文档库 最新最全的文档下载
当前位置:文档库 › 重组质粒酶切鉴定及PCR实验

重组质粒酶切鉴定及PCR实验

重组质粒酶切鉴定及PCR实验
重组质粒酶切鉴定及PCR实验

重组质粒的酶切鉴定及PCR实验

一.实验目的

1.检验重组质粒的插入片段的大小

2.学习PCR技术的使用

二.实验原理

(一)重组质粒酶切鉴定

将含有外源DNA的转化子的E.coliDH5α菌株进行培养,并用试剂盒提取其质粒DNA,将所提取的DNA用切pUC19质粒的同一种限制性内切酶进行切割以验证所插入的外源DNA的大小。

(二)PCR

PCR(Polymerase Chain Reaction)即聚合酶链式反应是1986 年由Kallis Mullis 发现。这项技术已广泛地应用于分子生物学各个领域,它不仅可用于基因分离克隆和核酸序列分析,还可用于突变体和重组体的构建,基因表达调控的研究,基因多态性的分析等方面。本次实验旨在通过学习和掌握PCR反应的基本原理和实验技术,以验证重组质粒插入片段大小。

1.聚合酶链式反应原理

PCR是一种利用两种与相反链杂交并附着于靶DNA两侧的寡核苷酸引物,经酶促合成特异的DNA 片段的体外方法。反应过程由高温变性,低温退火和适温延伸等几步反应组成一个循环,然后反复进行,使目的的DNA 得以迅速扩增。置待扩增DNA 于高温下解链成为单链DNA 模板,人工合成的两个寡核苷酸引物在低温条件下分别与目的片段两侧的两条链互补结合,DNA聚合酶在72℃将单核苷酸从引物3'端开始掺入,沿模板5'—3'方向延伸,合成DNA 新链。由于每一循环所产生的DNA均能成为下一次循环的模板,所以PCR 产物以指数方式增加,经25—30次周期之后,理论上可增加109倍,实际上可增加107倍。

PCR 技术具有操作简便、省时、灵敏度高特异性强和对原始材料质量要求低等优点,但由于所用的TaqDNA 聚合酶缺乏5'—3'核酶外切酶活性,不能纠正反应中发生的错误核苷酸掺入,估计每9000个核苷酸会导致一个掺入错误,但是错误掺入的碱基有终止链延伸的作用倾向,使得错误不会扩大。

2.PCR的反应动力学

PCR技术类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA 的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA

模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。

PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竞争等因素。大多数情况下,平台期的到来是不可避免的。

3.PCR扩增产物

可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5’端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引物所结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3’端开始延伸,其5’端是固定的,3’端则没有固定的止点,长短不一,这就是长产物片段。进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即长产物片段)结合。引物在与新链结合时,由于新链模板的5’端序列是固定的,这就等于这次延伸的片段3’端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的短产物片段。短产物片段是按指数倍数增加,而长产物片段则以算术倍数增加,几乎可以忽略不计。这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用。

三.实验材料及仪器

1.实验材料:PRC 扩增仪,琼脂糖凝胶电泳设备,移液器,0.2ml薄壁PCR管,凝胶成像仪,模板pUC19重组质粒(插入片段125bp和564bp),寡核苷酸引物(上游引物M13F,下游引物M13R),TaqDNA聚合酶(TaKaRa,-20℃贮存),dNTPs (TaKaRa,-20℃贮存),10×PCR反应缓冲液(TaKaRa,-20℃贮存)

高速离心机,电泳仪,制胶槽,电泳槽,梳子,锥形瓶,量筒,移液枪,冰盒,枪尖,Eppendorf管,微量移液器,手套,记号笔,TAE电泳缓冲液(10×),琼脂糖,溴化乙锭(EB),DNA相对分子质量标准物DNA Marker k/HindⅢ,DL5000

四.实验步骤

(一)重组质粒的酶切、电泳检测

1.对于电泳显示插入片段在2.0kb以上的重组质粒,采用HindⅢ酶切进行验证。

大片段或高产量的重组质粒推荐的反应体系(10μl体系)如下:

轻弹混匀后,短暂离心,于37℃孵育2hr后,保存于 -20℃,备电泳检测。

2. 酶切产物电泳检测

取酶切产物10ul,加入2 ul 6×上样缓冲液,混匀后取6 ul点样。

取重组质粒10 ul,加入2 ul 6×上样缓冲液,混匀后取6 ul点样。

以λDNA/HindIII为Marker。100V恒压电泳约40min。电泳结束EB染色10min,水洗后紫外灯下观察实验结果。

(二)重组质粒的PCR验证/PCR扩增目的基因

对于电泳显示插入片段在2.0kb以下的重组质粒,采用PCR进行验证。

引物此次重组用到的载体是pUC19,限制性内切酶为Hind Ⅲ,所以选择Hind Ⅲ酶切位点两侧一定距离的序列制作引物。

由于载体pUC19上两引物间序列的长度是150bp,所以PCR扩增产物的长度(bp)=150+插入片段的长度。

下图所示为pUC19部分序列,即引物来源:

M13F(-47): EcoRⅠ

cgccagggttttcccagtcacgac gttgTaaaacgacggccagt gaatt c gagctcggtacccggggatcctctagagtcgacctgcagg catgc aagctt ggcgtaatcatggtcatagctgtt tcctgtgtgaaattgttatccgctc

Hind ⅢM13R(-48)(互补链)

1.反应体系的建立

除了此反应体系之外,还要做三个反应体系:其他组分不变,只将编号6的组分换成共用564bp模板,pUC19质粒(作为模板对照),ddH2O(作为阴性对照)。振荡混匀,然后短暂离心。

2. 反应程序的设定

(1)预变性:让DNA双链充分解离,然后第一次退火过程时候引物可以尽量多的结合到模版上面这主要是为了保险起见,使模板DNA的二级结构充分打开。

(2)变性:通过加热使DNA双螺旋的氢键断裂,双链解离形成单链DNA。(3)复性:当温度突然降低时由于模板分子结构较引物要复杂的多,而且反应体系中引物DNA量大大多于模板DNA,使引物和其互补的模板在局部形成杂交链,而模板DNA双链之间互补的机会较少。

