文档库 最新最全的文档下载
当前位置:文档库 › 石英晶体振荡器电路设计的

石英晶体振荡器电路设计的

石英晶体振荡器电路设计的
石英晶体振荡器电路设计的

辽宁工业大学

咼频电子线路课程设计(论文)题目:石英晶体振荡器电路设计

院(系):电子与信息工程学院

专业班级:______________________

学号:_________________________

学生姓名:______________________

指导教师:______________________

起止时间:2014616-2014627

课程设计(论文)任务及评语

院(系):电子与信息工程学院教研室:电子信息工程

注:成绩:平时20% 论文质量50% 答辩30%以百分制计算

目录

第1章绪论 (1)

1.1石英晶体振荡器 (1)

1.2设计要求 (1)

第2章石英晶体振荡器设计电路 (2)

2.1石英晶体振荡器总体设计方案 (2)

2.2具体电路设计 (2)

2.2.1串联型晶体振荡器 (2)

2.2.2并联型晶体振荡器 (4)

2.2.3输出缓冲级设计 (5)

2.3元件参数的计算 (5)

2.4Multisim 软件仿真 (6)

2.4.1串联型振荡器输出测试 (6)

2.4.2并联型振荡器输出测试 (7)

第3章课程设计总结 (9)

参考文献 (10)

附录I总体电路图 (11)

附录U元器件清单 (12)

第1章绪论

1.1石英晶体振荡器

石英晶体振荡器是利用石英晶体即二氧化硅的结晶体的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚

上,再加上封装外壳就构成了石英晶体振荡

器,简称为石英晶体或晶体、振荡。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。变电场的频率与田英晶体的固有频率相同时,振动便变得很强烈,这就是晶体谐振特性的反应。利用这种特性,就可以用石英谐振器取代LC谐振

回路、滤波器等。由于石英谐振器具有体积小、重量轻、可靠性高、频率稳定度高等优点,被应用于家用电器和通信设备中。

1.2设计要求

1 ?设计一个石英晶体振荡器

2?能够观察输入输出波形。

3.观察振荡频率。

4.参数:振荡频率10000HZ左右。

第2章石英晶体振荡器设计电路

2.1石英晶体振荡器总体设计方案

本次设计首先以NPN型晶体管2N2222和10M石英晶体为基础分别设计出不同形式的串并联型振荡器,通过对各种不同形式的串联型振荡器和并联型振荡器做出比较之后,综合设计出一个通过跳线可实现串并联转换的石英晶体正弦波振荡器,然后

根据石英晶体振荡器的输出要求设计出对应的缓冲输出级,将两部分连接之后根据电

路图的基本形式和设计的要求计算出各元件的参数和性能要求。根据仿真后的电路原

理图进行实物的连接和调试,从而完成整个正弦波振荡器的设计。

2.2具体电路设计

根据设计要求,该晶体振荡器通过跳线能够实现串联谐振和并联谐振晶体振荡器

的转换,通过比较并联谐振晶体振荡器和串联谐振晶体振荡器的原理可以发现,串联

型晶体振荡器同c-b型并联晶体振荡器结构类似,二者同为电容三点式反馈振荡器。晶体在并联和串联振荡器方式下作用不同,在并联方式下,要求晶体工作于感性区,其等效电感与外部电容构成振荡回路,该回路满足电容三点式条件,而在串联谐振振荡器中晶体则充当选频短路线作用,因晶体Q值很高,通频带很窄,而频率选择性

很咼,可以从振荡回路中选出频率为晶体振荡频率的谐波,反馈至振荡器的输入,从

而使振荡器输出频率稳定的正弦波。若将晶体短路,则电路变成电容三点式振荡器,并且可以正常起振。

2.2.1串联型晶体振荡器

在串联型晶体振荡器中,晶体接在振荡器要求低阻抗的两点之间,通常接在反馈电路中。图2.1和图2.2显示出了一串联型振荡器的实际路线和等效电路。可以看出,如果将石英晶体短路,该电路即为电容反馈的振荡器。电路的实际工作原理为:当回路的谐振频率等于晶体的串联谐振频率时,晶体的阻抗最小,近似为一短路线,电路

高频压控振荡器设计

前言 (1) 1高频压控振荡器设计原理压控振荡器 (2) 1.1工作原理 (2) 1.2变容二极管压控振荡器的基本工作原理 (2) 2高频压控振荡器电路设计 (4) 2.1设计的资料及设备 (4) 2.2变容二极管压控振荡器电路的设计思路 (4) 2.3变容二极管压控振荡器的电路设计 (4) 2.4实验电路的基本参数 (5) 2.5实验电路原理图 (6) 3高频压控振荡器电路的仿真 (7) 3.1M ULTISIM软件简介 (7) 3.2M ULTISIM界面介绍 (8) 3.2.1电路仿真图 (9) 3.2.2压控振荡器的主要技术指标 (9) 3.3典型点的频谱图 (9) 4高频压控振荡器电路实现与分析 (16) 4.1实验电路连接 (16) 4.2实验步骤 (16) 4.3实验注意事项 (18) 4.4硬件测试 (19) 5心得体会 (21) 参考文献 (22)

