文档库 最新最全的文档下载
当前位置:文档库 › Pair Hidden Markov Models (PairHMMs)

Pair Hidden Markov Models (PairHMMs)

Pair Hidden Markov Models (PairHMMs)
Pair Hidden Markov Models (PairHMMs)

Inducing Sound Segment Differences using Pair Hidden Markov Models

Martijn Wieling

Alfa-Informatica University of Groningen wieling@https://www.wendangku.net/doc/ff13294387.html,

Therese Leinonen

Alfa-Informatica

University of Groningen

t.leinonen@rug.nl

John Nerbonne

Alfa-Informatica

University of Groningen

j.nerbonne@rug.nl

Abstract

Pair Hidden Markov Models(PairHMMs)

are trained to align the pronunciation tran-

scriptions of a large contemporary collec-

tion of Dutch dialect material,the Goeman-

Taeldeman-Van Reenen-Project(GTRP,col-

lected1980–1995).We focus on the ques-

tion of how to incorporate information about

sound segment distances to improve se-

quence distance measures for use in di-

alect comparison.PairHMMs induce seg-

ment distances via expectation maximisa-

tion(EM).Our analysis uses a phonologi-

cally comparable subset of562items for all

424localities in the Netherlands.We evalu-

ate the work?rst via comparison to analyses

obtained using the Levenshtein distance on

the same dataset and second,by comparing

the quality of the induced vowel distances to

acoustic differences.

1Introduction

Dialectology catalogues the geographic distribution of the linguistic variation that is a necessary condi-tion for language change(Wolfram and Schilling-Estes,2003),and is sometimes successful in iden-tifying geographic correlates of historical develop-ments(Labov,2001).Computational methods for studying dialect pronunciation variation have been successful using various edit distance and related string distance measures,but unsuccessful in us-ing segment differences to improve these(Heeringa, 2004).The most successful techniques distinguish consonants and vowels,but treat e.g.all the vowel differences as the same.Ignoring the special treat-ment of vowels vs.consonants,the techniques re-gard segments in a binary fashion—as alike or different—in spite of the overwhelming consensus that some sounds are much more alike than others. There have been many attempts to incorporate more sensitive segment differences,which do not neces-sarily perform worse in validation,but they fail to show signi?cant improvement(Heeringa,2004). Instead of using segment distances as these are (incompletely)suggested by phonetic or phonolog-ical theory,we can also attempt to acquire these automatically.Mackay and Kondrak(2005)in-troduce Pair Hidden Markov Models(PairHMMs) to language studies,applying them to the problem of recognising“cognates”in the sense of machine translation,i.e.pairs of words in different languages that are similar enough in sound and meaning to serve as translation equivalents.Such words may be cognate in the sense of historical linguistics,but they may also be borrowings from a third language. We apply PairHMMs to dialect data for the?rst time in this paper.Like Mackay and Kondrak(2005)we evaluate the results both on a speci?c task,in our case,dialect classi?cation,and also via examination of the segment substitution probabilities induced by the PairHMM training procedures.We suggest us-ing the acoustic distances between vowels as a probe to explore the segment substitution probabilities in-duced by the PairHMMs.

Naturally,this validation procedure only makes sense if dialects are using acoustically more similar sounds in their variation,rather than,for example,

randomly varied

and geographic

of

that sound

means that nearby

the most changes.

vergent to local

toward local

cases strengthens

Correspondences

more easily

decreasing

2Material

In this study the

source is used:

Van

man,1996).

scriptions for613

(424varieties)

ered during the

ety,a maximum

scribed according

phabet.The

word groups,

nouns.A more

tion is given in Since the documenting both variation(De pose here is the ation,many

use the same562

cussed in depth

the1876item

only single word

form was

cluded),base

ative forms and

of other forms.

primarily

nunciation. Because the eties are

of Netherlandic

will focus our

Netherlands.

Figure2.Pair Hidden Markov Model.Image cour-tesy of Mackay and Kondrak(2005).

biological sequences.Mackay and Kondrak(2005) adapted the algorithm to calculate similarity scores for word pairs in orthographic form,focusing on identifying translation equivalents in bilingual cor-pora.

Their modi?ed PairHMM has three states repre-senting the basic edit operations:a substitution state (M),a deletion state(X)and an insertion state(Y).In the substitution state two symbols are emitted,while in the other two states a gap and a symbol are emit-ted,corresponding with a deletion and an insertion, respectively.The model is shown in Figure2.The four transition parameters are speci?ed byλ,δ,εandτ.There is no explicit start state;the proba-bility of starting in one of the three states is equal to the probability of going from the substitution state to that state.In our case we use the PairHMM to align phonetically transcribed words.A possible align-ment(including the state sequence)for the two ob-servation streams[mO@lk@]and[mEl@k](Dutch di-alectal variants of the word‘milk’)is given by:

m O@l k@

m E l@k

M M X M Y M X

We have several ways to calculate the similarity score for a given word pair when the transition and emission probabilities are known.First,we can use the Viterbi algorithm to calculate the probability of the best alignment and use this probability as a sim-ilarity score(after correcting for length;see Mackay and Kondrak,2005).Second,we can use the For-ward algorithm,which takes all possible alignments into account,to calculate the probability of the ob-servation sequence given the PairHMM and use this probability as a similarity score(again corrected for length;see Mackay,2004for the adapted PairHMM Viterbi and Forward algorithms).

