文档库 最新最全的文档下载
当前位置:文档库 › 平面3-RRR柔性并联机器人残余振动主动控制

平面3-RRR柔性并联机器人残余振动主动控制

平面3-RRR柔性并联机器人残余振动主动控制
平面3-RRR柔性并联机器人残余振动主动控制

并联机器人仿真运动控制的多线程实现

并联机器人仿真运动控制的多线程实现 Multithreading Realization of Simulation Motion Control of the Parallel Robot (海军工程大学)彭利坤邢继峰肖志权曾晓华 PENG, Likun XING, JifengXiao, Zhiquan Zeng, Xiaohua 摘要:现代运动模拟器对响应快速性、跟踪准确性等仿真运动特性提出了更高要求,使得并联机器人机构的运动控制更为复杂。以某型潜艇操纵模拟器为例,其控制软件采用模块化设计,利用NT环境下多线程技术,结合多媒体定时器、普通定时器,实现软件的洗出滤波、运动学反解、运动信息发送、安全保护等多任务的有机调度。在外控线程中建立网络数据接收、数据处理、液压缸控制信息发送等三个子线程,将它们从外控线程中分离出来,大大提高了数据传输和处理及运动控制的实时性和可靠性。 关键词:并联机器人;多线程;多媒体定时器;运动控制 中图分类号:TP311.1; TP391.9 文献标识码:A 文章编号: Abastract: In order to meet the demand of the emulational kinetic characteristics of modern motion simulator such as fast response and precise tracking, the control system of the parallel robot mechanism becomes more complex. As an example of submarine manipulating simulator, the modularization design and the technologies such as the multimedia timer, common timer and multithreading under NT environment etc. are adopted in the control system programing, which realize the multitask scheduling of washout filter, inverse kinematics solution, sending control data and safeguarding. By separating three sub-threadings, the Ethernet data acquisition, the data processing and the hydraulic cylinder control information sending, from the external control threading, the real time performance and reliability of the data transmitting, processing and motion control can be improved. Key words:parallel robot; multithreading; multimedia timer; motion control 1 引言 飞机、舰船、赛车、列车等运动模拟器系统,是以Stewart平台为原型的并联机器人机构最重要的应用方向,它们一般构成分布式半实物仿真系统。以某型潜艇操纵模拟器为例,整个模拟系统由教练控制台、模拟潜望镜、舱段操艇装置、六自由度(6DOF)并联机器人机构等四个分系统构成,几个分系统通过以太网传输交换数据。其中液压6DOF并联机器人为模拟潜艇空间运动的关键机构,其控制软件必须完成潜艇姿态数据的接收、处理、控制执行器(一般为液压缸)动作、实时动态显示分析等繁杂的任务。这种多任务的软件开发,基于过程的编程设计已显得力不从心,而面向对象的多线程编程因其具有接口能力强、并行处理、运用灵活等优点,成为设计本控制软件的首选。 2 控制模块 该控制软件包括洗出滤波算法、运动学反解、内控、自检、外控、逻辑控制、安全保护、平台起停、实时动态显示、正解监控、网络通讯等多个控制模块。 2.1 洗出滤波算法 虽然各种运动模拟器模拟运动的侧重点有所不同,但洗出滤波总是需要的。在模拟运动过程中,液压缸的行程有限,故在一次动作完成后,必须换向回到中性位置,以使下一个运动模拟有足够的行程,通常将这种回到中性位置的附加运动称为运动的洗出。通过运动学仿真、质心坐标转换等计算过程,而得到被仿真设备的速度、加速度,再通过高、低通滤波器滤波、积分等一系列算法转化为运动平台的线位移和角位移的过程称为运动的滤波。经典的 彭利坤:博士研究生 基金项目:军队研制基金资助项目(JXB-2004-21)

(整理)Delta并联机器人的机构设计1.

零件的设计与选型 1 定平台的设计 定平台又称基座,在结构中属于固定的,具体的参数见图一,厚度20cm。定 平台的等效圆半径为210mm。材料选用铸铁,铸造加工,开口处磨削加工保证精度。最后进行打孔的工艺。 图一定平台设计图

具体参数为长* 厚* 宽:880mm*10mm*20mm。孔的参数为φ10*10mm。材料用铝合金,设计为杆式,质量小,经济,同时也满足载荷条件。 图二驱动杆的设计图 3 从动杆的设计 具体参数为长* 宽* 高:620*20*10mm。孔参数为φ10*10mm。材料选用铝合金。 图三从动杆的设计图

参数如下图,考虑到重量因素,采用铝合金,切削加工。动平台的等效圆半径为50mm,分布角为21.5°。 图四动平台的设计图 5 链接销的设计 45号钢,为主动杆和定平台的连接销:φ9*66mm。

6 球铰链的选型 目前,大多数的Delta机构的主动杆与从动杆的链接方式为球铰链的链接。球型连接铰链是用于自动控制中的执行器与调节机构的连接附件。它采用了球型轴承结构具有控制灵活、准确、扭转角度大的优点,由于该铰链安装、调整方便、安全可靠。所以,它广泛地应用在电力、石油化工、冶金、矿山、轻纺等工业的自动控制系统中。球铰链由于选用了球型轴承结构,能灵活的承受来自各异面的压力。本文选用球铰链设计,是主要因为球铰链的可控性,以及结构简单,易于装配。且有很好的可维护性。 本文选用了伯纳德的SD 系列球铰链,相对运动角为60°。 7 垫圈的选型 此处我们选用标准件。GB/T 97.1 10‐140HV ,10.5*1.6mm。 8 电机的选型 本设计的Delta 机器人,主要面向工业中轻载的场合,比如封装饼干等。因此,以下做电动机的选型处理。 由于需要对角度的精确控制,因此决定选用伺服电机。交流伺服电机有以下特点:启动转矩大,运行范围广,无自转现象,正常运转的伺服电动机,只要失去控制电压,电机立