压控振荡器广泛应用于通信系统和其他电子系统中,在LC振荡器决定振荡器的LC 回路中,使用电压控制电容器(变容管),可以在一定的频率范围内构成电调谐振荡器。这种包含有压控元件作为频率控制器件的振荡器就称为压控振荡器。它广泛应用与频率调制器、锁相环路以及无线电发射机和接收机中。 压控振荡器是锁相环频率合成器的重要组成单元,在很大程度上决定了锁相环的性能。在多种射频工艺中,COMS工艺以高集成度、低成本得到广泛的应用。 压控振荡器(VCO)在无线系统和其他必须在一个范围的频率内进行调谐的通信系统中是十分常见的组成部分。许多厂商都提供VCO产品,他们的封装形式和性能水平也是多种多样。现代表面的贴装的射频集成电路(RFIC)VCO继承了近百来工程研究成果。在这段历史当中。VCO技术一直在不断地改进中,产品外形越来越小而相位噪声和调谐线性度越来越好。 对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。晶体压控振荡器的频率稳定度高,但调频范围窄;RC压控振荡器的频率稳定度低而调频范围宽,LC压控振荡器居二者之间。 压控振荡器可分为环路振荡器和LC振荡器。环路振荡器易于集成,但其相位噪声性能比LC振荡器差。为了使相位噪声满足通信标准的要求,这里对负阻RC压控振荡器进行了分析。

高频石英晶体振荡器仿真报告

燕山大学石英晶体振荡器设计报告 题目: 专业:电子信息工程 姓名:李飞虎 指导教师:李英伟 院系站点:信息科学与工程学院 2014年11 月17 日 高频石英晶体振荡器仿真报告

1.振荡器电路属于一种信号发生器类型,即表现为没有外加信号的情况下能自动生成具有一定频率、一定波形、一定振幅的周期性交变振荡信号的电子线路。振荡器起振时是将电路自身噪声或电源跳变中频谱很广的信号进行放大选频。此时振荡器的输出幅值是不断增长的,随着振幅的增大,放大器逐渐由放大区进入饱和区或者截止区,其增益逐渐下降,当放大器增益下降而导致环路增益下降到1时,振幅的增长过程将停止,振荡器达到平衡,进入等幅振荡状态。振荡器进入平衡状态后,直流电源补充的能量刚好抵消整个环路消耗的能量。 2,串联晶体振荡器 在串联型晶体振荡器中,晶体接在振荡器要求低阻抗的两点之间,通常接在反馈电路中。图1-1和图1-2显示出了一串联型振荡器的实际路线和等效电路。可以看出,如果将石英晶体短路,该电路即为电容反馈的振荡器。电路的实际工作原理为:当回路的谐振频率等于晶体的串联谐振频率时,晶体的阻抗最小,近似为一短路线,电路满足相位条件和振幅条件,故能正常工作;当回路的谐振频率距串联谐振频率较远时,晶体阻抗增大,是反馈减弱,从而使电路不能满足振幅条件,电路不能正常工作。串联型晶体振荡器只能适应高

次泛音工作,这是由于晶体只起到控制频率的作用,对回路没有影响,只要电路能正常工作,输出幅度就不受晶体控制。 图1-1 图1-2 设计参数在仿真图上,首先进行静态分析,根据仿真,各元件参数符合要求。对于振荡器,当该电路接为串联型振荡器时,晶体起到选频短路线的作用,(与三端电容振荡器相同)输出频率应为3MHZ. L1,C1,C2组成谐振回路,参数符合要求,即f0=3MHZ。 3.并联晶体振荡器 并联振荡器分为c-b型和b-e型。前者相对稳定。所以我设计的是c-b型。 参数分析与前者类似。交流参数确定时,并联振荡电路中晶振接在谐振回

石英晶体振荡器原理

石英晶体振荡器的基本工作原理及作用 (1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。(2)压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐 振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 (3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。当晶体不振动时,可把它看 成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。当晶体振荡时,机械振动的惯性可用电感L來等效。一般L的值为几十mH到几 百mH。晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因 摩擦而造成的损耗用R來等效,它的數值约为100Ω。由于晶片的等效电感很大,而C很小, R也小,因此回路的品质因數Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只 与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

压控振荡器的设计与仿真.

目录 1 引言 (2) 2 振荡器的原理 (5) 2.1 振荡器的功能、分类与参数 (5) 2.2 起振条件 (9) 2.3 压控振荡器的数学模型 (10) 3 利用ADS仿真与分析 (11) 3.1 偏置电路的的设计 (12) 3.2 可变电容VC特性曲线测试 (13) 3.3 压控振荡器的设计 (15) 3.4 压控振荡器相位噪声分析 (18) 3.5 VCO振荡频率线性度分析 (23) 4 结论 (24) 致谢 (25) 参考文献 (25)

压控振荡器的设计与仿真 Advanced Design System客户端软件设计 电子信息工程(非师范类)专业 指导教师 摘要:ADS可以进行时域电路仿真,频域电路仿真以及数字信号处理仿真设计,并可对设计结果进行成品率分析与优化,大大提高了复杂电路的设计效率。本论文运用ADS仿真软件对压控振荡器进行仿真设计,设计出满足设计目标的系统,具有良好的输出功率,相位噪声性能及震荡频谱线性度。本论文从器件选型开始,通过ADS软件仿真完成了有源器件选型,带通滤波器选型,振荡器拓扑结构确定,可变电容VC特性曲线,瞬态仿真及谐波平衡仿真。实现了准确可行的射频压控振荡器的计算机辅助设计。关键字:压控振荡器,谐波平衡仿真,ADS 1 引言 振荡器自其诞生以来就一直在通信、电子、航海航空航天及医学等领域扮演重要的角色,具有广泛的用途。在无线电技术发展的初期,它就在发射机中用来产生高频载波电压,在超外差接收机中用作本机振荡器,成为发射和接收设备的基本部件。随着电子技术的迅速发展,振荡器的用途也越来越广泛,例如在无线电测量仪器中,它产生各种频段的正弦信号电压:在热加工、热处理、超声波加工和某些医疗设备中,它产生大功率的高频电能对负载加热;某些电气设备用振荡器做成的无触点开关进行控制;电子钟和电子手表中采用频率稳定度很高的振荡电路作为定时部件等。尤其在通信系统电路中,压控振荡器(VCO)是其关键部件,特别是在锁相环电路、时钟恢复电路和频率综合器电路等更是重中之重,可以毫不夸张地说在电子通信技术领域,VCO几乎与电流源和运放具有同等重要地位。 人们对振荡器的研究未曾停止过。从早期的真空管时代当后期的晶体管时代,无论是理论上还是电路结构和性能上,无论是体积上还是制作成本上无疑都取得了飞跃性的

