文档库 最新最全的文档下载
当前位置:文档库 › 2015解析几何填空选择压轴题(含答案)解析 (1)

2015解析几何填空选择压轴题(含答案)解析 (1)

2015解析几何填空选择压轴题(含答案)解析 (1)
2015解析几何填空选择压轴题(含答案)解析 (1)

2015解析几何填空选择压轴题(含答案)

一.选择题(共15小题)

1.(2015?潍坊模拟)椭圆的左右焦点分别为F1,F2,若椭圆C 上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是

D

2.(2015?绥化一模)已知椭圆,F1,F2为其左、右焦点,P 为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有(其

3.(2015?鹰潭二模)已知点A(﹣1,0),B(1,0)及抛物线y2=2x,若抛物线上点P满

4.(2015?大庆校级模拟)已知双曲线的标准方程为,F为其右焦点,A1,A2是实轴的两端点,设P为双曲线上不同于A1,A2的任意一点,直线A1P,A2P与直线x=a分别交于两点M,N,若,则a的值为()

5.(2014?瓦房店市校级二模)已知抛物线y2=2px(p>0)与椭圆

6.(2014?江北区校级模拟)如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA 的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件

,则|AM|+|AN|的值为()

7.(2013?东城区模拟)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若

++=,则的值为()

8.(2013?重庆)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C

B C

9.(2011?江西)如图,一个“凸轮”放置于直角坐标系X轴上方,其“底端”落在远点O处,一顶点及中心M在Y轴的正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成

今使“凸轮”沿X轴正向滚动过程中,“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放

..C

..

10.(2010?陕西)已知抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=16相切,则p的值

11.(2010?重庆)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另

12.(2009?天津)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()

13.(2008?四川)已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上

14.(2008?海南)已知点P在抛物线y2=4x上,那么点P到点Q(2,﹣1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()

15.(2008?福建)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一

二.填空题(共15小题)

16.(2015?鞍山一模)已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF2为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围

是.

17.(2015?上饶二模)以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为.

18.(2015?射阳县校级模拟)已知椭圆,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若=.

19.(2014?福建模拟)若函数f(x)=log2(x+1)﹣1的零点是抛物线x=ay2焦点的横坐标,则a=.

20.(2013?建邺区模拟)过抛物线y2=2px(p>0)的对称轴上的定点M(m,0)(m>0),作直线AB与抛物线相交于A,B两点.

(1)试证明A,B两点的纵坐标之积为定值;

(2)若点N是定直线l:x=﹣m上的任一点,试探索三条直线AN,MN,BN的斜率之间的关系,并给出证明.

21.(2012?湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为

B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:

(Ⅰ)双曲线的离心率e=;

(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.

22.(2013?沈河区校级模拟)+=1上有一动点P,圆E:(x﹣1)2+y2=1,过圆心E任意做一条直线与圆E交于A、B两点,圆F:(x+1)2+y2=1,过圆心任意做一条直线交圆F

于C、D两点,则?+?的最小值为.

23.(2012?庐阳区校级模拟)如图,椭圆的长轴为A1A2,短轴为B1B2,将坐标

平面沿y轴折成一个二面角,使点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,则此二面角的大小为.

24.(2013?江西)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,

B两点,若△ABF为等边三角形,则p=.

25.(2013?湖南)设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C 上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.

26.(2011?浙江)设F1,F2分别为椭圆+y2=1的焦点,点A,B在椭圆上,若=5;则点A的坐标是.

27.(2010?湖北)已知椭圆C:的两焦点为F1,F2,点P(x0,y0)满足,

则|PF1|+PF2|的取值范围为,直线与椭圆C的公共点个

数.

28.(2011?重庆)动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点.

29.(2010?上海)在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为

,、分别是两条渐近线的方向向量.任取双

曲线Γ上的点P,若(a、b∈R),则a、b满足的一个等式是.