机器人控制原理

第二章机器人系统简介 2.1 机器人的运动机构(执行机构) 机器人的运动机构是机器人实现对象操作及移动自身功能的载体,可以大体 分为操作手(包括臂和手)和移动机构两类。对机器人的操作手而言,它应该象 人的手臂那样,能把(抓持装工具的)手依次伸到预定的操作位置,并保持相应 的姿态,完成给定的操作;或者能够以一定速度,沿预定空间曲线移动并保持手 的姿态,并在运动过程中完成预定的操作。移动机构应能将机器人移动到任意位置,并保持预定方位姿势。为此,它应能实现前进、后退、各方向的转弯等基本 移动功能。在结构上它可以象人、兽、昆虫,具有二足、四足或六足的步行机构,也可以象车或坦克那样采用轮或履带结构 2.1.1 机器人的臂结构 机器人的臂通常采用关节——连杆链形结构,它由连杆和连杆间的关节组 成。关节,又称运动副,是两个构件组成相对运动的联接。在关节的约束下,两 连杆间只能有简单的相对运动。机器人中常用的关节主要有两类: (1) 滑动关节(Prismatic joint): 与关节相连的两连杆只能沿滑动轴做直 线位移运动,移动的距离是滑动关节的主要变量,滑动轴一般和杆的轴线重合或 平行。 (2)转动关节(Revolute joint): 与关节相连的两连杆只能绕关节轴做相对 旋转运动,其转动角度是关节的主要变量,转动轴的方向通常与轴线重合或垂 直。 杆件和关节的构成方法大致可分为两种:(1) 杆件和手臂串联连接,开链机 械手(2) 杆件和手臂串联连接,闭链机械手。 以操作对象为理想刚体为例,物体的位置和姿态各需要3 个独立变量来描 述。我们将确定物体在坐标系中位姿的独立坐标数目称为自由度(DOF(degree of freedom))。而机器人的自由度是由有关节数和每个关节所具有的自由度数决定的(每个关节可以有一个或多个自由度,通常为1 个)。机器人的自由度是独立的单独运动的数目,是表示机器人运动灵活性的尺度。(由驱动器能产生主动 动作的自由度称为主动自由度,不能产生驱动力的自由度称为被动自由度。通常 开链机构仅使用主动自由度)机器人自由度的构成,取决于它应能保证完成与目 标作业相适应的动作。分析可知,为使机器人能任意操纵物体的位姿,至少须 6DOF,通常用三个自由度确定手的空间位置(手臂),三个自由度确定手的姿态(手)。比较而言,人的臂有七个自由度,手有二十个自由度,其中肩3DOF,肘2 DOF,碗2DOF。这种比6 还多的自由度称为冗余自由度。人的臂由于有这样的冗余性,在固定手的位置和姿态的情况下,肘的位置不唯一。因此人的手臂能灵 活回避障碍物。对机器人而言,冗余自由度的设置易于增强运动的灵活性,但由 于存在多解,需要在约束条件下寻优,计算量和控制的难度相对增大。 典型的机器人臂结构有以下几种: (1)直角坐标型(Cartesian/rectanglar/gantry) (3P) 由三个线性滑动关节组成。 三个关节的滑动方向分别和直角坐标轴x,y,z 平行。 工作空间是个立方体 (2)圆柱坐标型(cylindrical)(R2P) 由一个转动关节和两个滑动关节组成。 两个滑动关节分别对应于圆柱坐标的径向和垂直方向位置,一个旋 转关节对应关于圆柱轴线的转角。 工作区域为矩形截面的旋转体。 (3) 球坐标型(spherical) (2RP) 两个转动关节和一个滑动关节分别实现手的左右,上下及前后运动。 工作区域是扇形旋转体。 (4)关节坐标型(articulated/anthropomorphic)(3R)