实验 石英晶体振荡器(严选材料)

实验四石英晶体振荡器 一、实验目的 1、熟悉石英晶体振荡器的基本工作原理; 2、掌握静态工作点对晶体振荡器工作的影响。 3、掌握晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的 方法。 二、实验原理 1、电路与工作原理 一种晶体振荡器的交流通路如图4-1所示。若将晶体短路,则L1、C2、C3就构成了典型的电容三点式振荡器(考毕兹电路)。因此,图4-1的电路是一种典型的串联型晶体振荡器电路(共基接法)。若取L1=4.3μH、C2=820pF、C3=180pF,C4=20nF,则可算得LC并联谐振回路的谐振频率f≈6MHz,与晶体工作频率相同。图中,C4是微调电容,用来微调振荡频率 C5是耦合电容,R5是负载电阻。很显然,R5越小,负载越重,输出振荡幅度将越小。 图4-1 晶体振荡器交流通路 2、实验电路

如图4-2所示。1R03、1C02为去耦元件,1C01为旁路电容,并构成共基接法。1W01用以调整振荡器的静态工作点(主要影响起振条件)。1C05为输出耦合电容。1Q02为射随器,用以提高带负载能力。实际上,图4-2电路的交流通路即为图4-1所示的电路。 三、实验内容 1、观察振荡器输出波形,测量振荡频率和振荡电压峰值Vp-p。 2、观察静态工作点等因素对晶体振荡器振荡幅度和频率的影响。 四、实验步骤 (一)模块上电 将晶体振荡器模块⑤,接通电源,此时电源指示灯点亮。 (二)测量晶体振荡器的振荡频率 把示波器接到1P01端,顺时针调整电位器1W01,以改变晶体管静态工作点,读取振荡频率(应为6MHZ)。 (三)观察静态工作点变化对振荡器工作的影响

压控振荡器原理和应用说明

压控振荡器(VCO 一应用范围 用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。 二基本工作原理 利用变容管结电容Cj 随反向偏置电压VT 变化而变化的特点(VT=OV 时Cj 是最大值,一 般变容管VT 落在2V-8V 压间,Cj 呈线性变化,VT 在8-10V 则一般为非线性变化,如图1 所示,VT 在10-20V 时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当 改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO 。 压控振荡器的调谐电压 VT 要针对所要求的产品类别及典型应用环境(例如用户提供调谐要 求,在锁相环使用中泵源提供的输出控制电压范围等 )来选择或设计,不同的压控振荡器, 对调谐电压VT 有不同的要求,一般而言,对调谐线性有较高要求者, VT 选在1-10V ,对宽 频带调谐时,VT 则多选择1-20V 或1-24V 。图1为变容二极管的V — C 特性曲线。 图1变容二极管的V — C 特性曲线 三压控振荡器的基本参数 1工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“ MHZ 或 “GHz 。 2输出功率:在工作频段内输出功率标称值,用 Po 表示。通常单位为“ dBmW 。 3输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△ P 表示,通常 单位为“ dBmW 。 4调谐灵敏度:定义为调谐电压每变化1V 时,引起振荡频率的变化量,用 MHz/ △ VT 表示,在线性区,灵敏度最咼,在非线性区灵敏度降低。 5谐波抑制:定义在测试频点,二次谐波抑制 =10Log (P 基波/P 谐波)(dBmw )。 6推频系数:定义为供电电压每变化1V 时,引起的测试频点振荡频率的变化量,用 MHz/V 表 示。 7相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振 f0为fm 的带内,各杂散能量的总和按fin 平均值+15f0点频谱能量之比,单位为dBC/Hz 相位噪 声特点是频谱能量集中在f0附近,因此fm 越小,相噪测量值就越大,目前测量相噪选定 WV) 0 8 10

石英晶体振荡器设计报告

石英晶体振荡器设计报告 张炳炎 09微电03 目录 1 设计要求 2 设计方案论证 a.电路形式的选取 b.参数的设计、估算 c. 设计内容的实现 3 电路的工作原理 4 晶体振荡器的特点 5 电路设计制作过程中遇到的主要 问题及解决方法、心得和建议 6 参考文献 7 附录

1设计要求 (1)晶体振荡器的工作频率在100MHZ以下 (2)振荡器工作可调,反馈元件可更换 (3)具有三组不同的负载阻抗 (4)电源电压为12V (5)在10K负载上输出目测不失真电压波形Vopp>=4V,振荡器频率读出5为有效数字 2设计方案论证 a.电路形式的选取: 串联型石英晶体振荡器 串联型石英晶体振荡器交流等效电路 石英晶体的物理和化学性能都十分稳定,等效谐振回路具有很高的标准性,Q值很高,对频率变化具有极灵敏的补偿能力具有.利用石英晶体作为串联谐振元件,在谐振时阻抗接近于零,此时正反馈最强,满足振荡条件.因此,电路的振荡频率和频率稳定度都取决于石英晶体的串联谐振频率.