(4)延伸:在DNA聚合酶和4种脱氧核糖核苷三磷酸底物及镁离子存在的条件下,5'-→3'的聚合酶催化以引物为起始点的DNA链延伸反应。

(5)终延伸:循环完成后使PCR反应完全以提高扩增产量,在用普通Taq酶进行PCR 扩增时在产物末端加A尾的作用,可以直接用于TA克隆的进行

3. PCR产物检测:

1%的琼脂糖凝胶电泳:20ulPCR产物中加3.0ul 10×上样缓冲液,混合均匀,取5ul 点样。以DL2000plus为Marker。100V恒压电泳约40min。电泳结束EB染色10min,水洗后紫外灯下观察实验结果。

五.实验结果及分析

(一)重组质粒的酶切电泳结果

将重组质粒酶切之后进行凝胶电泳,紫外成像如图1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

图1 第1-5组重组质粒酶切凝胶电泳成像图

从左到右各泳道分别为:

第1泳道:λDNA/HindIII;

第2-19泳道:第1-5组重组与酶切质粒(R1,R1/HindIII,R2,R2/HindIII);

第20泳道:pUC19/HindIII;

第21泳道:λDNA/HindIII。

我所在的组别是第1组,样品在第2-5泳道。

第2、3泳道分别为重组质粒1和重组质粒1的酶切,具体分析见图2 。

第4、5泳道分别为重组质粒2和重组质粒2的酶切,具体分析见图3 。

图2 重组质粒1酶切对比图3 重组质粒2酶切对比如图2所示。泳道1为λDNA/HindIII,泳道20为pUC19/HindIII,泳道2为本组重组质粒样品1,泳道3为重组质粒的酶切。

带(1)大小在5000-6000bp左右,与第2泳道中的重组质粒位置近似,因此带(1)可以理解为未被酶切开的重组质粒;带(2)大小4000左右,与第2泳道中重组质粒前面的那条带近似,但却变得暗了,可以判断为未被酶切的重组质粒,也说明泳道2中最前面的那条带为外源DNA重组质粒。带(3)大小与酶切pUC19质粒大小相似,可以判断为重组质粒酶切后的质粒载体;而带(4)大小在564bp左右,为酶切开的λDNA片段。

如图3所示。泳道1为λDNA/HindIII,泳道20为pUC19/HindIII,泳道4为本组重组质粒样品2,泳道5为重组质粒的酶切。

带(2)大小4000左右,与第4泳道中的重组质粒位置近似,因此带(2)可以理解为未被酶切开的重组质粒;带(3)大小与酶切pUC19质粒大小相似,可以判断为重组质粒酶切后的质粒载体;而带(4)大小在2322 bp左右,为酶切开的λDNA片段。

泳道4中,在重组质粒上方又出现了一条带(1),大小在4316bp 左右,可能为酶切开而没有连接上的λDNA片段。

(二)重组质粒的PCR验证结果

1.琼脂糖电泳展示的克隆片段的PCR扩增结果如下图:

图4 第1-5组重组质粒的PCR验证结果

从左到右各泳道点样如下表所示:

从图中可以看出,第8泳道没有条带,这是由于第3组的同学操作失误,忘记加564bp模板造成的。

我所在的组别是第1组,即泳道2、3 。

泳道2为564bp模板,泳道3为本组样品中的2号样品。具体分析如下:

图5 PCR扩增目的基因结果图图6 本组重组质粒2及酶切图图5中,泳道1为DL2000plus,泳道2为模板564bp,泳道3为本组提取的两个样品中的一个——重组质粒2 。泳道9是以pUC19质粒代替模板PCR扩增产物,泳道10是以ddH2O代替模板PCR扩增产物。

泳道2 为564bp模板PCR产物,显示的条带大小为750bp左右,因为两引物间序列的长度是150bp,所以泳道2显示的条带结果较为理想。

泳道3为本组所提重组质粒2,其酶切图如图6所示。其中泳道1为λDNA/HindIII,泳道4、5分别为重组质粒及其酶切条带。泳道5中的带(4)为酶切后的λDNA片段,大小为2322bp。将此条带进行PCR 扩增后,得到的条带即为图5中的泳道三所示条带,此条带在2000bp-3000bp之间,基本与插入片段的大小相符。

泳道9以pUC19质粒代替模板PCR 扩增产物作为模板对照。显示的较明显的条带在100bp-250bp之间,应为150bp的引物序列,是目的扩增片段,泳道9中无其他杂带,结果较为理想。

泳道10 以ddH2O代替模板PCR 扩增产物作为阴性对照,但出现了弥散性条带,推测可能是引物设计中,出现引物自身配对结合的情况导致的引物二聚体。

2. 克隆片段的定量计算

量取DNAmarker DL2000plus 条带的迁移距离(如表1所示)。以迁移距离为横坐标,DNA 大小的对数为纵坐标,绘制曲线(如图7所示)。

测得图4中第2、3泳道所示条带的迁移距离分别为3.51cm 和2.40cm 。根据标准曲线(R 2= 0.9785)计算出片段大小分别为660bp 和2511bp 。实际片段大小应分别为714bp 和2472bp ,误差分别为7.6%和1.6%。

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

L g (b p )migration distance/cm

图1克隆片段大小与电泳迁移距离

六.注意事项

1. 限制性内切酶的酶切反应属于微量操作技术,无论是DNA样品还是酶的用量都极少,必须严格注意吸样量的准确性并确保样品和酶全部加入反应体系;

2. 酶切反应的所有塑料制品(Eppendorf管、吸头等)必须是新的,并经过高温灭菌,操作时打开使用,操作过程不要求无菌,但要注意手和空气中杂酶的污染,因此要求环境干净,戴手套操作,尽量减少走动,缩短Eppendorf管的开盖时间。

3. 注意酶切加样的顺序,一般先加重蒸水,其次加缓冲液和DNA,最后加酶。前几步要把样品加到管底的侧壁上,加完后用力将其甩到管底,而酶液要在加入前从-20℃冰箱取出,酶管放置在冰上,取酶液时洗头应从表面吸取,防止由于插入过深而使吸头外壁沾染过多的酶液,取出的酶液应立即加入反应混合也得液面以下,并充分混匀。酶液使用完毕后立即放回冰箱,防止酶的失活。