30.(2007?重庆)过双曲线x2﹣y2=4的右焦点F作倾斜角为1050的直线,交双曲线于P、Q两点,则|FP|?|FQ|的值为.

2015解析几何填空选择压轴题(含答案)

参考答案与试题解析

一.选择题(共15小题)

1.(2015?潍坊模拟)椭圆的左右焦点分别为F1,F2,若椭圆C 上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是..

时,

e e≠

,)∪(,

2.(2015?绥化一模)已知椭圆,F1,F2为其左、右焦点,P 为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有(其

,故内心

(,

,∴

的纵坐标为,

=?|F

的纵坐标

=(|

?|F(|

×2c?|y(|

=

3.(2015?鹰潭二模)已知点A(﹣1,0),B(1,0)及抛物线y2=2x,若抛物线上点P满

==1+m≤(==

≤1+,当且仅当

4.(2015?大庆校级模拟)已知双曲线的标准方程为,F为其右焦点,A1,A2是实轴的两端点,设P为双曲线上不同于A1,A2的任意一点,直线A1P,A2P与直线x=a分别交于两点M,N,若,则a的值为()

双曲线

三点共线,知m=三点共线,知,由

,右焦点

=+

5.(2014?瓦房店市校级二模)已知抛物线y2=2px(p>0)与椭圆

=,把=

)依题意可知,

=p=2=2c

或﹣

6.(2014?江北区校级模拟)如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA 的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件

,则|AM|+|AN|的值为()

7.(2013?东城区模拟)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若

++=,则的值为()

程,再依据

=,

8.(2013?重庆)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C

B C

,由

解:不妨令双曲线的方程为,

tan30°,即

,∴,

∴双曲线的离心率的范围是

9.(2011?江西)如图,一个“凸轮”放置于直角坐标系X轴上方,其“底端”落在远点O处,一顶点及中心M在Y轴的正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成

今使“凸轮”沿X轴正向滚动过程中,“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放

..C

..

>,故中心

10.(2010?陕西)已知抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=16相切,则p的值

根据抛物线的标准方程可知准线方程为

)的准线方程为,

11.(2010?重庆)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另

=

12.(2009?天津)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()

=,进而根据两三角形相似,推断出=

,根据

代入,即可求得

的值,则三角形的面积之比可得.

=

=

=.

,﹣

x=

==.

13.(2008?四川)已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上

的面积为

14.(2008?海南)已知点P在抛物线y2=4x上,那么点P到点Q(2,﹣1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()

15.(2008?福建)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一

,则有

二.填空题(共15小题)

16.(2015?鞍山一模)已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF2为底边的等腰三角形.若

|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是(,

).

<,求

?

<,求

=x c=,=﹣.

,∴﹣﹣<﹣,即<﹣<.

17.(2015?上饶二模)以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为(x﹣5)2+y2=9.

,双曲线:的两条渐近线方程为

解析几何(大题)

21.(本小题满分12分)[2017皖南八校]如图,点()2,0A -,()2,0B 分别为椭圆 ()22 22:10x y C a b a b +=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线 ,AP BP 的斜率分别为12,k k ,且121 4 k k =- ,AP OM ∥,BP ON ∥. (1)求椭圆C 的方程; (2)判断OMN △的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【答案】(1)2 2:14 x C y +=;(2)定值1. 【解析】(1)22 1,1144 2,AP BP b k k b a a ?=?=-??=??=? ,椭圆22:14x C y +=. (2)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y , ()222 22 , 4184401,4 y kx t k x ktx t x y =+???+++-=?+=??, 122841 kt x x k +=-+,2122 44 41t x x k -=+, ()()1212121212121211 404044 y y k k y y x x kx t kx t x x x x ?=- ??=-?+=?+++=, ()()2 2121241440k x x kt x x t ++++=, ()22 22222448414402414141t kt k kt t t k k k ?? -+-+=?-= ?++?? , ()() ()( )2 2 2 2 1 2 1 2 1 2114MN k x x k x x x x ??= +-= ++-??