b.参数的设计、估算 选用石英晶体(6M)作为串联谐振元件,提高振荡器的标准性,三极管为高频中常用的小功率管9018,作为放大电路的主要器件,选用阻值较大的可调电阻Rp(50k)来调节电路的静态工作点,使输出幅值达到最大而不失真,在LC 组成的谐振回路加可变电容(100p)调节谐振频率。三组负载分别为1k、10k、110k,用来比较对振荡器频率及幅值的影响。 c. 设计内容的实现 ○1输入电源电压12V,测试电路的静态工作点, 三极管 Vbe>,Vc>Vb>Ve,三极管工作在放大区。 ○2输出端接上示波器,观察到正弦波,通过改电位器、可变电容使输出的幅值达到最大。 ○3改变负载值,测量不同负载下电路输出的频率及幅值大小。可知,负载几乎对频率没有影响,因为输出的频 率主要由石英晶体决定,而幅值随着负载的减小而略 微下降,当空载时幅值最大。

压控LC电容三点式振荡器设计及仿真

实验二压控LC 电容三点式振荡器设计及仿真 一、实验目的 1、了解和掌握LC 电容三点式振荡器电路组成和工作原理。 2、了解和掌握压控振荡器电路原理。 3、理解电路元件参数对性能指标的影响。 4、熟悉电路分析软件的使用。 二、实验准备 1、学习LC 电容三点式西勒振荡器电路组成和工作原理。 2、学习压控振荡器的工作原理。 3、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 三、设计要求及主要指标 1、采用电容三点式西勒振荡回路,实现振荡器正常起振,平稳振荡。 2、实现电压控制振荡器频率变化。 3、分析静态工作点,振荡回路各参数影响,变容二极管参数。 4、振荡频率范围:50MHz~70MHz,控制电压范围3~10V。 5、三极管选用MPSH10(特征频率最小为650MHz,最大IC 电流50mA,可 满足频率范围要求),直流电压源12V,变容二极管选用MV209。 四、设计步骤 1、整体电路的设计框图

整个设计分三个部分,主体为LC 振荡电路,在此电路基础上添加压控部分,设计中采用变容二极管MV209 来控制振荡器频率,由于负载会对振荡电路的 频 率产生影响,所以需要添加缓冲器隔离以使振荡电路不受负载影响。 2、LC 振荡器设计 首先应选取满足设计要求的放大管,本设计中采用MPSH10 三极管,其特征频率f T=1000MHz。LC 振荡器的连接方式有很多,但其原理基本一致,本实验中采用电容三点式西勒振荡电路的连接方式,该振荡电路在克拉泼振荡电路的基础上进行了细微的改良,增加了一个与电感L 并联的电容,主要利用其改变频率而不对振荡回路的分压比产生影响的特点。电路图如下所示:

石英晶体振荡器电路设计

辽宁工业大学 高频电子线路课程设计(论文)题目:石英晶体振荡器电路设计 院(系):电子与信息工程学院 专业班级: 学号: 学生姓名: 指导教师: 起止时间: 2014.6.16-2014.6.27

课程设计(论文)任务及评语 院(系):电子与信息工程学院 教研室: 电子信息工程 注:成绩:平时20% 论文质量50% 答辩30% 以百分制计算 学 号 学生姓名 专业班级 课程设计(论文)题目 石英晶体振荡器电路设计 课 程设计(论文)任务 要求:1.设计一个石英晶体振荡器 2.能够观察输入输出波形。 3.观察振荡频率。 参数:振荡频率10000HZ 左右。 设计要求: 1 .分析设计要求,明确性能指标。必须仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。 2 .确定合理的总体方案。对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。 3 .设计各单元电路。总体方案化整为零,分解成若干子系统或单元电路,逐个设计。 4 .组成系统。在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。 指导教师评语及成绩 平时成绩(20%): 论文成绩(50%): 答辩成绩(30%): 总成绩: 学生签字: 年 月 日

目录 第1章绪论 (1) 1.1石英晶体振荡器 (1) 1.2设计要求 (1) 第2章石英晶体振荡器设计电路 (2) 2.1石英晶体振荡器总体设计方案 (2) 2.2具体电路设计 (2) 2.2.1串联型晶体振荡器 (2) 2.2.2并联型晶体振荡器 (4) 2.2.3输出缓冲级设计 (5) 2.3元件参数的计算 (5) 2.4Multisim软件仿真 (6) 2.4.1串联型振荡器输出测试 (6) 2.4.2并联型振荡器输出测试 (7) 第3章课程设计总结 (9) 参考文献 (10) 附录Ⅰ总体电路图 (11) 附录Ⅱ元器件清单 (12)

基于Multisim11的压控振荡电路仿真设计

分类号 密级 基于Multisim11的压控振荡电路仿真设计 所在学院机械与电气工程学院 专业电气工程及其自动化 班级 姓名 学号 指导老师 年月日 诚信承诺

我谨在此承诺:本人所写的毕业论文《基于Multisim11的压控振荡电路仿真设计》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。 承诺人(签名): 年月日