A third method to calculate the similarity score is using the log-odds algorithm(Durbin et al.,1998). The log-odds algorithm uses a random model to rep-resent how likely it is that a pair of words occur to-gether while they have no underlying relationship. Because we are looking at word alignments,this means an alignment consisting of no substitutions but only insertions and deletions.Mackay and Kon-drak(2005)propose a random model which has only insertion and deletion states and generates one word completely before the other,e.g.

m O@l k@

m E l@k

The model is described by the transition proba-bilityηand is displayed in Figure3.The emis-sion probabilities can be either set equal to the inser-tion and deletion probabilities of the word similarity model(Durbin et al.,1998)or can be speci?ed sepa-rately based on the token frequencies in the data set (Mackay and Kondrak,2005).

The?nal log-odds similarity score of a word pair is calculated by dividing the Viterbi or Forward probability by the probability generated by the ran-dom model,and subsequently taking the logarithm of this value.When using the Viterbi algorithm the regular log-odds score is obtained,while using the Forward algorithm yields the Forward log-odds score(Mackay,2004).Note that there is no need for additional normalisation;by dividing two mod-els we are already implicitly normalising.

Before we are able to use the algorithms de-scribed above,we have to estimate the emission probabilities(i.e.insertion,substitution and dele-tion probabilities)and transition probabilities of the model.These probabilities can be estimated by us-ing the Baum-Welch expectation maximisation al-gorithm(Baum et al.,1970).The Baum-Welch algo-

Figure3.Random Pair Hidden Markov Model.Im-age courtesy of Mackay and Kondrak(2005). rithm iteratively reestimates the transition and emis-sion probabilities until a local optimum is found and has time complexity O(T N2),where N is the num-ber of states and T is the length of the observa-tion sequence.The Baum-Welch algorithm for the PairHMM is described in detail in Mackay(2004).

3.1Calculating dialect distances

When the parameters of the complete model have been determined,the model can be used to calculate the alignment probability for every word pair.As in Mackay and Kondrak(2005)and described above, we use the Forward and Viterbi algorithms in both their regular(normalised for length)and log-odds form to calculate similarity scores for every word pair.Subsequently,the distance between two dialec-tal varieties can be obtained by calculating all word pair scores and averaging them.

4The Levenshtein distance

The Levenshtein distance was introduced by Kessler (1995)as a tool for measuring linguistic distances between language varieties and has been success-fully applied in dialect comparison(Nerbonne et al., 1996;Heeringa,2004).For this comparison we use a slightly modi?ed version of the Levenshtein dis-tance algorithm,which enforces a linguistic syllab-icity constraint:only vowels may match with vow-els,and consonants with consonants.The speci?c details of this modi?cation are described in more de-tail in Wieling et al.(2007).

We do not normalise the Levenshtein distance measurement for length,because Heeringa et al. (2006)showed that results based on raw Levenshtein distances are a better approximation of dialect dif-ferences as perceived by the dialect speakers than results based on the normalised Levenshtein dis-tances.Finally,all substitutions,insertions and dele-tions have the same weight.

5Results

To obtain the best model probabilities,we trained the PairHMM with all data available from the424 Netherlandic localities.For every locality there were on average540words with an average length of5 tokens.To prevent order effects in training,every word pair was considered twice(e.g.,w a?w b and w b?w a).Therefore,in one training iteration almost 100million word pairs had to be considered.To be able to train with these large amounts of data,a par-allel implementation of the PairHMM software was implemented.After starting with more than6700 uniform initial substitution probabilities,82inser-tion and deletion probabilities and5transition prob-abilities,convergence was reached after nearly1500 iterations,taking10parallel processors each more than10hours of computation time.

In the following paragraphs we will discuss the quality of the trained substitution probabilities as well as comment on the dialectological results ob-tained with the trained model.

5.1Trained substitution probabilities

We are interested both in how well the overall se-quence distances assigned by the trained PairHMMs reveal the dialectological landscape of the Nether-lands,and also in how well segment distances in-duced by the Baum-Welch training(i.e.based on the substitution probabilities)re?ect linguistic real-ity.A?rst inspection of the latter is a simple check on how well standard classi?cations are respected by the segment distances induced.