解析几何压轴大题专题突破

解析几何压轴大题专题突破 1. 已知命题 p :方程 x 22m + y 29?m =1 表示焦点在 y 轴上的椭圆,命题 q :双曲线 y 25 ? x 2m =1 的离心率 e ∈( √6 2 ,√2),若命题 p ,q 中有且只有一个为真命题,求实数 m 的取值范围. 2. 在直角坐标系 xOy 中,曲线 C 1 的参数方程为 {x =√3cosα, y =sinα,(α 为参数),以坐标 原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线 C 2 的极坐标方程为 ρsin (θ+π 4 )=2√2. (1)写出 C 1 的普通方程和 C 2 的直角坐标方程; (2)设点 P 在 C 1 上,点 Q 在 C 2 上,求 ∣PQ ∣ 的最小值及此时 P 的直角坐标. 3. 在直角坐标系 xOy 中,直线 C 1:x =?2,圆 C 2:(x ?1)2+(y ?2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求 C 1,C 2 的极坐标方程; (2)若直线 C 3 的极坐标方程为 θ=π 4(ρ∈R ),设 C 2 与 C 3 的交点为 M ,N ,求 △ C 2MN 的面积. 4. 已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为 x =?1,直线 l 与抛物线相交于不同的 A ,B 两点. (1)求抛物线的标准方程; (2)如果直线 l 过抛物线的焦点,求 OA ????? ?OB ????? 的值; (3)如果 OA ????? ?OB ????? =?4,直线 l 是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由. 5. 已知抛物线 C:y 2=2px (p >0) 与直线 x ?√2y +4=0 相切. (1)求该抛物线的方程; (2)在 x 轴正半轴上,是否存在某个确定的点 M ,过该点的动直线 l 与抛物线 C 交于 A ,B 两点,使得 1 ∣AM∣ +1∣BM∣ 为定值.如果存在,求出点 M 坐标;如果不 存在,请说明理由. 6. 在平面直角坐标系 xOy 中,动点 A 的坐标为 (2?3sinα,3cosα?2),其中 α∈R .在极坐标系(以原点 O 为极点,以 x 轴非负半轴为极轴)中,直线 C 的方程为 ρcos (θ?π 4 )=a . (1)判断动点 A 的轨迹的形状; (2)若直线 C 与动点 A 的轨迹有且仅有一个公共点,求实数 a 的值. 7. 在平面直角坐标系 xOy 中,已知椭圆 C :x 2a + y 2b =1(a >b >0) 的离心率为 √6 3 .且 过点 (3,?1). (1)求椭圆 C 的方徎; (2)动点 P 在直线 l :x =?2√2 上,过 P 作直线交椭圆 C 于 M ,N 两点,使得 PM =PN ,再过 P 作直线 l?⊥MN ,直线 l? 是否恒过定点,若是,请求出该定 点的坐标;若否,请说明理由. 8. 在平面直角坐标系 xOy 中,C 1:{x =t, y =k (t ?1) (t 为参数).以原点 O 为极点,x 轴 的正半轴为极轴建立极坐标系,已知曲线 C 2:ρ2+10ρcosθ?6ρsinθ+33=0. (1)求 C 1 的普通方程及 C 2 的直角坐标方程,并说明它们分别表示什么曲线; (2)若 P ,Q 分别为 C 1,C 2 上的动点,且 ∣PQ ∣ 的最小值为 2,求 k 的值.