4. Tm值(解链温度)=4(G+C)+2(A+T),复性温度=Tm值-(5~10℃),本实验两个引物的Tm分别为64.7℃,57.9℃,选用退火温度为58℃,这是因为在Tm值允许范围内,选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。

5. PCR管的盖子一定要盖紧,以防蒸干。

七.分析与讨论

(一)PCR反应的要素

在PCR反应体系中主要存在5类物质,即引物、酶、dNTP、模板和Mg2+。

1.引物

引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。

设计引物应遵循以下原则:

(1)引物长度:引物长度根据统计学计算,长约17个碱基的寡核苷酸序列在基因组中可能出现的机率的为1次。因此,引物长度一般最低不少于16个核苷酸,而最高不超过30个核苷酸。典型的引物18 到24个核苷长。

引物需要足够长,保证序列独特性,并降低序列存在于非目的序列位点的

可能性。但是长度大于24 核苷的引物并不意味着更高的特异性。较长的序列可能会与错误配对序列杂交,降低了特异性,而且比短序列杂交慢,从而降低了产量。

(2)引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。(3)引物碱基:(G+C)含量以40-60%为宜,(G+C)太少扩增效果不佳,(G+C)过多易出现非特异条带。A、T、G、C最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。

(4)避免引物内部出现二级结构,尤其是发夹结构。两个引物之间不应发生互补,特别是在引物3’端,即使无法避免,其3’端互补碱基也不应大于2个碱基,否则易生成引物二聚体,产生非特异的扩增条带。

(5)引物3'端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。

(6)引物中有或能加上合适的酶切位点。被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。

(7)引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。引物量:每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引

物之间形成二聚体的机会。

本次实验所使用的上下游引物M13F、M13R分别与puc19多克隆位点两端的24bp长度的序列配对。其引物序列分别为(5’-3’):M13F/ CGC CAG GGT TTT CCC AGT CAC GAC;M13R/AGC GGA TAA CAA TTT CAC ACA GGA。pUC19载体上两引物之间的长度为150bp,因此目的扩增的片段长度=(多克隆位点插入片段长度+150bp)。上下游引物的Tm值分别为64.7℃和57.9℃,相差达到6.7℃,基本符合引物设计要求。

2.聚合酶及其浓度

Taq DNA聚合酶是从栖热水生菌中提纯的天然酶或是大肠菌合成的基因工程酶[3]。本次实验催化PCR反应的酶量为0.05 U/μL,如果聚合酶的浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。

3.dNTP的质量与浓度

dNTP的质量与浓度和PCR扩增效率有密切关系,在PCR反应中,dNTP应为50~200umol/L(本次实验为200μmol/L)。4种dNTP的浓度应相等,如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。如果4种dNTP 浓度过低会降低PCR产物的产量,而dNTP浓度过高则会与Mg2+结合,使游离的Mg2+浓度降低。

4.模板

模板的量与纯化程度,是PCR成败与否的关键环节之一,提取的核酸可直接作为模板用于PCR反应。模板的量应适中(本实验为0.4 ng/μL),。如果模板的量过低会降低PCR产物的产量,而模板的量过高则会与Mg2+结合,使游离的Mg2+浓度降低。另外,模板纯化程度过低会产生非目的扩增产物。

5.Mg2+

Mg2+浓度对PCR扩增的特异性和产量有显著的影响,在PCR反应中,Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少。

(二)PCR反应条件的选择

PCR反应条件为温度、时间和循环次数。

1. 温度与时间设置

基于PCR原理三步骤而设置变性、退火、延伸三个温度点。在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物沿模板延伸。对于较短靶基因(长度为100~300bp时)可采用二温度点法,除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸。

(1)变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因。一般情况下,93~94℃1min足以使模板DNA变性,若低于93℃则需延长时间,但温度不能过高,因为高温环境对酶的活性有影响。此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败。

(2)退火温度与时间:退火温度是影响PCR特异性的较重要因素。变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合。由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞。退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长度。对于20个核苷酸,(G+C)含量约50%的引物,55℃为选择最适退火温度的起点较为理想。引物的复性温度可通过以下公式帮助选择合适的温度:

Tm值(解链温度)=4(G+C)+2(A+T)

复性温度=Tm值-(5~10℃)

在Tm值允许范围内,选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。复性时间一般为30~60s,足以使引物与模板之间完全结合。

(3)延伸温度与时间:Taq DNA聚合酶的生物学活性:

70~80℃150bp /s?酶分子

70℃60bp/s?酶分子

55℃24bp/s?酶分子

高于90℃时,DNA合成几乎不能进行。PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够的。3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。延伸进间过长会导致非特异性扩增带的出现。对低浓度模板的扩增,延伸时间要稍长些。

2. 循环次数

循环次数决定PCR扩增程度,PCR循环次数主要取决于模板DNA的浓度。一般的循环次数选在20~40次之间,循环次数越多,模板、引物特异性下降,聚合酶的活性也会降低。因而非特异性产物的量随之增多。本次实验中循环次设定为24次。

(三)扩增产物电泳条带分析

在琼脂糖展示扩增产物时往往会出现4种干扰现象,即假阴性——不出现扩增条带;假阳性——出现的PCR扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高;非特异性扩增带;片状拖带。

1.假阴性和假阳性

导致实验结果出现假阴性和假阳性的原因很多,如引物设计是否合理,两条引物的浓度是否对称,模板核酸的制备,酶的质量,PCR循环条件等,应根据实验设计和操作记录具体分析,再通过重复实验进行验证。

2. 非特异性扩增带

PCR扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带与非特异性扩增带。非特异性条带的出现,可能是引物与靶序列不完全互补、或引物聚合形成二聚体或退火温度过低、PCR循环次数过多引起的。可以设计阴性对照实验与实验组的结果进行对比,以消除影响。

