组织还细 17.索氏体;马氏体于回火时形成的,在光学金相显微镜下放大五六百倍才能分辨出为铁素体内分布着碳化物(包括渗碳体)球粒的复相组织。 18.组织遗传;将晶界有序组织加热到Ac3,可能导致形成的奥氏体晶粒与原始晶粒具有相同的形状、大小和取向。 19.相变孪晶;相变过程中形成的孪晶。 20.热稳定化;淬火时因缓慢冷却或在冷却过程中因停留而引起奥氏体稳定性提高,使马氏体转变迟滞的现象。 21.反稳定化;当等温温度超过一定限度后,随等温温度升高,奥氏体稳定化程度反而下降的现象。 22.不变平面应变;相变过程中虽然发生了变形,但变形为均匀切变,且相变过程中惯习面为不变平面的应变。 23.惯习面;固态相变时,新相往往在母相的一定晶面开始形成,这个晶面称 24.热弹性马氏体;在冷却转变与加热逆转变时呈弹性长大与缩小的马氏体 25.形状记忆合金;具有这种形状记忆效应的金属发生较大变形后,经加热至某一温度之上,能恢复到变形前形状的合金。 26.正方度;c/a表示晶格畸变程度,具有体心正方点阵结构的马氏体的c/a值。 27.伪共析组织;过冷奥氏体以极快冷速转变形成的p组织,其成分因奥氏体含碳量不同而不同。 28.回火;淬火处理后将工件加热到低于临界点的某一温度,保温一定时间,然后冷却到室温的一种热处理操作。 29.回火屈氏体;铁素体加片状或者小颗粒状渗碳体的混合组织 30.回火马氏体;残余奥氏体向低碳马氏体和e-碳化物分解的过程,所得组织马氏体经分解后的立方马氏体+e-碳化物的混合组织。 31.回火索氏体;等轴铁素体加尺寸较大的粒状渗碳体的混合组织 32.回火脆性;随回火温度升高,冲击韧性反而下降的现象 33.二次硬化;当马氏体中含有足够量的碳化物形成元素时,在500°c以上回火是将会析出细小的特殊碳化物,导致因回火温度升高, -碳化物粗化而软化的刚再度硬化 34.二次淬火;在冷却回火是残余奥氏体转变为马氏体的现象叫二次淬火 35.时效;合金在脱溶过程中,其机械性能物理性能化学性能等均随之发生变化的现象 36.脱溶;从饱和固溶体中析出第二相(沉淀相)或形成溶质原子聚集区以及亚稳定过渡相

相变原理作业和答案

第一章作业: 1.奥氏体形成机理,分为几个阶段? 答:1,A的形核2,A的长大3,A中残余碳化物的溶解4,A的均匀化 2.为什么亚共析钢在加热过程中也会有残余碳化物的形成? 答:随着温度的升高,长大速度比n>7.5时,就会有残余碳化物产生 3影响奥氏体形成动力学的因素?(形成动力学即指形成速度) 答:1,加热温度T越高A形成速度越快2,钢的原始含碳量C%越高A形成速度越快3,原始组织越细A形成速度越快4,加热速度越快A形成速度越快5,合金元素存在即减弱A形成速度。(①影响临界点,降低临界点的加速,提高的减速②影响C元素的扩散,A形成速度降低③自身扩散不易,使A形成速度降低) 4:什么是起始晶粒度,实际晶粒度,本质晶粒度和他们的决定因素。 答:起始晶粒度:A转变刚完成,A晶粒边界刚一接触一瞬间的大小。影响因素:形核率和长大速度之比 实际晶粒度:实际生产或实验条件下得到A晶粒的大小。影响因素:加热和保温条件。 本质晶粒度:将钢加热到930℃±10℃保温3-8小时再测量A晶粒的大小,表征钢加热过程中A晶粒长大的倾向或趋势。决定因素:炼钢工艺 5影响A晶粒长大的因素: 答:1,加热温度和保温时间:温度越高长大越容易,时间越长长大越充分。温度主要影响。2,加热速度:加热速度越高A转变温度越高。形核率和长大速度越高,晶粒越细小 3,含碳量:一定温度下C%越高越容易长大,超过一定C%晶粒会越细小。4,合金元素:于C 形成强或中碳化物的元素抑制长大,P,O,Mn等促进,,Ni,Si无影响。5,原始组织:原始组织越细A晶粒越细,不利于长大。 第二章 1什么是珠光体片层间距? 答:一片铁素体F和一片渗碳体的厚度之和,用S0表示。 2珠光体类型组织有哪几种?它们在形成条件,组织形态和性能方面有哪些不同? 答:分为片状P和粒状P两种。①片状P渗碳体呈片状,是由A以接近平衡的缓慢冷却条件下形成的渗碳体和F组成的片层相间的机械混合物,还可以细分为珠光体P,索氏体S和屈氏体T。性能主要取决于层片间距S0,强度和硬度随S0减小而增加,S0越小则塑性越好,过小则塑性较差。②粒状P是渗碳体呈粒状分布在连续的F基体上,可由过冷A直接分解而成,也可由片状P球化而成。还可由淬火组织回火而成,于片状P相比,硬度强度较低但塑性和韧性较好。 3片状和粒状P的转变机理。 答:片状是形核长大的过程,有先共析相,(亚共析钢为F,过为Fe3C),在A晶界和相界处形核,交替长大。粒状是由片状P球化退火产生。 4亚共析钢和过共析钢的先共析相和性能特点。 答:网状组织:沿A晶界呈网状分布。网状Fe3C使强度下降,脆性上升,加工性能下降 块状组织(亚共析钢):等轴块状。随铁素体增多强度硬度下降,塑性升高。 晶内片状组织(魏氏组织):针片状由晶界向晶内分布。使韧性降低。 5影响P转变动力学的因素。 ①C%对于亚共析钢随C%升高C曲线右移,对过共析钢C曲线左移2,奥氏体状态:A晶粒越大P转变速度越慢,A均匀度:越均匀P转变速度越慢3,A化温度和时间:T越高时间越长P转变速度越慢4,单向拉应力有利于A转化成P,多向拉应力不利于A转化,A状态下塑性变形有利于A转化5,合金元素的影响。