解析几何经典例题

解析几何经典例题 圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1. 如图1,P为椭圆上一动点,为其两焦点,从 的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2. 如图2,为双曲线的两焦点,P为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3. 如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地, 求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

高考数学总复习 专题七 解析几何 7.3 解析几何(压轴题)精选刷题练 理

7.3 解析几何(压轴题) 命题角度1曲线与轨迹问题 高考真题体验·对方向 1.(2017全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足 为N,点P满足. (1)求点P的轨迹方程; (2)设点Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F. (1)解设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0). 由得x0=x,y0=y. 因为M(x0,y0)在C上,所以=1. 因此点P的轨迹方程为x2+y2=2. (2)证明由题意知F(-1,0).设Q(-3,t),P(m,n), 则 =(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t -n). 由=1得-3m-m2+tn-n2=1. 又由(1)知m2+n2=2,故3+3m-tn=0. 所以=0,即. 又过点P存在唯一直线垂直于OQ, 所以过点P且垂直于OQ的直线l过C的左焦点F. 2.(2016全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C 于A,B两点,交C的准线于P,Q两点. (1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ; (2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. (1)证明由题知F. 设l1:y=a,l2:y=b,则ab≠0, 且A,B,P,Q,R.

记过A,B两点的直线为l, 则l的方程为2x-(a+b)y+ab=0. 由于F在线段AB上,故1+ab=0. 记AR的斜率为k1,FQ的斜率为k2, 则k1==-b=k2. 所以AR∥FQ. (2)解设l与x轴的交点为D(x1,0), 则S△ABF=|b-a||FD|=|b-a|,S△PQF=. 由题设可得|b-a|, 所以x1=0(舍去),x1=1. 设满足条件的AB的中点为E(x,y). 当AB与x轴不垂直时,由k AB=k DE可得(x≠1). 而=y,所以y2=x-1(x≠1). 当AB与x轴垂直时,E与D重合. 所以所求轨迹方程为y2=x-1. 新题演练提能·刷高分 1.(2018山西太原二模)已知以点C(0,1)为圆心的动圆C与y轴负半轴交于点A,其弦AB的中点D恰好落在x轴上. (1)求点B的轨迹E的方程; (2)过直线y=-1上一点P作曲线E的两条切线,切点分别为M,N.求证:直线MN过定点. (1)解设B(x,y),则AB的中点D,y>0. ∵C(0,1),则, 在☉C中,∵DC⊥DB, ∴=0,∴-+y=0, 即x2=4y(y>0). ∴点B的轨迹E的方程为x2=4y(y>0). (2)证明由已知条件可得曲线E的方程为x2=4y, 设点P(t,-1),M(x1,y1),N(x2,y2).

平面解析几何经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角的范围 0 180 (2)经过两点的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2 ,其斜率分别为k1, k2 ,则有 l1 / /l2 k1 k2 。特别地, 当直线 l1,l2 的斜率都不存在时,l1与l2 的关系为平行。 (2)两条直线垂直 如果两条直线l1,l2 斜率存在,设为k1, k2 ,则l1 l2 k1 k2 1 注:两条直线l1 ,l2 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率 之积为 -1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果 l1,l2 中 有一条直线的斜率不存在,另一条直线的斜率为0 时, l1与l2 互相垂直。 二、直线的方程 1、直线方程的几种形式 名称方程的形式已知条件局限性 点斜式 不包括垂直于x 轴的直 线为直线上一定点,k 为斜率 斜截式k 为斜率, b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式 不包括垂直于x 轴和 y 轴的是直线上两定点 直线 截距式 a 是直线在x 轴上的非零截距, b 是直不包括垂直于x 轴和 y 轴或

线在 y 轴上的非零截距过原点的直线 一般式 A ,B,C 为系数无限制,可表示任何位置的 直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条 直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条 直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平 行;反之,亦成立。 2.几种距离 (1 )两点间的距离平面上的两点间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用 公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知A(x , y ), B(x , y ), C (x , y ), 若 x 1 x 2 x3或k AB k AC ,则有 A 、B、 C 三点共 1 1 2 2 3 3 线。