3. 片状拖带

在本次PCR扩增电泳结果中出现涂抹带的现象,其原因应该是与上样量过多有关。其对策有减少dNTP的浓度,减少循环次数或是通过计算减少上样量。

(四)克隆片段的进一步验证

在PCR实验当中,可能会出现扩增条带与预计插入的重组质粒片段不符合的情况。因为本次实验采用的是2%的琼脂糖凝胶,同时作图法计算DNA片段大小往往会因测量不准确而引入人为误差(R2= 0.9785),因而要精确确定克隆片段的大小,分析克隆片段与预计插入的重组质粒片段大小不符合的原因,还需要设计实验进一步验证。可考虑的方法有:对重组质粒进行非克隆位点单酶切,进行聚丙烯酰胺凝胶电泳精确检测;对重组质粒产物纯化后进行分光光度检测;用核酸测序仪直接测定重组质粒片段大小等。

实验二 阳性重组质粒的抽提及双酶切鉴定

实验二阳性重组质粒的抽提及双酶切鉴定 实验目的:练习质粒的抽提及双酶切的实验过程,熟悉相关操作。 实验材料及设备 pMD-T重组质粒;内切酶Xba I 及Pst I;10×M Buffe r;琼脂糖;电泳仪及电泳所需试剂。 实验步骤 A 大肠杆菌的扩繁及质粒DNA碱裂解法抽提 挑取筛选平板上的白色菌落, 接种到5ml LB液体培养基(含100μg/ml Amp)中, 37℃振荡培养约12小时至对数生长后期 ↓ 取培养液倒入2 ml eppendorf管中,4℃下12000 rpm离心2分钟,去上清 ↓ 沉淀中加入150 μl溶液I(50 mmol/L 葡萄糖,25 mmol/L Tris.Cl (pH8.0),10mmol/L EDTA (pH8.0)), 剧烈振荡使菌体悬浮,室温下放置5分钟 ↓ 加入250 μl新配制的溶液II (0.2 mol/L NaOH, 1%SDS, 临用前配制) 盖紧管口,快速温和颠倒eppendorf管数次, 以混匀内容物(千万不要振荡),室温下放置5分钟 ↓ 加入180 μl预冷的溶液III (5 mol/L KAc 60ml, 冰醋酸11.5ml, H2O 28.5ml, 定容至100ml , 并高压灭菌) 盖紧管口,并倒置离心管,温和振荡10秒,使沉淀混匀 ↓ 冰浴10分钟,4℃下12000rpm离心10分钟 ↓ 上清液移入干净eppendorf管中,计算体积 ↓ 加入各1/2体积的Tris-饱和酚以及氯仿/异戊醇(24:1),混匀 20℃下12000 rpm离心10分钟,取上清, 计算体积 ↓ 加等体积的氯仿/异戊醇(24:1),12000 rpm离心10分钟 ↓ 将上清移入干净eppendorf管中,计算体积 ↓ 加入2倍体积的无水乙醇 ↓ 混匀后置于-20℃冰箱中30分钟

质粒DNA的提取、定量与酶切鉴定

一、实验目的 1、掌握PCR基因扩增的原理和操作方法; 2、掌握碱裂解法提取质粒的方法; 3、了解紫外吸收法检测DNA浓度和纯度的原理、方法; 4、学习水平式琼脂糖凝胶电泳操作。 二、实验原理 1.PCR: PCR(Polymerase Chain Reaction)即聚合酶链式反应,是指在DNA聚合酶催化下,以DNA为模板,特定引物为延伸起点,通过变性、退火、延伸等步骤,在体外复制DNA 的过程。 ①延伸:溶液反应温度升至中温72℃,在 Taq酶作用下,以dNTP为原料,引物为复制起点,模板DNA的一条单链在解链和退火之后延伸为一条双链; ②变性:加热使模板DNA在高温下90℃-95变性,双链解链; ③退火:降低溶液温度,使合成引物在低温(35-70℃,一般低于模板Tm值的5℃左右),与模板DNA互补退火形成部分双链。 2. 质粒DNA的提取与定量——碱裂解法: A、基于染色体DNA与质粒DNA的变性与复性的差异; B、高碱性条件下,染色体DNA和质粒DNA变性;

C、当以高盐缓冲液调节其pH值至中性时,变性的质粒DNA复性并保存在溶液中,染色体DNA不能复性而形成缠连的网状结构,通过离心形成沉沉淀去除。 D、定量检测原理:物质在光的照射下会产生对光的吸收效应; 而且物质对光的吸收是具有选择性的; 各种不同的物质都具有其各自的吸收光谱。 3.酶切鉴定:利用限制性内切酶。 4、琼脂糖凝胶电泳: A、琼脂糖是一种天然聚合长链状分子,可以形成具有刚性的滤孔,凝胶孔径的大小决定于琼脂糖的浓度; B、DNA分子在碱性环境中带负电荷,在外加电场作用下向正极泳动; C、DNA分子在琼脂糖凝胶中泳动时,有电荷效应与分子筛效应。不同的DNA,分子量大小及构型不同,电泳时的泳动率就不同,从而分出不同的区带(迁移速度与分子量的对数值成反比关系)。 三、材料与方法: (一)、材料 1、样品: 菌液(大肠杆菌DH5a菌株)、引物、2*Premix Taq、灭菌离子水、含pMD19-T质粒的大肠杆菌DH5α 2、试剂: LB培养基、AXYGEN试剂盒(溶液S1、S2、S3、去蛋白液W1、漂洗液W2、洗脱液EB)、电泳指示剂、Gelview、TBE、琼脂糖、DNA Marker 500、无菌水、10*M酶切缓冲液Buf R、HindⅢ(15U/ul)、EcoR I (12U/ul) 3、仪器与器材: PCR仪、台式离心机、微量加样枪、灭菌的薄壁离心管、凝胶电泳系统、凝胶成像系统、