FXLMS算法用于压电柔性结构多通道振动控制_朱晓锦

FXL M S算法用于压电柔性结构多通道振动控制 朱晓锦, 高志远, 黄全振, 邵 勇 (上海大学机电工程与自动化学院 上海,200072) 摘要 以模拟太空帆板的压电机敏柔性结构为实验模型,针对结构振动响应主动控制技术需求,着重分析了多通道自适应滤波前馈控制方法及其FX LM S算法实现,以及受控通道模型参数辨识策略,并给出了详细的控制器设计结构图。针对实验模型对象设计、结构模态特性分析、压电元件优化配置、实验平台开发构建、相关软硬件测控环境、实验过程描述与结果分析验证,给出了研究思路与方法过程分析;进行了结构振动响应多通道主动控制实验并取得了良好的控制效果。结果表明,该控制器结构设计与自适应算法有效,为航天柔性结构振动响应分布式多通道控制提供了方法探索思路。 关键词 振动主动控制 自适应滤波控制 压电机敏结构 多通道FX LM S算法 实验模型与平台 中图分类号 T B535.1 T P273.2 引 言 伴随航天事业的不断发展,大型柔性结构在航天器上构成越来越多,由此带来的结构振动问题也愈加严重,如航天器太阳能帆板结构,在轨运行期间必须保证很高的运行精度。由于这类结构具有低刚度小阻尼、固有频率较低和低频模态密集的特点,同时太空环境又无外阻,因此极易受到扰动影响而发生振动。常规技术方法难以达到控制要求,由此机敏结构的研究成为解决上述问题的重要方向[1-2]。 C ra w ley[3]最早分析了梁与压电片之间的作用情况,开辟了以分布式压电陶瓷作为驱动器的结构振动主动控制研究方向,此后新的研究成果不断出现[4-7]。就控制方法与控制律设计而言,几乎涉及到现代控制理论的所有分支,诸如极点配置、最优控制、自适应控制、鲁棒控制、模糊控制、学习控制与智能控制等[8],由于自适应控制对系统参数变化具有较好的适应性,从而在研究进程中得到广泛采用[9]。 当前,自适应滤波前馈控制方法在机敏结构振动主动控制研究中获得积极关注[10],尤其用滤波-X 最小均方(filtered-X least m ean square,简称FXLM S)算法进行控制器设计,具有控制修正速率高、对非平稳响应适应能力强,并能够较快跟踪结构参数及外扰响应变化的特性,不足之处在于需要预知与外激扰信号相关的参考信号,同时多通道控制器结构设计也相对复杂。本文在简要描述压电元件工作机理的基础上,基于FXLM S算法过程,着重分析了多通道自适应滤波前馈控制方法,以及受控通道模型参数辨识策略,并给出详细的控制器设计结构图。在此基础上进行实验模型对象设计和实验环境开发,采用在线辨识方法获得实验结构受控通道模型参数,进而实现压电柔性结构振动响应的多通道自适应控制。实验结果表明了控制器结构与自适应算法的有效性和可行性,且具有快速收敛以及较低阶模型就能满足控制性能要求的优势。 1 压电元件本构方程 压电材料力学和电学行为关系,可以采用压电方程进行描述,取应力e和电场强度E为自变量,则压电方程可以表示为 Xλ=c Eλu e u+d jλE j λ,u=1,2,…,6 D i=d iu e u+_e ij E j i,j=1,2,3(1)其中:c Eλu为电场恒定时的弹性柔顺系数;d jλ为压电应变常数;_e ij为应力恒定时的介电常数。 一般在压电机敏结构振动控制中,使用的压电应变常数为d31,即沿压电驱动器极化轴3方向施加电场,通过d31的耦合在垂直于极化方向1轴,即元件长度l的方向上激发横向振动;具体驱动信号来自 第31卷第2期2011年4月 振动、测试与诊断 Jou rna l o f V ib ra tion,M easu re m en t&D iagno sis   V o.l31N o.2 A pr.2011 国家自然科学基金重大研究计划资助项目(编号:90405013,90716027);上海人才发展基金资助项目(编号:2009020);上海大学“十一五”“211”建设资助项目;上海市电站自动化技术重点实验室资助项目;上海市教委“机械电子工程”创新团队资助项目 收稿日期:2009-08-22;修改稿收到日期:2009-11-13

并联机器人技术方案

并联机器人方案 一、并联机器人用途: 并联机器人作为一种新型的机器人形式得到了越来越多的应用,与串联机器人相比该型机器人具有结构简单、刚度大、承载能力强、误差小等特点,与串联机器人形成了良好的互补关系。可用于六自由度数控加工中心、航天器对接机构、汽车装配线、运动模拟器、岩土挖掘、光学调整、医疗机械等领域。 二、系统特点: 1、机构采用并联式结构,按工业标准要求设计,结构简单、速度快; 2、控制系统采用Windows系列操作系统,二次开发方便、快捷,适于教学实验; 3、提供教材、实验指导书等,内容涵盖机器人运动学、动力学、控制系统的设计、机器人轨迹规划等。 三、系统配置: 1、机器人本体、控制柜、电机控制卡、控制软件、理论教材及实验指导书。附属件配置有钻铣刀头、电主轴、绘图笔架、加工平台、手动夹具,另赠送一套加工所需原材料。 2、并联机器人加工装置(用电主轴本体、夹持器及钻铣刀)。 3、绘图装置(绘图笔架及绘图笔)。 4、并联机器人加工平台及工件夹持装置。 5、部分加工演示原材料(石蜡、尼龙等)。

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T01P(全步进电机驱动) 机器人报价:175000.00元机器人型号:RBT-6S01P(全伺服电机驱动) 机器人报价:195000.00元

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T02P(全步进电机驱动) 机器人报价:155000.00元机器人型号:RBT-6S02P(全伺服电机驱动) 机器人报价:175000.00元

六自由度桌面型并联机器人 1.并联机器人系统图片 2.并联机器人技术参数 3.机器人型号:RBT-6T03P(全步进电机驱动) 机器人报价:135000.00元机器人型号:RBT-6S03P(全伺服电机驱动) 机器人报价:155000.00元