高考解析几何压轴题精选

1、 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A 、若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 、已知m >1,直线2:02 m l x my -- =,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、右焦点、 (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H 、若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围、(6分) 3已知以原点O 为中心,) 5,0F 为右焦点的双曲线C 的离心率 5 e = (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直线 222:44l x x y y +=的交点E 在双 曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分) 4、如图,已知椭圆 22 22 1(0)x y a b a b +=>>2,以该椭圆上的点与椭圆的左、右 焦点12,F F 为顶点的三角形的周长为4(21)、一等轴双曲线的顶点就是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 与2PF 与椭圆的交点分别为B A 、与 C D 、、

(Ⅰ)求椭圆与双曲线的标准方程;(Ⅱ)设直线1PF 、2 PF 的斜率分别为1k 、2k ,证明12· 1k k =;(Ⅲ)就是否存在常数λ,使得 ·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由、(7分) 5、在平面直角坐标系xoy 中,如图,已知椭圆15 92 2=+y x 的左、右顶点为A 、B,右焦点为F 。设过点T(m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。 (1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设3 1 ,221= =x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。(6分) 6.如图,设抛物线2 :x y C =的焦点为F,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB,且与抛物线C 分别相切于A 、B 两点、 (1)求△APB 的重心G 的轨迹方程、 (2)证明∠PFA=∠PFB 、(6分) 7.设A 、B 就是椭圆λ=+2 2 3y x 上的两点,点N(1,3)就是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点、 (Ⅰ)确定λ的取值范围,并求直线AB 的方程; (Ⅱ)试判断就是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由、 (此题不要求在答题卡上画图)(6分) 8.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

高中数学核心考点:解析几何压轴大题四大策略

解析几何压轴大题四大策略 解析几何研究的问题是几何问题,研究的手法是代数法(坐标法).因此,求解解析几何问题最大的思维难点是转化,即几何条件代数化.如何在解析几何问题中实现代数式的转化,找到常见问题的求解途径,是突破解析几何问题难点的关键所在.突破解析几何难题,先从找解题突破口入手. 策略一 利用向量转化几何条件 [典例] 如图所示,已知圆C :x 2+y 2-2x +4y -4=0,问:是否存在斜率为1的直线l ,使l 与圆C 交于A ,B 两点,且以AB 为直径的圆过原点?若存在,求出直线l 的方程;若不存在,请说明理由. [解题观摩] 假设存在斜率为1的直线l ,使l 与圆C 交于A ,B 两点,且以AB 为直径的圆过原点. 设直线l 的方程为y =x +b ,点A (x 1,y 1),B (x 2,y 2). 联立? ???? y =x +b ,x 2+y 2-2x +4y -4=0, 消去y 并整理得2x 2+2(b +1)x +b 2+4b -4=0, 所以x 1+x 2=-(b +1),x 1x 2=b 2+4b -42.① 因为以AB 为直径的圆过原点,所以OA ⊥OB , 即x 1x 2+y 1y 2=0. 又y 1=x 1+b ,y 2=x 2+b , 则x 1x 2+y 1y 2=x 1x 2+(x 1+b )(x 2+b )=2x 1x 2+b (x 1+x 2)+b 2=0. 由①知,b 2+4b -4-b (b +1)+b 2=0, 即b 2+3b -4=0,解得b =-4或b =1. 当b =-4或b =1时, 均有Δ=4(b +1)2-8(b 2+4b -4)=-4b 2-24b +36>0, 即直线l 与圆C 有两个交点. 所以存在直线l ,其方程为x -y +1=0或x -y -4=0. [题后悟通] 以AB 为直径的圆过原点等价于OA ⊥OB ,而OA ⊥OB 又可以“直译”为x 1x 2+y 1y 2=0,可以看出,解此类解析几何问题的总体思路为“直译”,然后对个别难以“直译”的条件先进行“转化”,将“困难、难翻译”的条件通过平面几何知识“转化”为“简单、易翻译”的条件后再进行“直译”,最后联立“直译”的结果解决问题. [针对训练]