重组质粒DNA的提取及酶切鉴定

实验七重组质粒DNA的提取及酶切鉴定 【实验原理】 分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS法、羟基磷灰石层析法等。在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。 本实验采用SDS碱裂解法提取重组质粒DNA,十二烷基磺酸钠(SDS)是一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性。 限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA序列之内或其附近的特异位点上,并切割双链DNA。限制性内切酶识别序列长度一般为4~8个呈回文序列的特异核苷酸对。由于限制性内切酶的切割特性不同,分子生物学中主要用到Ⅱ型限制性内切酶(切割位置在识别序列内部)。 对质粒进行酶切,通过跑胶观察片段大小,从而鉴定质粒。 【实验步骤】 本次实验所用的质粒提取试剂盒为天根的质粒小提试剂盒,操作步骤按说明书进行。 1. 吸附柱中加500ul 平衡液(BL),12000rpm离心1min ,弃收集管中的液体。 2.取1.5ml菌液至2ml离心管中,12,000rpm离心1min,弃上清。 3. 加250ul solution Ⅰ(P1),vortex。 4. 加250 solution Ⅱ(P2),上下颠倒混匀。操作时间不能超过5min 注:此步骤不宜超过5 min。 5. 加350 solution Ⅲ(P3),立即颠倒混匀几次。12000rpm离心10min。 6. 吸取上清加入吸附柱中,尽量不要吸出沉淀12000rpm离心1min ,弃收集管中的液体。注:此时4℃离心不利于沉淀沉降。 7. 加入600μL漂洗液(PW)于离心吸附柱中,12000rpm离心1min ,倒掉废液。 8. 重复上一步, 9. 空管离2min。将吸附柱放入1.5ml离心管中,在超净台中晾5min。10. 将700 μl的Rinse B加入Spin Column中,12,000 rpm离心30 sec,弃滤液。 10. 滴加50ul elution buffer(EB)至膜中央,室温放置2min后,12000rpm离心1min。离心管中即为纯化后的质粒。 11.构建重组质粒酶切体系,限制性内切酶反应一般在灭菌的15 ml PCR离心管中进行。 在冰浴上建立酶切反应体系(20 μl)

质粒DNA的提取、酶切与鉴定

实验二十一质粒DNA的提取、酶切与鉴定 一、质粒DNA的提取 [原理]分离质粒DNA的方法包括三个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。 本实验采用碱变性法抽提质粒DNA,是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。在pH高达12.6的碱性条件下,染色体DNA 的氢键断裂,双螺旋结构解开而变性。质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离。当以pH4.8的醋酸钾高盐缓冲液去调节其pH至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。 [试剂] 1.溶液I: 50mmol/L葡萄糖、10mmol/L EDTA、25mmol/L Tris-HCl pH8.0;用前加溶菌酶4mg/ml。 2.溶液II: 200mmol/L NaOH 、1% SDS。 3.溶液III: pH4.8醋酸钾缓冲液(60 ml 5mol/L 醋酸钾、11.5ml冰醋酸、28.5ml 蒸馏水) 4.TE缓冲液pH8.0 5.含RNaseA的TE缓冲液:TE缓冲液含20μg/ml RNaseA。 6.苯酚:氯仿(1:1,v/v):酚需在160℃重蒸,加入抗氧化剂8-羟基喹啉,使体积分数为0.1%,并用Tris-HCl缓冲液平衡两次。氯仿中加入异戊醇,氯仿/异戊醇为24:1(v/v)。 7.1×LB溶液 8.100μg/ml氨苄青霉素 [器材] 1.TGL-16型台式高速离心机

2.1.5ml塑料离心管 3.离心管架 4.微量移液器 5.常用玻璃器皿 [操作步骤] 1.培养细菌将带有质粒pUC19的大肠杆菌接种于5ml含100μg/ml氨苄青霉素的1×LB中,37℃培养过夜。 2.取液体培养菌液1.5ml置塑料离心管中,10 000r/min离心lmin,去掉上清液。加入150μl溶液I,充分混匀,在室温下放置10min。 3.加入200μl新配制的溶液II,加盖后温和颠倒5~10次,使之混匀,冰上放置2min。 4.加入150μl冰冷的溶液III,加盖后温和颠倒5~10次,使之混匀,冰上放置10min。 5.用台式高速离心机,10 000r/min离心5min,将上清液移入干净的离心管中。 6.向上清液中加入等体积酚/氯仿(1:1,v/v),振荡混匀,转速10 000r/min,离心2min,将上清液转移至新的离心管中。 7.向上清液加5mol/LNaCl至终浓度为0.3mol/L,混匀,再加入2倍体积无水乙醇,混匀,室温放置2min,离心5min,倒去上清乙醇溶液,把离心管倒扣在吸水纸上,吸干液体。 8.加0.5ml 70%乙醇,振荡并离心,倒去上清液,真空抽干或室温自然干燥。 9.加入50μl含RNase A 20μg/ml的TE缓冲液溶解提取物,室温放置30min以上,使DNA充分溶解待用或置-20℃备用。 二、质粒DNA 的限制性内切酶酶切及琼脂糖凝胶电泳分离、鉴定 [原理]限制性内切核酸酶(也可称限制性内切酶)是在细菌对噬菌体的限制和修饰现象中发现的。细菌内同时存在一对酶,分别为限制性内切酶(限制作用)和DNA甲基化酶(修饰作用)。它们对DNA底物有相同的识别顺序,但生物功能却相反。 Ⅱ型限制性内切酶,具有能够识别双链DNA分子上的特异核苷酸顺序的