Intuitively,the probabilities of substituting a vowel with a vowel or a consonant with a conso-nant(i.e.same-type substitution)should be higher than the probabilities of substituting a vowel with a consonant or vice versa(i.e.different-type substitu-tion).Also the probability of substituting a phonetic

symbol with itself(i.e.identity substitution)should be higher than the probability of a substitution with any other phonetic symbol.To test this assumption, we compared the means of the above three substi-tution groups for vowels,consonants and both types together.

In line with our intuition,we found a higher prob-ability for an identity substitution as opposed to same-type and different-type non-identity substitu-tions,as well as a higher probability for a same-type substitution as compared to a different-type substitu-tion.This result was highly signi?cant in all cases: vowels(all p s≤0.020),consonants(all p s< 0.001)and both types together(all p s<0.001). 5.2Vowel substitution scores compared to

acoustic distances

PairHMMs assign high probabilities(and scores) to the emission of segment pairs that are more likely to be found in training data.Thus we expect frequent dialect correspondences to acquire high scores.Since phonetic similarity effects alignment and segment correspondences,we hypothesise that phonetically similar segment correspondences will be more usual than phonetically remote ones,more speci?cally that there should be a negative correla-tion between PairHMM-induced segment substitu-tion probabilities presented above and phonetic dis-tances.

We focus on segment distances among vowels, because it is straightforward to suggest a measure of distance for these(but not for consonants).Pho-neticians and dialectologists use the two?rst for-mants(the resonant frequencies created by different forms of the vocal cavity during pronunciation)as the de?ning physical characteristics of vowel qual-ity.The?rst two formants correspond to the ar-ticulatory vowel features height and advancement. We follow variationist practice in ignoring third and higher https://www.wendangku.net/doc/ff13294387.html,ing formant frequencies we can calculate the acoustic distances between vowels. Because the occurrence frequency of the pho-netic symbols in?uences substitution probability,we do not compare substitution probabilities directly to acoustic distances.To obtain comparable scores,the substitution probabilities are divided by the product of the relative frequencies of the two phonetic sym-bols used in the substitution.Since substitutions in-volving similar infrequent segments now get a much higher score than substitutions involving similar,but frequent segments,the logarithm of the score is used to bring the respective scores into a comparable scale.

In the program PRAAT we?nd Hertz values of the?rst three formants for Dutch vowels pro-nounced by50male(Pols et al.,1973)and25fe-male(Van Nierop et al.,1973)speakers of stan-dard Dutch.The vowels were pronounced in a/hVt/ context,and the quality of the phonemes for which we have formant information should be close to the vowel quality used in the GTRP transcriptions.By averaging over75speakers we reduce the effect of personal variation.For comparison we chose only vowels that are pronounced as monophthongs in standard Dutch,in order to exclude interference of changing diphthong vowel quality with the results. Nine vowels were used:/i,I,y,Y,E,a,A,O,u/.

We calculated the acoustic distances between all vowel pairs as a Euclidean distance of the formant values.Since our perception of frequency is non-linear,using Hertz values of the formants when cal-culating the Euclidean distances would not weigh F1heavily enough.We therefore transform frequen-cies to Bark scale,in better keeping with human per-ception.The correlation between the acoustic vowel distances based on two formants in Bark and the log-arithmical and frequency corrected PairHMM sub-stitution scores is r=?0.65(p<0.01).But Lobanov(1971)and Adank(2003)suggested using standardised z-scores,where the normalisation is applied over the entire vowel set produced by a given speaker(one normalisation per speaker).This helps in smoothing the voice differences between men and women.Normalising frequencies in this way re-sulted in a correlation of r=?0.72(p<0.001) with the PairHMM substitution scores.Figure4vi-sualises this result.Both Bark scale and z-values gave somewhat lower correlations when the third formant was included in the measures.

The strong correlation demonstrates that the PairHMM scores re?ect phonetic(dis)similarity. The higher the probability that vowels are aligned in PairHMM training,the smaller the acoustic dis-tance between two segments.We conclude therefore that the PairHMM indeed aligns linguistically corre-sponding segments in accord with phonetic similar-

Figure4.Predicting acoustic distances based on PairHMM scores.Acoustic vowel distances are cal-culated via Euclidean distance based on the?rst two formants measured in Hertz,normalised for speaker. r=?0.72

ity.This likewise con?rms that dialect differences tend to be acoustically slight rather than large,and suggests that PairHMMs are attuned to the slight differences which accumulate locally during lan-guage change.Also we can be more optimistic about combining segment distances and sequence distance techniques,in spite of Heeringa(2004, Ch.4)who combined formant track segment dis-tances with Levenshtein distances without obtaining improved results.