摘要 Multisim是美国国家仪器有限公司推出的以Windows为基础的仿真工具,适用于初级的模拟及数字电路板的设计工作,Multisim不仅具有丰富的仿真分析能力,而且还包含了电路原理图的图形输入及电路硬件描述语言的输入方式。有了Multisim软件就相当于有了一个电子实验室,可以非常方便的从事各种电路设计及仿真分析工作。 随着无线通信技术的快速发展,使得市场对压控振荡电路产生了巨大的需求。压控振荡器是通过调节可变电阻或电容可以改变波形的振荡频率,一般是通过人工来调节的。而在自动控制场合往往要求能自动地调节振荡频率。常见的情况是给出一个控制电压,要求输出波形的振荡频率与控制电压成正比。这种电路称为压控振荡器。 本次设计的内容是基于Multisim11的压控振荡电路仿真设计,阐述了压控振荡器的电路原理以及组成结构。本次设计是采用集成运算放大器741芯片组成的滞回电压比较器和反向积分电路,利用二极管1N4148相当于电子开关的功能,控制电容的充放电时间,构成的压控振荡电路,从而实现输入电压对输出频率变化的控制。只要改变输入端的电压,就可以改变输出端的输出频率。并在电路设计与仿真平台Multisim11仿真环境中创建集成压控振荡器电路模块,进而使用Multisim仿真工具对其进行仿真从而达到设计的目的和要求。 关键词:Multisim,压控振荡器,1N4148

变容二极管压控振荡器课程设计

课程设计说明书(论文) 变容二极管压控振荡器 摘要 振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。根据所产生的波形的不同,可将振荡器分为正弦波振荡器和非正弦波振荡器两大类。压控振荡器(VCO)是利用电抗元件的等效电抗值能随外加电压变化特点,将其接入正弦振荡器中,使振荡频率随外加控制电压而变化,VCO在频率调制,频率合成,锁相环电路,电视解调器,频谱分析仪等方面有广发应用。变容二极管振荡器是利用变容二极管制成的VCO。 本课题主要是运用变容二极管PN结电容随外加电压变化而变化制成的VCO。关键词:压控,变容二极管,调频

课程设计说明书(论文) 目录 1 课题描述 (3) 2 设计原理 (3) 3 设计过程 (4) 3.1压控振荡器介绍 (4) 3.2设计内容 (5) 3.3设计步骤 (6) 4 设计结果及分析 (8) 总结 (9) 参考文献 (10)

课程设计说明书(论文) 1课题描述 在电子设备中,压控振荡器的应用极为广泛,如彩色电视接收机高频头中的本机振荡电路、各种自动频率控制(AFC)系统中的振荡电路、锁相环路(PLL)中所用的振荡电路等均为压控振荡器以及用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。振荡器输出的波形有正弦型的,也有方波型的。 本课题主要是运用变容二极管PN结电容随外加电压变化而变化制成的VCO。 2 设计原理 利用变容管结电容j C随反向偏置电压VT变化而变化的特点(VT=0V时j C是最大值,一般变容管VT落在2V-8V压间,j C呈线性变化,VT在8-10V则一般为非线性变化,如图1所示,VT在10-20V时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO)。压控振荡器的调谐电压VT要针对所要求的产品类别及典型应用环境(例如用户提供调谐要求,在锁相环使用中泵源提供的输出控制电压范围等)来选择或设计,不同的压控振荡器,对调谐电压VT 有不同的要求,一般而言,对调谐线性有较高要求者,VT选在1-10V,对宽频带调谐时,VT则多选择1-20V或1-24V。图1为变容二极管的V-C特性曲线。 (V) T 图2.1变容二极管的V-C特性曲线

晶体振荡器电路+PCB布线设计指南

AN2867 应用笔记 ST微控制器振荡器电路 设计指南 前言 大多数设计者都熟悉基于Pierce(皮尔斯)栅拓扑结构的振荡器,但很少有人真正了解它是如何工 作的,更遑论如何正确的设计。我们经常看到,在振荡器工作不正常之前,多数人是不愿付出 太多精力来关注振荡器的设计的,而此时产品通常已经量产;许多系统或项目因为它们的晶振 无法正常工作而被推迟部署或运行。情况不应该是如此。在设计阶段,以及产品量产前的阶 段,振荡器应该得到适当的关注。设计者应当避免一场恶梦般的情景:发往外地的产品被大批 量地送回来。 本应用指南介绍了Pierce振荡器的基本知识,并提供一些指导作法来帮助用户如何规划一个好的 振荡器设计,如何确定不同的外部器件的具体参数以及如何为振荡器设计一个良好的印刷电路 板。 在本应用指南的结尾处,有一个简易的晶振及外围器件选型指南,其中为STM32推荐了一些晶 振型号(针对HSE及LSE),可以帮助用户快速上手。

目录ST微控制器振荡器电路设计指南目录 1石英晶振的特性及模型3 2振荡器原理5 3Pierce振荡器6 4Pierce振荡器设计7 4.1反馈电阻R F7 4.2负载电容C L7 4.3振荡器的增益裕量8 4.4驱动级别DL外部电阻R Ext计算8 4.4.1驱动级别DL计算8 4.4.2另一个驱动级别测量方法9 4.4.3外部电阻R Ext计算 10 4.5启动时间10 4.6晶振的牵引度(Pullability) 10 5挑选晶振及外部器件的简易指南 11 6针对STM32?微控制器的一些推荐晶振 12 6.1HSE部分12 6.1.1推荐的8MHz晶振型号 12 6.1.2推荐的8MHz陶瓷振荡器型号 12 6.2LSE部分12 7关于PCB的提示 13 8结论14