质粒DNA 酶切鉴定

实验五质粒DNA的微量提取及酶切鉴定 字体: 质粒是一类在细菌细胞内发现的独立于染色体外,能够自主复制的环形双链DNA 分子。 一、质粒DNA的提取,它们都包括三个基本的步骤:细菌的生长和质粒的扩增;菌体的收集裂解;质粒DNA的分离和纯化。 1、细菌的生长和质粒的扩增 从琼脂培养基平板上挑取一个单菌落,接种到含适当抗生素的液体培养基中培养。对于高拷贝的质粒(pUC系列)来说,只要将培养物放到标准的LB或TB培养基中生长到对数晚期,就可以大量提取质粒,而不必选择性地扩增质粒DNA。但对于拷贝数较低的质粒(如pBR322)来说,则需在得到部分生长的细菌培养物中加入氯霉素继续培养若干小时,以便对质粒进行选择性扩增。因为氯霉素可以抑制宿主菌的蛋白质合成,从而阻止了细菌染色体的复制,但是质粒则仍可继续复制,在若干小时内,其拷贝数持续上升。 (问题:提取质粒时,对于不同拷贝的质粒,应如何进行细菌的培养?为什么?)2、细菌的收集、裂解和质粒DNA的分离 细菌的收集可通过离心来进行,而细菌的裂解则可以采取多种方法,包括用非离子型去污剂、有机溶剂或碱处理及加热处理等。 质粒分离的基本原理是利用宿主菌(一般是大肠杆菌菌株)DNA与质粒DNA之间的两种主要性质差异: a.大肠杆菌的染色体较一般的载体质粒DNA大得多。 b.从细胞中提取得到的大肠杆菌DNA主体是变性的线性分子,而大多数质粒DNA 是共价闭合的环状分子。 利用溶菌酶和加热处理的方法,使细菌的线状染色体DNA变性,通过离心,可以使染色体DNA和变性蛋白质、RNA分子一起沉淀下来,而质粒分子仍留于上清中。问题1:某些大肠杆菌的菌株不能用加热的方法裂解。 (1)易产生多糖的如大肠杆菌菌株,如HB101和TG1等。尤其是HB101的一些变种和衍生物,在用去污剂或加热裂解时可释放处相对大量的糖,从而影响质粒的纯化,抑制多种限制性内切酶的活性。 (2)表达内切核酸酶A的大肠杆菌菌株(endA+),如HB101。因为煮沸不能完全灭活内切核酸酶A,以后在Mg2+存在下温育(如用限制酶消化)时,质粒DNA 会被降解。但通过一个附加步骤(用酚:氯仿进行抽提)可易避免此问题。 3、质粒DNA的纯化 纯化质粒DNA的方法很多,通常使用的方法都是利用了质粒DNA相对较小和共价闭合环状这两个基本性质。多年来,氯化铯-溴化乙锭梯度平衡离心一直是制备大量质粒DNA的方法,然而该过程既昂贵又费时,为此发展了许多代替方法,其中主要包括利用离子交换层析、凝胶过滤层析、分级沉淀(聚乙二醇和LiCI 分级沉淀法)等分离质粒DNA和宿主DNA的方法。对于小量制备的质粒DNA,经过苯酚抽提、RNA酶消化和酒精沉淀等简单步骤除去残余蛋白和RNA,达到纯化的目的。

质粒DNA的提取、定量、酶切与PCR鉴定实验报告

质粒 DNA 的提取、定量、酶切与PCR 鉴定 一、实验目的 1.学习并掌握用碱裂解法提取质粒 DNA 的方法; 2.学习并掌握了解质粒酶切鉴定的方法; 3.学习并掌握紫外吸收检测 DNA 浓度和纯度的原理和方法; 4.学习并掌握 PCR 基因扩增的实验原理和操作方法; 5.学习并掌握水平式琼脂糖凝胶电泳的原理和使用方法。 二、实验原理 1.PCR(多聚酶链式反应 ) 在 DNA 聚合酶催化下,可以 DNA 为模板,以特定引物为延伸起点,以 dNTP 为原料,通过变性、退火、延伸等步骤,在体外(缓冲液中)复制DNA ,使目的 DNA 按 2n方式呈指数形式扩增。 PCR一次循环的具体反应步骤为: A. 变性:加热反应系统至95℃,使模板 DNA 在高温下完全变性,双链解链。 B. 退火:逐渐降低溶液温度,使合成引物在低温( 35-70℃, 一般低于模板 Tm 值的 5℃ 左右),与模板DNA 互补退火形成部分双链。 C. 延伸:溶液反应温度升至中温72℃,在Taq 酶作用下,以dNTP 为原料,引物为复 制起点,模板 DNA 的一条单链在解链和退火之后延伸为一条双链。 2.质粒 DNA 的提取与制备 (1). 碱裂解法: 染色体 DNA 与质粒 DNA 的变性与复性存在差异: A. 高碱性条件下,染色体DNA 和质粒 DNA 均变性;

B. 当以高盐缓冲液调节其pH 值至中性时,变性的质粒DNA 复性并保存在溶液中,染色体 DNA 不能复性而形成缠连的网状结构,可通过离心形成沉沉淀去除。 (2). 离心层析柱: A. 硅基质膜在高盐、低 pH 值状态下可选择性地结合溶液中的质粒DNA ,而不吸附溶液中的蛋白质和多糖等物质; B.通过去蛋白液和漂洗液将杂质和其它细菌成分去除; C.低盐,高 pH 值的洗脱缓冲液将纯净质粒 DNA 从硅基质膜上洗脱。 3.质粒 DNA 的定量分析(紫外分光光度法): A.物质在光的照射下会产生对光的吸收效应,且其对光的吸收是具有选择性; B.各种不同的物质都具有其各自的吸收光谱 : DNA 分对波长 260nm 的紫外光有特异的吸收峰 蛋白质对波长 280nm 的紫外光有特异的吸收峰 碳水化合物对 230nm 的紫外光有特异的吸收峰 C. A260/A280 及 A260/A230 的比值可以反应DNA 的纯度; A260/A280=1.8DNA 纯净 A260/A280<1.8表示样品中含蛋白质(芳香族)或酚类物质 A260/A280>1.8含 RNA 杂质,用 RNA 酶去除。 4.质粒 DNA 的酶切鉴定: 限制性内切酶是DNA 重组操作过程中所使用的基本工具。限制性内切酶能特异性地与 一段被称为限制酶识别序列的特殊DNA 序列结合,或是与其附近的特异位点结合,并 在结合位点切割双链DNA 。