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

高考数学压轴大题--解析几何

高考数学压轴大题-解析几何 1. 设双曲线C :1:)0(1222 =+>=-y x l a y a x 与直线相交于两个不同的点A 、B. (I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.12 5 PB PA =求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组 ?? ???=+=-.1, 12 22y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① .120.0)1(84.012 24 2 ≠<-+≠-a a a a a a 且解得所以 双曲线的离心率 ).,2()2,2 6 ( 2 2 6 ,120.11122 +∞≠>∴≠<<+= += 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A . 12 5 ).1,(125 )1,(, 12 5 212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0, 13 17 ,060289 12,,.12125.1212172222 2 222 2 2= >= ----=--=a a a a x a a x a a x 所以由得消去所以 2. 已知)0,1(,)0,1(21F F -为椭圆C 的两焦点,P 为C 上任意一点,且向量21PF PF 与向量的

夹角余弦的最小值为3 1 . (Ⅰ)求椭圆C 的方程; (Ⅱ)过1F 的直线l 与椭圆C 交于M 、N 两点,求OMN ?(O 为原点)的面积的最大值及 相应的直线l 的方程. 解:(Ⅰ)设椭圆的长轴为2a , ∴a PF PF 221=+ 2221==c F F 2 12 22 124cos PF PF PF PF ?-+= θ = 2 12122124 2)(PF PF PF PF PF PF ?-?-+ =1244212-?-PF PF a 又 21212PF PF PF PF ?≥+ ∴2 21a PF PF ≤? 即31211244cos 2 22=-=--≥a a a θ ∴32 =a ∴椭圆方程为12 32 2=+ y x (Ⅱ) 由题意可知NM 不可能过原点,则可设直线NM 的方程为:my x =+1 设),(11y x M ),(22y x N ()1111212 OMN F OM F ON S S S OF y y ???=+=+=2121 y y - 22 1,32 1.x y x my ?+ =???=-? 063)1(222=-+-y my 即 044)32(22=--+my y m . 由韦达定理得: 324221+=+m m y y 324 22 1+-=?m y y ∴212212 214)(y y y y y y -+=- = 3216)32(162222+++m m m =2 22) 32() 1(48++m m 令12+=m t , 则1≥t ∴2 21y y -=4 1448)12(482++= +t t t t . 又令t t t f 1 4)(+=, 易知)(t f 在[1,+∞)上是增函数,

解析几何经典例题

解析几何经典例题 圆锥曲线的定义就是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1、如图1,P为椭圆上一动点,为其两焦点,从的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2、如图2,为双曲线的两焦点,P为其上一动点,从 的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3、如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地,求 抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4、①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) A、圆 B、椭圆 C、双曲线 D、抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹就是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5、如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

2019-2020年高考备考:2018年高考数学试题分类汇编----解析几何

见微知著,闻弦歌而知雅意 2019-2020届备考 青霄有路终须到,金榜无名誓不还! 2019-2020年备考 2018试题分类汇编---------解析几何 一、填空题 (1)直线与圆 1.(天津文12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 1.2220x y x +-= 2.(全国卷I 文15)直线1y x =+与圆22230x y y ++-=交于A B ,两点,则 AB =________. 2.22 3.(全国卷III 理6改).直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上, 则ABP △面积的取值范围是__________. 3.[]26, 4.(天津理12)已知圆2220x y x +-=的圆心为 C ,直线2 1, 2232 x t y t ? =-+ ??? ?=-?? (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 . 4.1 2 5.(北京理7改)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变 化时,d 的最大值为__________. 5.3 6.(北京文7改)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如 图),点P 在其中一 段上,角α以OA 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是__________.