关于六自由度并联机器人运动控制系统的结构设计

关于六自由度并联机器人运动控制系统的结构设计 运动控制系统作为六自由度并联机器人的关键控制系统,对机器人的精准快速运动具有至关重要的作用。通过对六自由度并联机器人结构、内部控制结构及其工作原理的介绍,提出运动控制系统的设计思路,并对其中的关键技术问题进行了深入分析,对提高六自由度并联机器人的研发和应用水平具有积极的推动作用。 标签:六自由度;并联机器人;运动控制系统;结构分析 近年来,随着计算机和电子信息技术的进步,机器人运动控制技术取得了突破性发展,机器人运动控制技术是将控制传感器、电机、传动机和驱动器等组合在一起,通过一定的编程设置对电机在速度、位移、加速度等方面的控制,使起机器人按照预定的轨迹和运动参数进行运动的一种高科技技术。伴随着机械工业自动化技术的发展,运动控制技术经过了由低级到高级,由模拟到数字,再到网络控制技术的发展演进过程。运动控制技术作为机械工业自动化的一项重要技术,主要包括全封闭伺服交流技术,直线式电机驱动技术、基于编程基础上的运动控制技术、基于运动控制卡的控制技术等。其中,基于运动控制卡的控制技术通过内部各种线路的集成组合,可以实现对各种复杂的运动进行控制,该技术系统驱动程序主要包括:运动控制软件、网络动态链接数据库、运动控制参数库等子系统。运动控制卡控制技术的出现和发展有效的满足了工业机械行业数控系统的柔性化、标准化要求,在工业自动化领域的应用越来越广泛。 1 六自由度并联机器人的构造 六自由度并联机器人作为现代工业自动化技术发展的代表,主要结构包括床身、连杆和运动平台等几个部分。其中运动平台与六个连杆相联接,每个连杆各自联接一个由虎克材料制成的滑块,这些滑块又与滚珠丝杠相连,在电机的驱动下可以带动滑块沿滚珠运动,进而带动连杆有规则的运动,从而改变平台的运动方向。通过在运动平台上安装不同的机械,可以有效满足不同工作的需求。在六根连杆工作程序中,每根连杆都由一台电机进行控制驱动来保证连杆运动的独立性,因此,可以实现六自由度的机器控制运动。 2 六自由度并联机器人运动控制系统工作原理与结构设计 2.1 并联机器人运动控制系统的工作原理 六自由度并联机器人运动控制系统主要由工控机、运动控制卡、伺服放大器、资料数据收集处理平台等系统组成。在机器人工作过程中,工控机借助一定的程序指令对运动控制卡发出命令,运动控制卡将六路脉冲同时发向六套伺服放大器,在脉冲命令的指引下,这些放大器做出进一步运动,进而带动机器人平台进行运动。同时,伺服放大器将运动中形成的信号数据传回到运动控制卡,进而完成一个全闭环式反馈控制运动。在运动过程中,可以通过Lab系统对并联机器人

精密并联机器人控制算法及控制系统研究概要

第40卷第4期2004年4月 机械工程学报 V01.40No.4CHINESEJOURNAL0F MECHANICAL ENGINEERING Apr. 2004 精密并联机器人控制算法及控制系统研究木 张秀峰孙立宁 (哈尔滨工业大学机器人研究所哈尔滨 150001) 摘要:首次把数字PID算法应用到面向光纤作业的精密并联机器人控制中,介绍了这种高速、高精度小型并联机构控制系统的新控制算法及系统研究情况。另外控制系统采用了DSP新技术,解决了并联机构运动学逆解的实时在线计算问题,使系统运行更加稳定。试验结果表明这种新算法在小型精密并联机构控制系统中,完全可以满足光纤对接等作业的高技术要求,同时也为同类高精度、大行程小型定位系统的控制与设计提供了一种新的实用方 法。 关键词:并联机构运动学逆解PID控制算法中图分类号:TP24 0前言

在高速、高精度、大行程小型并联机器人控制领域,所知文献介绍的实用控制算法还未见到。在实际工程控制中PID控制算法不需要系统确切的数学模型,参数易调整,且具有很强的灵活性、适应性,其中数字PID控制算法在计算机上易修正,比模拟PID控制器性能更加完善。首次将数字PID控制算法引进到高精度并联机构的控制中,并借助高速数字信号处理器DSP解决了逆解的在线计算问 题,试验结果表明可以满足高速、高精度等技术要 求。另外还介绍了系统的组成、性能、技术指标及一些关键参数的调整方法和经验公式,为小型精密定位系统的设计与控制提供了有价值的借鉴。1 PID控制算法 1.1模拟PID控制器 所谓PID控制器是指把偏差按比例、积分和微分进行的控制器,其中模拟PID控制器是用硬件来 实现的。设l,为系统给定,Y为系统输出,萨砷 为系统偏差,u为系统控制规律…¨,则 “=K,[P+寺J::酣r+%詈]+“。 式中 K,——比例系数正——积分常数毛——微分常数 =三——偏差微分 df 在控制过程中系统有偏差产生,调节器产生控制作用使偏差不断减小,这种控制作用的强弱取决

并联机器人构型方法 (1)