实验3质粒DNA的酶切鉴定

实验三质粒DNA的酶切鉴定 南京大学生命科学院 一、实验目的 1、学习和掌握限制性内切酶的特性 2、学习酶解的操作方法,初步理解限制性内切酶是DNA重组技术的关键工具 3、进一步熟练掌握琼脂糖凝胶电泳的方法 二、实验原理 限制性核酸内切酶是一种工具酶,这类酶的特点是能够识别双链DNA分子特异性核酸序列,并能在这个特异性核苷酸序列内切断DNA双链,形成一定长度和顺序的DNA 片段。限制性核酸内切酶是体外剪切基因片段的重要工具,与核酸聚合酶、连接酶以及末端修饰酶等一起称为工具酶。限制性核酸内切酶不仅是DNA重组中重要的工具,而且还可以用于基因组酶切图谱的鉴定。 寄主控制的限制与修饰现象 限制与修饰系统是细胞的一种防卫手段。各种细菌都能合成一种或几种能够切割DNA双链的核酸内切酶,它们以此来限制外源DNA存在于自身细胞内,但合成这种酶的细胞自身的DNA不受影响,因为这种细胞还合成了一种修饰酶,对自身的DNA进行了修饰,限制性酶对修饰过的DNA不能起作用。这种现象被称为寄主控制的限制与修饰现象。 限制性核酸内切酶的类型及特性 按限制酶的组成、与修饰酶活性关系以及切断核酸的情况不同,分为三类: 第一类(I型)限制性内切酶能识别专一的核苷酸顺序,并在识别点附近的一些核苷酸上切割DNA分子中的双链,但是切割的核苷酸顺序没有专一性,是随机的。这类限制性内切酶在DNA重组技术或基因工程中用处不大,无法用于分析DNA结构或克隆基因。这类酶如EcoB、EcoK等。 第二类(II型)限制性内切酶能识别专一的核苷酸顺序,并在该顺序内的固定位置上切割双链。由于这类限制性内切酶的识别和切割的核苷酸都是专一的。因此,这种限制性内切酶是DNA重组技术中最常用的工具酶之一。这种酶识别的专一核苷酸顺序最常见的是4个或6个核苷酸,少数也有识别5个核苷酸以及7个、8个、9个、10

重组质粒的酶切鉴定及PCR实验

重组质粒的酶切鉴定及PCR实验 一、【实验目的】 1、酶切鉴定重组质粒插入片段的大小; 2、学习和掌握PCR反应的基本原理和操作技术,了解引物设计的基本要求。 二、【实验原理】 1、PCR反应基本原理 PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物 结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链,重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的 基因扩增放大几百万倍。 PCR反应原理图 2、PCR反应体系与反应条件

(1) 标准的PCR反应体系

①PCR反应的缓冲液提供合适的酸碱度与某些离子 ②镁离子浓度总量应比dNTPs的浓度高,常用1.5mmol/L ③底物浓度 dNTP以等摩尔浓度配制,20~200umol/L ④TaqDNA聚合酶 2.5U(100ul) ⑤引物浓度一般为0.1 ~ 0.5umol/L ⑥反应温度和循环次数 变性温度和时间95℃,30s 退火温度和时间低于引物Tm值5 ℃左右,一般在45~55℃ 延伸温度和时间72℃,1min/kb(10kb内) Tm值=4(G+C) +2(A+T) 循环次数:一般为25 ~ 30次。循环数决定PCR扩增的产量。模板初始浓度低,可增加循环数以便达到有效的扩增量。但循环数并不是可以无限增加的。一般循环数为30个左右,循环数超过30个以后,DNA聚合酶活性逐渐达到饱和,产物的量不再随循环数的增加而增加,出现了所谓的“平台期”。 3、PCR的循环参数 (!)预变性(Initial denaturation) 模板DNA完全变性与PCR酶的完全激活对PCR能否成功至关重要,建议加热时间参考试剂说明书,一般未修饰的Taq酶激活时间为两分钟。 (2)循环中的变性步骤 循环中一般95℃,30秒足以使各种靶DNA序列完全变性,可能的情况下可缩短该步骤时间。变性时间过长损害酶活性,过短靶序列变性不彻底,易造成扩增失败。 (3)引物退火(Primer annealing) 退火温度需要从多方面去决定,一般根据引物的Tm值为参考,根据扩增的长度适当下调作为退火温度。然后在此次实验基础上做出预估。退火温度对PCR 的特异性有较大影响。 (4)引物延伸 引物延伸一般在72℃进行(Taq酶最适温度)。但在扩增长度较短且退火温度较高时,本步骤可省略。延伸时间随扩增片段长短而定,一般推荐在 1000bp以上,含Pfu及其衍生物的衍生设定为1min/kbp。 (5)循环数 大多数PCR含25-40循环,过多易产生非特异扩增。 (6)最后延伸 在最后一个循环后,反应在72℃维持5-15分钟.使引物延伸完全,并使单链产物退火成双链。 三、【实验步骤】 1、重组质粒的酶切、电泳检测 (1)按下表进行加样后置于37℃水浴锅中反应1h

质粒的提取酶切 实验报告

实验一质粒的提取酶切 实验目的 掌握质粒小量快速提取法。用琼脂糖凝胶电泳法鉴定其纯度。 实验原理 质粒是一种染色体外的稳定遗传因子。大小在1~200kb之间,具有双链闭合环状结构的DNA分子。主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。他可独立游离在细胞质内,也可整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能却赋予宿主细胞的某些表型。 采用溶菌酶可破坏菌体细胞壁,十二烷基磺酸钠(SDS)可使细胞壁裂解,经溶菌酶和阴离子去污剂(SDS)处理后,细菌DNA缠绕附着在细胞壁碎片上,离心时易被沉淀出来,而质粒DNA则留在上清液中。用酒精沉淀洗涤,可得到质粒DNA。 在细胞内,共价闭环DNA(cccDNA)常以超螺旋形式存在。若两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,这种松弛型的分子叫作开环DNA(ocDNA)。在电泳时,同一质粒如以cccDNA形式存在,它比其开环和线状DNA的泳动速度都快,因此在本实验中,质粒DNA在电泳凝胶中呈现3条区带。 限制性内切酶是一种工具酶,这类酶的特点是具有能够识别双链DNA分子上的特异核苷酸顺序的能力,能在这个特异性核苷酸序列内,切断DNA的双链,形成一定长度和顺序DNA片段。EcoR I和Bgl II的识别序列和切口是: EcoR I:G↓AATTC Bgl II: A↓GATCT G,A等核苷酸表示酶的识别序列,箭头表示酶切口。限制性内切酶对环状质粒DNA有多少切口,就能产生多少酶切片段,因此鉴定酶切后的片段在电泳凝胶的区带数,就可以推断酶切口的数目,从片段的迁移率可以大致判断酶切片段大小的差别。用已知分子量的线状DNA为对照,通过电泳迁移率的比较,就可以粗略推测分子形状相同的未知DNA的分子量。