石英晶体振荡器的主要参数

石英晶体振荡器的主要参数 标称频率fo:存规定的负载电容下,晶振元件的振荡频率即为标称频率矗。标称频率足晶体技术条件中规定的频率,通常标识在产品外壳上。需要注意的是,晶体外壳所标注的频率,既不是串联谐振频率也不足并联谐振频率,而足在外接负载电容时测定的频率,数值介于串联谐振频率与并联谐振频率之间。所以即使两个晶体外壳所标注的频率是一样的,其实际频率也会有些小的偏差(1.艺引起的离散性)。 常用普通晶振标称频率有48kHz、500kHz、503.5kHz、l -40.50MHz等,对于特殊要求的晶振频率可达到IOOOMHz以上。 负载电容:品振元件相当于电感,组成振荡电路时需配接外部电容,此电容目U负载电容。负载电容是与晶体一起决定负载谐振频率f的有效外界电容,通常用CL表示。设计电路时必须按产品手册巾规定的CL值,才能使振荡频率符合晶振的fL。在应用晶体时,负载电容(C。)的值是卣接由厂家所提供的,无需冉去计算。常见的负载电容为8pF、12pF、15pF、20pF、30pF、50pF、lOOpF。』I要可能就应选lOpF、20pF、30pF、50pF、lOOpF 这样的推荐值。 负载频率不同决定振荡器的振荡频率不同。标称频率相同的晶振,负载电容不一定相同。因为石英品体振荡器有两个谐振频率:一个是串联谐振品振的低负载电容晶振:另一个为并联谐振晶振的高负载电容晶振。所以,标称频率相同的晶振互换时还必须要求贞载电容一致,不能冒然互换,否则会造成电器工作不止常。 调整频差:在规定条件下,基准温度(25℃±2℃)时工作频率相对于标称频率所允许的偏若。 温度频差:在规定条件下,在工作温度范围内相对于基准温度(25℃t2℃)时工作频率的允许偏差。 老化率:在规定条件下,晶体T作频率随时间向允许的相对变化。以年为时间单位衡量时称为年老化率。

石英晶体振荡器

石英晶体振荡器 石英晶体振荡器是一种用于频率稳定和选择频率的电子器件,它的主要作用是提供频率基准,由于它具有高稳定的物理化学性能、极小的弹性震动损耗以及频率稳定度高的特点,因此被广泛用于远程通信、卫星通信、移动电话系统、全球定位系统(GPS)、导航、遥控、航空航天、高速计算机、精密计测仪器及消费类民用电子产品中,是目前其它类型的振荡器所不能替代的. 一、石英晶体谐振器的结构、振荡原理 1、石英晶体振荡器的结构 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。下图是一种金属外壳封装的石英晶体结构示意图。 2、压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象

十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 二、石英晶体振荡器的等效电路与谐振频率 1、等效电路 石英晶体谐振器的等效电路如下图所示。当晶体不振动时,可把它看成一个平板电容器称为静电电容Co,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF到几十PF。当晶体振荡时,机械振动的惯性可用电感L1来等效。一般L1的值为几十mH 到几百mH。晶片的弹性可用电容C1来等效,C1的值很小,一般只有0.2fF~100fF(1PF=1000fF)。晶片振动时因摩擦而造成的损耗用R1来等效,它的数值约为10-100Ω。由于晶片的等效电感很大,而C1很小,R1也小,因此回路的品质因数Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。 其中 C o :静电容,包括晶体两电极之间的电容和引线及基座带来的电容,它的单位是PF。 L 1 :等效动电感,即通常说的动态电感; C 1 :等效动电容,即通常说的动态电容。晶振的动态电容由晶体的切割型式,大小尺寸决定。 R 1 :等效电阻,一般叫谐振电阻或者动态电阻。 总之:等效电路由动态参数L 1、C 1、 R 1 和静电容C 组成。这些参数之间都是有联系 的,一个参数变化时可能会引起其他参数变化。而这些等效电路的参数值跟晶体的切型、振动模式、工作频率及制造商实施的具体设计方案关系极大。 2、谐振频率 从石英晶体谐振器的等效电路可知,它有两个谐振频率,即: (1)当L1、C1、R1支路发生串联谐振时,它的等效阻抗最小(等于R1)。 串联揩振频率用fs表示,石英晶体对于串联揩振频率fs呈纯阻性;