机器人机构设计中最重要的步骤之一是解决机构型综合的问题,机器人机构构型方法的研究具有十分重要的理论和实际意义,尤其是并联机器人的型综合方法一直以来都受到国内外许多研究学者的关注。在并联机器人机构的构型理论研究中,基于机构末端运动特征描述与机构需要完成的功能的简单有效的构型方法还缺乏系统的研究。 并联机器人机构构型方法研究 8 多自由度机构,其构型综合是一个非常具有挑战性的难题。目前国内外主要有 5 种并联机构的型综合研 究方法,即:基于机构的结构公式的构型方法、基于螺旋理论的综合方法、基于群论和微分几何的综合 方法、基于单开链的型综合方法以及基于集合的综合方法。 1-3-1 基于机构的结构公式的构型方法 基于机构的结构公式(即自由度计算公式)的构型方法是比较传统的一种并联机构的型综合方法。 Tsai [84] 在1999 年用基于计算自由度的Grübler-Kutzbach 公式的列举法综合了一类三自由度并联机构。 基于并联机构自由度计算的一般Grübler-Kutzbach 公式为 ( ) 1 1 = = ??+ ∑ g i i M d n g f (1.1) 式中M 为机构的自由度数; d 为机构的阶; n 为机构的杆件数(包括机架); g 为运动副数; i f 为第i 个运动副的自由度数。 当给定机构的自由度数M 后,根据(1.1)寻求机构的每个分支运动链的运动副数。并联机构属于空 间多环机构,其独立环路数l 可以由下式给出 l = g ?n +1 (1.2) 该式即为著名的欧拉环路公式。将上式带入(1.1)中,可得到 =1 ∑= + g i i

f M d l (1.3) 定义并联机构中第j 个分支总的自由度数为 j C ,则有下式成立 =1 =1 ∑=∑ mg j i j i C f (1.4) 将(1.4)代入(1.3)消去 i f 后得到 ∑= + m j j C M d l (1.5) 对于分支运动链结构相同,且分支数等于机构自由度数的对称并联机构,又有以下条件成立m = M且l = M ?1 (1.6) 把(1.6)代入(1.5)消去l 后得到 = ?+1 j d C d M (1.7) 由上式在已知d 和M 时,可以得到分支运动链的自由度数 j C ,从而给出分支运动链。例如,d =3, M =3时,由式(1.7)可得 j C =3,分支运动链可以是RRR、RPR、PRR 等。并联机器人机构构型方法研究 1 0 寻找可以生成{ } gi L 的分支运动链,此时可利用位移子群乘法运算的封闭性获得不同结构的分支。 Hervé和Angeles 等较早将李群理论引入并联机构型综合。1978 年,Hervé [113] 基于位移群的代数结 构对运动链进行了分类,证明了所有六种低副所生成的运动都是位移子群,还给出了另外六种位移子群 以及子群间交集的运算法则,奠定了位移子群以及子群间交集的运算法则和位移子群综合法的理论基

史上最完整的机器人工作原理解析

史上最完整的机器人工作原理解析 很多人一听到机器人这三个字脑中就会浮现外形酷炫、功能强大、高端等这些词,认为机器人就和科幻电影里的终结者一样高端炫酷。其实不然,在本文中,我们将探讨机器人学的基本概念,并了解机器人是如何完成它们的任务的。 一、机器人的组成部分从最基本的层面来看,人体包括五个主要组成部分: 当然,人类还有一些无形的特征,如智能和道德,但在纯粹的物理层面上,此列表已经相当完备了。 机器人的组成部分与人类极为类似。一个典型的机器人有一套可移动的身体结构、一部类似于马达的装置、一套传感系统、一个电源和一个用来控制所有这些要素的计算机大脑。从本质上讲,机器人是由人类制造的动物,它们是模仿人类和动物行为的机器。 仿生袋鼠机器人 机器人的定义范围很广,大到工厂服务的工业机器人,小到居家打扫机器人。按照目前最宽泛的定义,如果某样东西被许多人认为是机器人,那么它就是机器人。许多机器人专家(制造机器人的人)使用的是一种更为精确的定义。他们规定,机器人应具有可重新编程的大脑(一台计算机),用来移动身体。 根据这一定义,机器人与其他可移动的机器(如汽车)的不同之处在于它们的计算机要素。许多新型汽车都有一台车载计算机,但只是用它来做微小的调整。驾驶员通过各种机械装置直接控制车辆的大多数部件。而机器人在物理特性方面与普通的计算机不同,它们各自连接着一个身体,而普通的计算机则不然。 大多数机器人确实拥有一些共同的特性 首先,几乎所有机器人都有一个可以移动的身体。有些拥有的只是机动化的轮子,而有些则拥有大量可移动的部件,这些部件一般是由金属或塑料制成的。与人体骨骼类似,这些独立的部件是用关节连接起来的。

结构振动控制的概念及分类

耗能方案 性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构 半主动控制和混合控制。 是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验控制力虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动调置、半主动TMD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装:同时采用AMD和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和

京的清水公司技术研究所。 ,但由于建筑结构体形巨大导致所需的外加能源较大,加之控制装置的控制的算法比较复杂,而且存好,容易实现,目前发展最快,应用最广,尤其是其中的基础隔震技术已相当成熟,并得到了一定程主动控制低廉,而且不需要较大的动力源,因此其具有广阔的应用和发展前景;混合控制综合了某几 和耗能减震技术。 置控制机构来隔离地震能量向上部结构传输,使结构振动减轻,防止地震破坏。目前研究开发的基础和混合隔震等。近年来,越来越多的国家开展了基础隔震技术的研究,因此,隔震技术也得到了飞速:日本94栋,美国21栋,中国46栋,意大利19栋,新西兰16栋,已采用了基础隔震技术。最近有 使结构的振动能量分散,即结构的振动能量在原结构和子结构之间重新分配,从而达到减小主结构振尼器(TLD);(3)质量泵;(4)液压—质量控制系统(HMS);(5)空气阻尼器。其中,应用最多两个重300吨的TMD,质量块在9米长的钢板上滑动,它很好地减小了大楼的风振反应,防止了玻璃幕nade桥的桥塔均安装了TMD,其减震效果均令人十分满意。日本的Yokohama海岸塔是一个高101米析表明,安装了TLD后塔的阻尼比由0.6%增加到4.5%,在强风作用下塔的加速度减小到原来的1/3 TLD以控制其风振反应。