重组质粒酶切鉴定及PCR实验

重组质粒的酶切鉴定及PCR实验 一.实验目的 1.检验重组质粒的插入片段的大小 2.学习PCR技术的使用 二.实验原理 (一)重组质粒酶切鉴定 将含有外源DNA的转化子的E.coliDH5α菌株进行培养,并用试剂盒提取其质粒DNA,将所提取的DNA用切pUC19质粒的同一种限制性内切酶进行切割以验证所插入的外源DNA的大小。 (二)PCR PCR(Polymerase Chain Reaction)即聚合酶链式反应是1986 年由Kallis Mullis 发现。这项技术已广泛地应用于分子生物学各个领域,它不仅可用于基因分离克隆和核酸序列分析,还可用于突变体和重组体的构建,基因表达调控的研究,基因多态性的分析等方面。本次实验旨在通过学习和掌握PCR反应的基本原理和实验技术,以验证重组质粒插入片段大小。 1.聚合酶链式反应原理 PCR是一种利用两种与相反链杂交并附着于靶DNA两侧的寡核苷酸引物,经酶促合成特异的DNA 片段的体外方法。反应过程由高温变性,低温退火和适温延伸等几步反应组成一个循环,然后反复进行,使目的的DNA 得以迅速扩增。置待扩增DNA 于高温下解链成为单链DNA 模板,人工合成的两个寡核苷酸引物在低温条件下分别与目的片段两侧的两条链互补结合,DNA聚合酶在72℃将单核苷酸从引物3'端开始掺入,沿模板5'—3'方向延伸,合成DNA 新链。由于每一循环所产生的DNA均能成为下一次循环的模板,所以PCR 产物以指数方式增加,经25—30次周期之后,理论上可增加109倍,实际上可增加107倍。 PCR 技术具有操作简便、省时、灵敏度高特异性强和对原始材料质量要求低等优点,但由于所用的TaqDNA 聚合酶缺乏5'—3'核酶外切酶活性,不能纠正反应中发生的错误核苷酸掺入,估计每9000个核苷酸会导致一个掺入错误,但是错误掺入的碱基有终止链延伸的作用倾向,使得错误不会扩大。 2.PCR的反应动力学 PCR技术类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA 的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA

重组质粒的鉴定方法解析

重组DNA转化受体细胞后,须在不同水平上进行筛选,以区别转化子与非转化子、重组子与非重组子以及鉴定所需的特异性重组子。在转化过程中,并非每个受体细胞都被转化;即使获得转化细胞,也并非都含有目的基因,所以需采用有效方法进行筛选。筛选的方法包括根据遗传表型筛选、限制性内切酶分析筛选、核酸探针筛选、PCR筛选等。本实验采用遗传表型筛选中的抗生素平板筛选或α互补筛选的方法。 一、抗生素平板筛选【实验原理】 目标基因是Kan的抗性基因,而载体含Amp 的抗性基因,因此在含有Amp 和Kan的培养基中生长的菌落即为阳性菌落。 【操作步骤】1.制备含有Amp 和Kan 的LB琼脂培养板 2.将100μl 转化菌液用无菌涂布器均匀涂布于含有Amp 和Kan培养板上,37℃培养12-16h 。 3.在含有Amp和Kan培养板上能生长的菌落即为阳性重组质粒。并将其接种于含Kan的LB液体培养基2ml中培养8-16h。 4.小量制备质粒,限制性酶切分析进一步鉴定。 二、α互补筛选【实验原理】 适用于含有半乳糖苷酶基因(LacZ)的载体,如pUC系列等,其原理是:载体含有LacZ的调控序列和N端146个氨基酸的编码信息。在这个编码区中插入了一个多克隆位点。当这种载体进入可编码β-半乳糖苷酶C端部分序列的宿主细胞后(质粒和宿主细胞编码的片段各自都没有酶活性),它们可以融为一体,形成具有酶学活性的蛋白质,这种现象叫α互补。由α互补而产生的Lac+细菌在呈色底物5-溴-4-氯-3-吲哚-β-半乳糖苷(X-gal)和诱导剂异丙

基硫代-β-D-半乳糖苷(IPTG)存在下形成蓝色菌落。当外源DNA插入到质粒的多克隆位点后,导致产生无α互补能力的氨基端片段。因此,带有重组质粒的细菌形成白色菌落。通过呈色反应即可初步识别可能带有重组质粒的菌落。通过小量制备质粒DNA进行限制酶切分析,即可确定这些质粒的结构。 【试剂】1.X-gal(20mg/m l):将20mg X-gal溶于l ml二甲基甲酰胺中,-20℃避光保存。 2.IPTG(200mg/ml):将1g IPTG溶于4 ml去离子双蒸水中,定容至5 ml,用0.22μm过滤器除菌,-20℃保存备用。 【操作步骤】1.制备含相应抗生素的琼脂平板。 2.于平板表面加 X-gal 40μl 和IPTG 4μl,并用无菌玻璃涂布器将试剂均匀涂布于整个平板表面。37℃静置l h。 3.将100μl 转化的菌液涂布于平板表面,置37℃培养箱20 min后,倒置平板继续培养12~16h。 4.中止培养后,将平板静置4℃ 4h,使蓝色充分显现,平皿上显示蓝色和白色两种菌落。5.挑取白色菌落置 2 ml LB(含相应抗生素)液体培养基中,37℃摇床培养8~12h。6.提取质粒,以限制性酶切分析进一步鉴定。 3.重组质粒的鉴定 方案一菌落PCR (1 制备PCR混合液: (2 用经灭菌的10μl枪头(不用牙签)挑去白色菌落,迅速地使挑取物溶在上述混合液中。 (3 盖上离心管得盖子,在沸水上温育10 min。 (4 将步骤⑶的样品冷却至室温,离心数秒,然后于管中加入TaKaRa rTaq酶0.25ul。 (5 按以下条件进行PCR反应:94℃预变性3min;然后进行30个循环反应,其温度循环条件为:94℃变性1min,57℃退火1min,72 ℃延伸1min;循环结束后72℃再延伸5min。 (6 取5μl PCR产物在1%琼脂糖凝胶上进行电泳检测。 方案二质粒PCR

相关文档
相关文档 最新文档