高频压控振荡器开题报告

压控高频LC振荡器的设计 ————开题报告 学生:x x x,物理与信息工程学院 指导老师:x x x x x x 一.课题来源 正弦波振荡器在无线电技术领域应用十分广泛,在电子测量中,正弦波信号必不可少的基准信号源。正弦波振荡器主要有决定振荡频率的选频网络和维持振荡的正反馈放大器组成,正弦波振荡器可分为有LC振荡器、RC振荡器、石英晶体振荡器等。本论文主要讲述了高频高精度的LC正弦波振荡器的产生。介绍了该振荡器的基本工作原理、设计电路、性能和测试指标等。此外,还具体说明了电路设计的制作过程和元器件的检测、安装、焊接、调试等过程。阐述了技术指标要求测试方法和数据记录。并对实测数据进行了分析和总结。目前压控振荡器被广泛应用与通信系统电路中,例如锁相环、频率综合器以及时钟产生和时钟恢复电路。而且VCO压控LC器在现实通信领域也有很广泛的应用,其性能优于环形振荡器。振荡器自其诞生以来就一直在通信、电子、航海航空航天及医学等领域扮演重要的角色,具有广泛的用途。在无线电技术发展的初期,它就在发射机中用来产生高频载波电压,在超外差接收机中用作本机振荡器,成为发射和接收设备的基本部件。随着电子技术的迅速发展,振荡器的用途也越来越广泛,例如在无线电测量仪器中,它产生各种频段的正弦信号电压:在热加工、热处理、超声波加工和某些医疗设备中,它产生大功率的高频电能对负载加热;某些电气设备用振荡器做成的无触点开关进行控制;电子钟和电子手表中采用频率稳定度很高的振荡电路作为定时部件等。尤其在通信系统电路中,压控振荡器(VCO)是其关键部件,特别是在锁相环电路、时钟恢复电路和频率综合器电路等更是重中之重,可以毫不夸张地说在电子通信技术领域,VCO几乎与电流源和运放具有同等重要地位。在这次的论文选题中有软件方面的也有硬件方面的,而我本人对硬件比较感兴趣,且压控振荡器是硬件中比较核心的部分,因此我选择了《压控高频LC振荡器的设计》这样一个课题。

石英晶体振荡器

石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。 一、石英晶体振荡器的基本原理 1、石英晶体振荡器的结构 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。下图是一种金属外壳封装的石英晶体结构示意图。 2、压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 3、符号和等效电路 石英晶体谐振器的符号和等效电路如图2所示。当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF到几十PF。当晶体振荡时,机械振动的惯性可用电感L来等效。一般L的值为几十mH 到几百mH。晶片的弹性可用电容C来等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因摩擦而造成的损耗用R来等效,它的数值约为100Ω。由于晶片的等效电感很大,而C很小,R 也小,因此回路的品质因数Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。 4、谐振频率 从石英晶体谐振器的等效电路可知,它有两个谐振频率,即(1)当L、C、R支路发生串联谐振时,它的等效阻抗最小(等于R)。串联揩振频率用fs表示,石英晶体对于串联揩振频率fs呈纯阻性,(2)当频率高于fs时L、C、R支路呈感性,可与电容C。发生并联谐振,其并联频率用fd表示。 根据石英晶体的等效电路,可定性画出它的电抗—频率特性曲线如图2e所示。可见当频率低于串联谐振频率fs或者频率高于并联揩振频率fd时,石英晶体呈容性。仅在fs<f<fd 极窄的范围内,石英晶体呈感性。 二、石英晶体振荡器类型特点 石英晶体振荡器是由品质因素极高的石英晶体振子(即谐振器和振荡电路组成。晶体的品质、切割取向、晶体振子的结构及电路形式等,共同决定振荡器的性能。国际电工委员会(IEC)将石英晶体振荡器分为4类:普通晶体振荡(TCXO),电压控制式晶体振荡器(VCXO),温度补偿式晶体振荡(TCXO),恒温控制式晶体振荡(OCXO)。目前发展中的还有数字补偿式晶体损振荡(DCXO)等。 普通晶体振荡器(SPXO)可产生10^(-5)~10^(-4)量级的频率精度,标准频率1—100MHZ,频率稳定度是±100ppm。SPXO没有采用任何温度频率补偿措施,价格低廉,通常用作微处理器的时钟器件。封装尺寸范围从21×14×6mm及5×3.2×1.5mm。

压控LC振荡器

2003年全国大学生电子设计大赛 设计报告 设计者:李永彬王萍宋均雷 赛前辅导老师:姚福安万鹏 单位:山东大学控制科学与工程学院 邮编:250061 A题电压控制LC正弦波振荡器 摘要 本系统由LC振荡电路、高频放大电路、采样保持电路、三位半电压显示模块、CPLD控制模块及四位LED显示模块等构成。本设计的特色在于应用变容二极管实现了压控变频及应用可编程逻辑器件实现了频率测量。 Abstract This system includes LC frequency generator, the sampling-holding circuit, controlled by the CPLD. This can realize that the function that change the frequency step by step. To display the outcome, the model applied in. 1. 方案论证及实现 根据压控LC震荡器题目的要求,提出以下两种方案:

1.方案一:变压器反馈式LC振荡器 变压器反馈式LC震荡电路要使用变压器,其体积和重量都比较大。而且,变压器的铁芯容易产生电磁干扰。 2.方案二:电感三点式振荡电路 电感三点式振荡电路电路反馈电压取自电感,而电感对高次谐波的阻抗较大,不能将高次谐波滤掉,因此输出波形中含有较多的高次谐波分量,波形较差,而且频率稳定度不高 3.方案三:电容三点式震荡电路 电容三点式振荡器的电路反馈电压取自电容,其对高次谐波的阻抗较较小,因此反馈电压中的高次谐波分量较小,波形较好。为达到题目要求实现压控,可采用变容二极管组成电容三点式振荡器。由于制版条件有限,不可能有效克服分布参数干扰的影响,但此方案仍为实现题目

LC压控振荡器课程设计(含程序)

LC压控振荡器课程设计(含程序)武汉理工大学《学科基础课群课设》 摘要 本设计是一个功能完善,性能优良的高频VCO(Voltage Control Oscillation)。主 振器由分立元件组成。电压对频率的控制是通过变容二极管来实现的。即通过改变变容 二极管的反向压降,从而改变变容二极管的结电容,继而改变振荡频率。系统的输出频 ,3率范围为10MHz—40MHz。频率稳定度在以上。设计以单片机为控制核心,实现频10 率和电压值的实时测量及显示并控制频率步进,步进有粗调和细调的功能。粗调可实现 较大步进值调节,是调可实现较小步进值调节。该功能使得频率的准确定位十分方便。 本电路在调频部分为提高输出频率精度,采用单片机控制主振器参数,根据产生不同的 频率范围控制不同的主振器参数而达到提高精度和稳定度的目的。为了高频信号的良好 传输,本设计的部分电路板采用了人工刻板使得本设计更加特色鲜明,性能优良。 关键字:VCO 单片机变容二极管 ADC0804 Abstract