并联机器人设计论文设计

并联机器人设计论文 摘要:并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。文中从运动副分析入手,对一种运动解耦的三自由度并联机构进行了构型研究,该机构由三个正交分布的支链组成,且机构的运动副均为转动副,构成了机构动平台x、y、z三个方向的平动解耦;在机构构型研究的基础上,对其进行了运动学分析,推导出了该并联机构的运动学正反解,分析了机构输入/输出的速度和加速度等,验证了该机构运动解耦的特性。这对该机构的动力学分析、控制策略、机构设计和轨迹规划等方面的研究,具有一定的理论意义。 关键词:三自由度并联机构;并联机器人;设计;

1.课题国外现状及研究的主要成果 少自由度并联机器人由于其驱动元件少、造价低、结构紧凑而有较高的实用价值,更具有较好的应用前景,因此少自由度的并联机器人的设计理论的研究和应用领域的拓展成为并联机器人的研究热点之一。研究少自由度并联机构最早的学者应属澳大利亚著名机构学教授Hunt ,在1983年,他就列举了平面并联机构、空间三自由度3-rps并联机构,但对四,五自由度并联机构未作详细阐述。在Hunt之后,不断有学者提出新的少自由度并联机构机型。在少自由度并联机构机型的研究中,三维平移并联机构得到广泛的重视。clavel提出了一种可实现纯平运动三自由度Delta 并联机器人,在Delta机构的支链中采用平行四边形机构约束动平台的3个转动自由度。Tsai提出的Delta机构完全采用回转副,并通过转轴的偏移扩大了Delta机构的工作空间。在Tricept并联机床上采用的构型是由Neumann发明的一种具有3个可控位置自由度的并联机构,该机构的突出特点是带有导向装置,采用3个副驱动支链并由导向装置约束动平台。Tsai通过自由度分析提取支链的运动学特征,系统研究了并联机构的综合问题,特别研究了一类实现三自由度平动的并联机构。Rasim Alizade于2004年提出基于平台类型和联接平台的形式和类型进行分类的一种并联机构的结构综合和分类的新方法和公式,并综合出具有单平台和多平台的纯并联和串并联复联机构.我国燕山大学的黄真教授及其团队除了研制出解耦微型6维力传感器和微动机械,设计出一种新的

并联机器人操作细则

运动控制开发平台操作细则: 一、步进电机平台 1.上电计算机电源、驱动器电源、端子板电源。 2.运行GTCmdPCI_CH。 3.在菜单栏选择出现“基础参数设置”界面。 4.在“运控卡型号选择”栏,打开下拉菜单,选择所安装的运控卡型号。 设置“行程开关触发电平” 设置“编码器方向”,默认值0 设置控制周期,运控卡缺省的控制周期是200 μs。 5.点击“打开运控卡”按钮。 6.点击“确定”按钮。 7.在GTCmdISA_CH主菜单下选择打开“基于轴的控制”界面。 8.打开轴选下拉菜单,如下图,选择当前轴(操作轴)。 9.选择“清状态”,如右图,清除当前轴不正确的状态。 10、设置控制输出,驱动使能(轴开启) 在系统初始化完成后,在轴选框选择当前轴,按照根据系统要求设定控制输出。注意应与当 前轴的驱动器和电机的设置相统一。 SV卡: 可以选择输出模拟量,即0; 亦可选择输出脉冲量,即1。 SV卡: 选择“伺服打开/伺服关闭”选项(如右图,打勾为打开,不选为关闭)。此时驱动器使能,轴应该静止状态

11.点击“位置清零”按钮,观察“轴当前位置”为0。 4.在“运动控制模式”栏设置运动参数 5.点击“参数更新”按钮, 二、直流伺服电机平台 1~6步同步进电机一样 7、在轴的控制窗口中选中第4轴。 8、在“伺服滤波器参数设置”框中设置“比例增益”为10。 9、在梯形曲线页中“目标位置”为300000,“速度”为10,“加速度”为1。 10、点击“伺服打开”(SV卡时)/“轴开启”(SG卡时)选项,使控制器的第4轴进入伺服(开启)状态。 11、点击“清状态”键,使控制器的第四轴事件状态清除。 12、点击“参数更新”键,使第四轴开始运动 补充: 1、当某个轴选定并打开伺服后,在开发面板上会亮起相应的灯,分别是ENA1、ENA 2、ENA 3、ENA4. 2、在运动启动前应保证在控制软件的右侧的轴系状态或者坐标系状态正确,如:

并联机器人发展概述

并联机器人发展概述 随着先进制造技术的发展,并联机器人已从简单的上下料装置发展成数字化制造中的重要单元。在查阅了大量国内外相关文献的基础上,介绍了并联机器人的特点、分类、应用,从运动学、动力学、控制策略三方面总结了近年来并联机器人的主要研究成果,并指出面临的问题。 1895年,数学家Cauchy研究一种“用关节连接的八面体”,开始人类历史上并联机器的研究。1938年Pollard提出采用并联机构来给汽车喷漆。1949年Caough提出用一种并联机构的机器检测轮胎,这是真正得到运用的并联机构。而并联结构的提出和应用研究则开始于70年代。1965年,德国人Stewart发明了六自由度并联机构,并作为飞行模拟器用于训练飞行员。1978年澳大利亚人Hunttichu把六自由度的Stewart平台机构作为机器人机构,自此,并联机器人技术得到了广泛推广。 自工业机器人问世以来,采用串联机构的机器人占主导位置。串联机器人具有结构简单、操作空间大,因而获得广泛应用。由于串联机器人自身的限制,研究人员逐渐把研究方向转向并联机器人。和串联机器人相比并联结构其末端件上同时由6根杆支撑,与串联的悬臂梁相比刚度大,结构稳定。由于刚度大,并联结构较串联结构在相同的自重或体积下,有高的多的承载能力大。串联机构末端件上的误差是各个关节误差的积累和放大,因而误差大、精度低,并联式则没有那样的误差积累和放大关系,微动精度高。串联机器人的驱动电机及传动系统大都放在运动着的大小臂上,增加了系统的惯量,恶化了动力性能,而并联机器人将电机置于机座上,减小了运动负荷。在位置求解上,串联机构正解容易,但反解困难。而并联机构正解困难,反解非常容易,而机器人在线实时计算是要计算反解的。 根据并联机器人的自由度数,可以分为:2自由度并联机构。2自由度并联机构,如5-R,3-R-2-P(R表示旋转,P表示平移)。平面5杆机构是最典型的2自由度并联机构,这类机构一般具有2个平移自由度。3自由度并联机构。3自由度并联机构种类较多,形式复杂,一般有以下形式,平面3自由度并联机构,如3-RRP机构、3-RPR机构、它们具有2个旋转自由度和1个平移自由度;3维纯平移机构,如Star Like并联机构、Tsai 并联机构,该类机构的运动学正反解都很简单,是一种应用很广泛的3维平移空间机构;空间3自由度并联机构,如典型的3-RPS机构、这类机构属于欠秩机构,在工作空间不同的点,其运动形式不同是其最显著的特点,由于这种特殊的运动特性,阻碍了该类机构在实际的广泛应用;4自由度并联机构。4自由度并联机构大多不是完全的并联机构,如2-UPS-1-RRRR机构,运动平台通过3个支链与顶平台相连,有2个运动链是相同的,各具有一个虎克铰U,1个平移副P,其中P和1个R是驱动副,因此这种机构不是完全并联机构。5自由度并联机构。现有的5自由度并联机构结构复杂,如韩国的Lee的5自由度并联机构具有双层结构。6自由度并联机构。该类并联机器人是国内外学者研究的最多的并联机构,一般情况下,该类机构具有6个运动链。随着6自由度并联机构研

结构振动控制

武汉理工大学 结构振动控制 Vibration Control of Structure 课程:工程结构振动控制理论 授课老师:周强 学生姓名:吴平 学号:104972081971 班级:土木研0803

结构振动控制 吴平 (土木研0803班) 摘要:本文主要介绍了结构振动控制的概念、基本原理以及分类。重点阐述了 被动控制、主动控制、半主动控制和混合控制的不同特点。 关键字:被动控制,主动控制,半主动控制,混合控制 Vibration Control of Structure Wuping (Department of Civil Engineering,Wuhan University of Technology) Abstract:This paper introduces the conceptand basic principles and classification of structural vibration control. Highlighted the differences among passive control, active control, semi-active control and hybrid control. Key words :passive control, active control, semi-active control,hybrid control. 引言 随着社会的发展,工程结构形式日益多样化以及轻质高强材料的应用,结构 的刚度和阻尼比变小。在强风或强烈地震荷载作用下,结构物的动力反应强烈,很难满足结构舒适性和安全性的要求。按照传统的抗风抗震设计方法,即通过提 高结构本身的强度和刚度来抵御风荷载或地震作用,是一种“硬碰硬”式的抗震 方法,它很不经济,也不一定安全。而且失去了轻质高强材料自身的优势,还不 能满足口益现代化的机器设备不能因为剧烈振动而中断工作或者破坏的要求。 传统的抗震设计方法已不能满足需要,从而使结构振动控制理论在工程结构中开 始得到应用。结构振动控制可以有效地减轻结构在风和地震等动力作用下的反应 和损伤,提高结构的抗震能力和抗灾性能。结构控制通过在结构上设置控制机构,由控制机构与结构共同控制抵御地震动等动力荷载,使结构的动力反应减小。结 构控制是人的主观能动性与自然的高度结合,是结构对策新的里程碑。

机器人的基本结构原理

教案首页 课程名称农业机器人任课教师李玉柱第2章机器人的基本结构原理计划学时 3 教学目的和要求: 1.弄清机器人的基本构成; 2.了解机器人的主要技术参数; 3.了解机器人的手部、腕部和臂部结构; 4.了解机器人的机身结构; 5.了解机器人的行走机构 重点: 1.掌握机器人的基本构成 2.弄清机器人都有哪些主要技术参数 3.机器人的手部、腕部和臂部结构 难点: 机器人的手部、腕部和臂部结构 思考题: 1.机器人由哪些部分组成? 2.机器人的主要技术参数有哪些? 3.机器人的行走机构共分几类,请想象未来的机器人能 否有其它类型的行走机构?