固态相变习题与解答.

1、解释下列名词: 自扩散、化学扩散、间隙扩散、置换扩散、互扩散、晶界扩散、上坡扩散 2、什么叫原子扩散和反应扩散? 3、什么叫界面控制和扩散控制?试述扩散的台阶机制? [简要解答] 生长速度基本上与原子的扩散速率无关,这样的生长过程称为界面控制。相的生长或溶解为原子扩散速率所控制的扩散过程称为扩散控制。 如题3图,α相和β相共格,在DE、FG处,由于是共格关系,原子不易停留,界面活动性低,而在台阶的端面CD、EF处,缺陷比较多,原子比较容易吸附。因此,α相的生长是界面间接移动。随着CD、EF的向右移动,一层又一层,在客观上也使α相的界面向上方推移,从而使α相生长。这就是台阶生长机制,当然这种生长方式要慢得多。 题3图台阶生长机制 4、扩散的驱动力是什么?什么是扩散热力学因子? 5、显微结构的不稳定性主要是由哪些因素造成的 ? 6、什么是Gibbs-Thomson效应?写出其表达式。 7、什么是Ostwald Ripening Process ? 写出描述其过程的表达式,总结其过程规律 ? 8、在500℃时,Al在Cu中的扩散系数为2.6×10-17 m2/s,在1000℃时的扩散系数为1×10-12 m2/s。求:1)这对扩散偶的D0、Q值;2)750℃时的扩散系数。 9、当Zn向Cu内扩散时,已知:X点处的Zn含量为2.5×10-17 a/cm3,在离X点2mm 处的Y 点,在300℃时每分钟每mm2要扩散60个原子。问:Y点处的Zn浓度是多少? 10、将Al扩散到硅单晶中,问:在什么温度下,其扩散系数为10-14 m2/s ? (已知:Q = 73000 cal./mol, D0 = 1.55×10-4 m2/s ) 11、在1127℃某碳氢气体被通入到一低碳钢管(管长1m,管内径8 mm,外径12 mm)。