This design is a high frequency VCO with comprehensive and perfect function. The main vibrator is made up of several separable components. Voltage control on the frequency is realized by way of varicap diode. That, changing the reverse voltage of diode can adjust the frequency. The frequency of the apparatus can output from 10MHz to 40MHz, and its I 武汉理工大学《学科基础课群课设》 ,3frequency stability can reach .This design uses a single-chip as control core to measure 10 and display the frequency and voltage and regulate frequency. The frequency adjustment includes two procedures -approximate adjusting and slight adjusting, The slight adjusting can realize the precise frequency output. In order to change the precision of frequency to output, the circuit control the main vibrator with a single-chip. In order go gain what we to. we can change the different parameters of the main vibrator. In addition, Some part of the design wield arterial pattern plate. It nape the circuit mare perfect. Key words: VCO MCU DIODE ADC0804 目录 1. 系统设计 (1) 1.1 设计要求 (1)

基于石英晶体的正弦波振荡器

晶体振荡器的基本知识 下图是石英晶体谐振器的等效电路。图中C0是晶体作为电介质的静电容,其数值一般为几个皮法到几十皮法。Lq、Cq、rq是对应于机械共振经压电转换而呈现的电参数。rq是机械摩擦和空气阻尼引起的损耗。由图3-1可以看出,晶体振荡器是一串并联的振荡回路,其串联谐振频率fq和并联谐振频率f0分别为 f q=1/2πLqCq,f0= f q Co 1 Cq/ 图1 晶体振荡器的等效电路 当W<Wq或W> Wo时,晶体谐振器显容性;当W在Wq和Wo之间,晶体谐振器等效为一电感,而且为一数值巨大的非线性电感。由于Lq很大,即使在Wq处其电抗变化率也很大。其电抗特性曲线如图所示。实际应用中晶体工作于Wq~Wo之间的频率,因而呈现感性。 图2 晶体的电抗特性曲线 设计内容及要求 一设计目的及主要任务 1设计目的 掌握高频电子电路的基本设计能力及基本调试能力,并在此基础上设计并联变换的晶体正弦波振荡器。 2 并联型晶体振荡器 图 3 c-b型并联晶体振荡器电路 图 4 皮尔斯原理电路图 5 交流等效电路 C3用来微调电路的振荡频率,使其工作在石英谐振器的标称频率上,C1、C2、C3串联组成石英晶体谐振器的负载电容C L上,其值为 C L=C1C2C3/(C1C2+C2C3+C1C3) C q/ (C0+C L)<<1

二详细设计步骤 1、电路的选择 晶体振荡电路中,与一般LC振荡器的振荡原理相同,只是把晶体置于反馈网络的振荡电路之中,作为一感性元件,与其他回路元件一起按照三端电路的基本准则组成三端振荡器。根据实际常用的两种类型,电感三点式和电容三点式。由于石英晶体存在感性和容性之分,且在感性容性之间有一条极陡峭的感抗曲线,而振荡器又被限定在此频率范围内工作。该电抗曲线对频率有极大的变化速度,亦即石英晶体在这频率范围内具有极陡峭的相频特性曲线。所以它具有很高的稳频能力,或者说具有很高的电感补偿能力。因此选用c-b型皮尔斯电路进行制作。 图 6 工作电路 2、选择晶体管和石英晶体 根据设计要求, =300MHz;≥40,取选择高频管2N3904型晶体管作为振荡管。查手册其参数如下: T =60;NPN型通用;额压:20V;Icm=20mA;Po= ;≈ / =5 MHz。 T 石英谐振器可选用HC-49S系列,其性能参数为: 标称频率。=6 MHz;工作温度:-40℃~+70℃;25℃时频率偏差:士3×10-6士30×10-6;串联谐振电阻:60 ;负载电容:C L=10PF,激励功率:~。 3、元器件参数的计算 a)、确定三极管静态工作点 正确的静态工作点是振荡器能够正常工作的关键因素,静态工作点主要影响晶体管的工作状态,若静态工作点的设置不当则晶体管无法进行正常的放大,振荡器在没有对反馈信号进行放大时是无法工作的。振荡器主电路的静态工作点主要由R b1、R b2、R e、R决定,将电感短路,电容断路,得到直流通路如图所示。 图7 直流通路等效电路 高频振荡器的工作点要合适,若偏低、偏高都会使振荡波形产生严重失真,甚至停振。取I CQ (.1) I b2=10 I BQ=,则取: Ω,以便工作点的调整。 b1b2 b)、交流参数的确定 对于振荡器,当电路接为并联型振荡器时,晶体起到等效电感的作用,输出频率应为6MHZ,则由晶振参数知负载电容C L=10pF,即C2,C3,C1串联后的总电容为10 pF 根据负载电容的定义,C L=1/[(1/C1,2)+1/C3] 由反馈系数F=C1/C2和C1,2=C1C2/C1-C2两式联立解,并取F=1/2 则C1=51pF,C2=100pF,C3=30pF

相关文档