6.EF 7.(江苏12)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点, (5,0)B ,以AB 为直径的 圆C 与直线l 交于另一点D .若0AB CD ?=,则点A 的横坐标为__________. 7.3 8.(上海12)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212 x x y y +=,则 11221 1 2 2 x y x y +-+-+ 的最大值为_________. 8.32+ (2)椭圆抛物线双曲线基本量 9.(浙江2 改)双曲线2 21 3 =x y -的焦点坐标是__________. 9.(?2,0),(2,0) 10.(上海2)双曲线2 214 x y -=的渐近线方程为_________. 10.12 y x =± 11.(上海13)设P 是椭圆22 153 x y +=上的动点,则P 到该椭圆的两个焦点的距离 之和为__________. 11.25 12.(北京文12)若双曲线2221(0)4x y a a -=>的离心率为5 2 ,则a =_________. 12.4 13.(北京文10)已知直线l 过点(1,0)且垂直于ε,若l 被抛物线24y ax =截 得的线段长为4,则抛物线 的焦点坐标为_________. 13.(1,0) 14.(全国卷II 理5 改)双曲线22 221(0,0)x y a b a b -=>>的离心率为3,则其渐近线方程 为_________. 14.2y x =± (3)圆锥曲线离心率

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

解析几何大题的解题技巧

目录 解析几何大题的解题技巧(只包括椭圆和抛物线) (1) 一、设点或直线 (1) 二、转化条件 (2) (1)求弦长 (2) (2)求面积 (2) (3)分式取值判断 (3) (4)点差法的使用 (4) 四、能力要求 (6) 五、补充知识 (6) 关于直线 (6) 关于椭圆: (7) 例题 (7) 解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线——————————————— 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。直线与曲线的两个交点一般可以设为等。对于椭圆上的唯一的动点,还可以设为。在抛物 线上的点,也可以设为。◎还要注意的是,很多点的坐标都是设而不求的。对于 一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。

一般题目中涉及到唯一动直线时才可以设直线的参数方程。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次项,所以直线设为 或x=my+n联立起来更方便。 二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1(使用斜率转化一定不要忘了单独讨论斜率不存在的情况!)几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。三、代数运算转化完条件只需要算数了。很多题目都要将直线与圆锥曲线联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都需要联立。 (1)求弦长解析几何中有的题目可能需要算弦长,可以用弦长公式 ,设参数方程时,弦长公式可以简化为 (2)求面积 解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为AB与x轴交于D,则(d是点O到AB的距离;第三个公式教材没 有,解要用的话需要把下面的推导过程抄一下,理解一下。)。

(完整)上海高考解析几何试题

近四年上海高考解析几何试题 一.填空题: 1、双曲线116922=-y x 的焦距是 . 2、直角坐标平面xoy 中,定点)2,1(A 与动点),(y x P 满足4=?,则点P 轨迹方程 ___。 3、若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________。 4、将参数方程?? ?=+=θ θ sin 2cos 21y x (θ为参数)化为普通方程,所得方程是__________。 5、已知圆)0()5(:2 22>=++r r y x C 和直线053:=++y x l . 若圆C 与直线l 没有公共 点,则r 的取值范围是 . 6、已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 . 7、已知圆2x -4x -4+2 y =0的圆心是点P ,则点P 到直线x -y -1=0的距离是 ; 8、已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 ; 10、曲线2 y =|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条是 . 11、在平面直角坐标系xOy 中,若抛物线x y 42=上的点P 到该抛物线的焦点的距离为6, 则点P 的横坐标=x . 12、在平面直角坐标系xOy 中,若曲线24y x -=与直线m x =有且只有一个公共点,则 实数=m . 13、若直线1210l x my ++=: 与直线231l y x =-:平行,则=m . 14 、以双曲线1542 2=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 . 16 、已知P 是双曲线22 219x y a - =右支上的一点,双曲线的一条渐近线方程为30x y -=. 设12F F 、分别为双曲线的左、右焦点. 若23PF =,则1PF = 17、已知(1,2), (3,4)A B ,直线1l :20,:0x l y ==和3:l x +3y 10-=. 设i P 是 i l (1,2,3)i =上与A 、B 两点距离平方和最小的点,则△123PP P 的面积是 二.选择题:

相关文档
相关文档 最新文档