固态相变原理

固态相变原理 1、相变的基础理论涉及三个方面的共性问题: 1)相变能否进行,相变的方向 2)相变进行的途径及速度 3)相变的结果,即相变时结构转变的特征。 分别对应相变热力学、相变动力学和相变晶体学。 相变是朝着能量降低的方向进行; 相变是选择阻力最小、速度最快的途径进行; 相变可以有不同的终态,但只有最适合结构环境的新相才易于生存下来。 2、固态相变的特殊性 (相界面、弹性应变能、位向关系与惯习面、亚稳过渡相、原子迁移率、晶体缺陷)。 固态相变除满足热力学条件外,还须获得额外能量来克服晶格改组时原子间的引力,即存在相变势垒。相变势垒由激活能决定,也与是否有外加机械应力有关。 3、相变驱动力和相变阻力 驱动力:体积自由能,来自晶体缺陷(点,线,面缺陷)的储存能。 储存能由大到小的排序:界面能,线缺陷,点缺陷。 界面能中界隅提供的能量最大,但体积分数小,界棱次之,界面最小,但体积分数最大。 相变阻力是界面能和弹性应变能。 弹性应变能与新旧相的比容差和弹性模量,及新相的几何外形有关。从能量的角度来看:共格界面的弹性应变能最大,非共格界面的界面能最大。球形新相界面能最小,但应变能最大,圆盘状新相相反,针状新相居中。 4、长大方式 新相晶核的长大分为协同(共格或半共格,切变)和非协同(非共格或扩散)两种,前者速度快,后者速度慢。原子只能短程扩散时,长大速度与过冷度(温度)存在极大值;长程扩散时,长大速度与扩散系数和母相的浓度梯度成正比,与相界面处两相的浓度差呈反比。 5、相变速率

相变速率满足Johnson-Mehl方程或Avrami经验方程。相变之初和相变结束其,相变速率最小,转变量约50%时,相变速度最大。扩散型相变的动力学曲线呈“C”形。是由驱动力和扩散两个矛盾因素共同决定的。 6、C曲线 “C”曲线建立的原理:一定外界条件下,只要发生了相变,宏观上就能检测出某种变化(组织,结构,性能等),确定该条件下这种变化与新相转变量的关系。相变进行的难以程度决定“C”曲线的位置。“C”曲线可分为六种类型,影响“C”曲线的因素有:化学成分,奥氏体化条件和奥氏体晶粒尺寸,原始组织及外界能量(塑性变形等)。凡是使过冷奥氏体稳定的因素均使“C”曲线右移(右移,说明相变所需要的临界冷却速率越小,相变越容易)。连续冷却时,“C”曲线“滞后”,即向右下方向漂移。 7、用TTT曲线和CCT曲线判断组织组成的原则。 只要过冷奥氏体经过或停留在那个区,就转变为该区对应的组织。过冷奥氏体全部转变完后,再经过任何区域都不会发现任何变化,是其自然冷却。冷速越快,硬度越高。冷速超过某临界值时(临界冷却速度),过冷奥氏体全部转变成马氏体。

相变原理

相变原理 (2009-03-15 12:09:38) 忽视核外电子的规律运动,司空见惯的相变成了困惑人们的自然之谜。 摘要:核外电子随着温度的规律的运动是相变的直接原因。 (1)价和电子在平面稳定运转,伴生的价磁力指向稳定,物质呈固态。 (2)价和电子在窄小空间范围扭曲运转,伴生的价磁力方向不稳,物体塑性增加。 (3)价和电子在大范围空间扭曲运转,伴生的价磁力方晃动,物质呈液态。 (4)价和电子在空间呈球面绕行运转,价和电子包围整个球面,价磁力没有了方向,球面电子与相邻的球面电子相斥,使分子球之间推开距离,物质呈气态。 关键词:奥斯特实验小磁针伴生德布罗意波 [事实] 随着温度升高,一般物体都是由固体相变成液体,由液体相变成气体。 所有纯净物质都有其固定的熔点、沸点;水在0℃结冰、100℃沸腾;锡在200℃电烙铁下就能熔化成液态,烙铁拿开,锡又立刻凝结成固体,温度与物质状态、特性相依相存。 [分析] 物质的相变与总是与温度精确的对应,千百年来人们不断在思索,温度是如何导致这样的变化?温度是怎样起作用的?这极具规律的对应绝不会是偶然的、孤立的。这有规律的变化必然源于且服从更深层的规则的运动。这个规则的运动,就是核外电子的规律的运动。 核外电子随着温度的规律的运动是相变的直接原因。 在J 1章我们谈到温度实质上就是核外电子运转的速度。核外电子速率加快,宏观的表现就是温度升高。温度升高到一定的程度,水能沸腾;钢铁能熔化,物质发生了相变。难道电子的快速运动就能导致这样的相变、如何导致相变? 相变虽然与温度直接相关,然而只有达到了某一特定值,相变才能发生,这是一个从量变到质变的过程,也是物质的内聚力急剧变化的过程,核外电子的

相关文档
相关文档 最新文档