第2章概论 教学主要内容: 2.1机器人的基本构成 2.2机器人的主要技术参数 2.3人的手臂作用机能初步分析 2.4机器人的机械结构构成 2.5机器人的手部 2.6机器人的手臂 2.7机器人的机身 2.8机器人的行走机构 本章介绍了机器人的基本构成、主要技术参数,人手臂作用机能,在此基础上对机器人的手部、手腕、手部、。机身、行走机构等原理及相关的结构设计进行讨论,使学生对机器人的机构和原理有较为清楚的了解。 2.1机器人的基本构成 简单地说:机器人的原理就是模仿人的各种肢体动作、思维方式和控制决策能力。 不同类型的机器人其机械、电气和控制结构也不相同,通常情况下,一个机器人系统由三部分、六个子系统组成。这三部分是机械部分、传感部分、控制部分;六个子系统是驱动系统、机械系统、感知系统、人机交互系统、机器人-环境交互系统、控制系统等。如图2-1所示。

●是由关节连在一起的许多机械连杆的集合体, 关节通常分为转动关节和移动关节,移动关节允许连杆做直线移动,转动关节仅允许连杆之间发生旋转运动。 个主要部●常规的驱 接地与臂、腕或手上的机械连杆或关节连接在一起,也可以使用齿轮、带、链条等机械传动机构间接传动。 ●感知系统 ....由一个或多个传感器组成,用来获取内部和外部环境中的有用信息,通过这些信息确定机械部件各部分的运行轨迹、速度、位置和外部环境状态,使机械部件的各部分按预定程序或者工作需要进行动作。传感器的使用提高了机器人的机动性、适应性和智能化水平。 ●控制系统 ....其任务是根据机器人的作业指令程序以及从传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。若机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。根据控制原理,控制系统又可分为程序控制系统、

工业机器人工作原理及其基本构成

工业机器人工作原理及其基本构成 工业机器人工作原理 现在广泛应用的焊接机器人都属于第一代工业机器人,它的基本工作原理是示教再现。示教也称导引,即由用户导引机器人,一步步按实际任务操作一遍,机器人在导引过程中自动记忆示教的每个动作的位置、姿态、运动参数\工艺参数等,并自动生成一个连续执行全部操作的程序。完成示教后,只需给机器人一个启动命令,机器人将精确地按示教动作,一步步完成全部操作。这就是示教与再现。 实现上述功能的主要工作原理,简述如下: (1) 机器人的系统结构一台通用的工业机器人,按其功能划分,一般由 3 个相互关连的部分组成:机械手总成、控制器、示教系统,如图 1 所示。 机械手总成是机器人的执行机构,它由驱动器、传动机构、机器人臂、关节、末端操作器、以及内部传感器等组成。它的任务是精确地保证末端操作器所要求的位置,姿态和实现其运动。 图 1 工业机器人的基本结构 控制器是机器人的神经中枢。它由计算机硬件、软件和一些专用电路构成,其软件包括控制器系统软件、机器人专用语言、机器人运动学、动力学软件、机器人控制软件、机器人自诊断、白保护功能软件等,它处理机器人工作过程中的全部信息和控制其全部动作。 示教系统是机器人与人的交互接口,在示教过程中它将控制机器人的全部动作,并将其全部信息送入控制器的存储器中,它实质上是一个专用的智能终端。 (2) 机器人手臂运动学机器人的机械臂是由数个刚性杆体由旋转或移动的关节串连而成,是一个开环关节链,开链的一端固接在基座上,另一端是自由的,安装着末端操作器 ( 如焊枪 ) ,在机器人操作时,机器人手臂前端的末端操作器必须与被加工工件处于相适应的

结构振动控制的概念与分类

结构振动控制的概念及分类-----------------------作者:

-----------------------日期:

耗能方案 耗能减震技术的研究、应用与发展 一、结构振动控制的概念及分类 传统的抗震设计是通过增强结构本身的抗震性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,中震可修,大震不倒。而这种抗震方式缺乏自我调节能力,在不确定的地震作用下,很可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大,这样既给建筑布置带来一定的困难,在经济上又要增加相当多的投资。近年来,在土木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构共同承受地震作用,以调谐和减轻结构的地震反应。 结构振动控制可分为被动控制、主动控制、半主动控制和混合控制。 被动控制——无外加能源的控制,其控制力是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸能减震技术。 主动控制——有外加能源的控制,其控制力是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作动器三部分组成。主动控制是将现代控制理论和自动控制技术应用于结构抗震的高新技术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质量阻尼系统(AMD)等。主动控制研究较多的国家是美国、日本和中国,我国自80年代末期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验大楼和Kankyu Chayamechi大楼。 半主动控制——有少量外加能源的控制,其控制力虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动调整自身的参数,从而起到调节控制力的作用。现有的半主动控制技术包括:半主动隔震装置、半主动T MD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 混合控制——在结构上同时应用被动控制和主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装置的长处,克服它们的弱点,以获得更好的控制效果。目前提出的混合控制方法主要有:同时采用AMD 和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和耗能减震相结合的混合控制系统。世界上第一个安装混合控制系统的建筑是位

相关文档
相关文档 最新文档