5.3Dialectological results

To see how well the PairHMM results reveal the di-alectological landscape of the Netherlands,we cal-culated the dialect distances with the Viterbi and Forward algorithms(in both their normalised and log-odds version)using the trained model parame-ters.

To assess the quality of the PairHMM results, we used the LOCAL INCOHERENCE measurement which measures the degree to which geographically close varieties also represent linguistically similar varieties(Nerbonne and Kleiweg,2005).Just as Mackay and Kondrak(2005),we found the over-all best performance was obtained using the log-odds version of Viterbi algorithm(with insertion and deletion probabilities based on the token frequen-cies).

Following Mackay and Kondrak(2005),we also

experimented with a modi?ed PairHMM obtained

by setting non-substitution parameters constant.

Rather than using the transition,insertion and dele-

tion parameters(see Figure2)of the trained model,

we set these to a constant value as we are most

interested in the effects of the substitution param-

eters.We indeed found slightly increased perfor-

mance(in terms of LOCAL INCOHERENCE)for the

simpli?ed model with constant transition parame-

ters.However,since there was a very high corre-

lation(r=0.98)between the full and the simpli?ed

model and the resulting clustering was also highly

similar,we will use the Viterbi log-odds algorithm

using all trained parameters to represent the results

obtained with the PairHMM method.

5.4PairHMM vs.Levenshtein results

The PairHMM yielded dialectological results quite

similar to those of Levenshtein distance.The LOCAL INCOHERENCE of the two methods was similar,and the dialect distance matrices obtained from the two

techniques correlated highly(r=0.89).Given that

the Levenshtein distance has been shown to yield re-

sults that are consistent(Cronbach’sα=0.99)and

valid when compared to dialect speakers judgements

of similarity(r≈0.7),this means in particular that

the PairHMMs are detecting dialectal variation quite

well.

Figure5shows the dialectal maps for the results

obtained using the Levenshtein algorithm(top)and

the PairHMM algorithm(bottom).The maps on the

left show a clustering in ten groups based on UP-

GMA(Unweighted Pair Group Method with Arith-

metic mean;see Heeringa,2004for a detailed expla-

nation).In these maps phonetically close dialectal

varieties are marked with the same symbol.How-

ever note that the symbols can only be compared

within a map,not between the two maps(e.g.,a di-

alectal variety indicated by a square in the top map

does not need to have a relationship with a dialec-

tal variety indicated by a square in the bottom map).

Because clustering is unstable,in that small differ-

ences in input data can lead to large differences in

the classi?cations derived,we repeatedly added ran-

dom small amounts of noise to the data and iter-

atively generated the cluster borders based on the

Figure5.Dialect distances for Levenshtein method(top)and PairHMM method(bottom).The maps on the left show the ten main clusters for both methods,indicated by distinct symbols.Note that the shape of these symbols can only be compared within a map,not between the top and bottom maps.The maps in the middle show robust cluster borders(darker lines indicate more robust cluster borders)obtained by repeated clustering using random small amounts of noise.The maps on the right show for each locality a vector towards the region which is phonetically most similar.See section5.4for further explanation.

noisy input data.Only borders which showed up during most of the100iterations are shown in the map.The maps in the middle show the most ro-bust cluster borders;darker lines indicate more ro-bust borders.The maps on the right show a vector at each locality pointing in the direction of the region it is phonetically most similar to.

A number of observations can be made on the basis of these maps.The most important observa-tion is that the maps show very similar results.For instance,in both methods a clear distinction can be seen between the Frisian varieties(north)and their surroundings as well as the Limburg varieties (south)and their surroundings.Some differences can also be observed.For instance,at?rst glance the Frisian cities among the Frisian varieties are sep-arate clusters in the PairHMM method,while this is not the case for the Levenshtein method.Since the Frisian cities differ from their surroundings a great deal,this point favours the PairHMM.How-ever,when looking at the deviating vectors for the Frisian cities in the two vector maps,it is clear that the techniques again yield similar results.Note that a more detailed description of the results using the Levenshtein distance on the GTRP data can be found in Wieling et al.(2007).

Although the PairHMM method is much more so-phisticated than the Levenshtein method,it yields very similar results.This may be due to the fact that the data sets are large enough to compensate for the lack of sensitivity in the Levenshtein technique, and the fact that we are evaluating the techniques at a high level of aggregation(average differences in 540-word samples).

6Discussion

The present study con?rms Mackay and Kondrak’s (2004)work showing that PairHMMs align linguis-tic material well and that they induce reasonable seg-ment distances at the same time.We have extended that work by applying PairHMMs to dialectal data, and by evaluating the induced segment distances via their correlation with acoustic differences.We noted above that it is not clear whether the dialectological results improve on the simple Levenshtein measures, and that this may be due to the level of aggregation and the large sample sizes.But we would also like to test PairHMMs on a data set for which more sen-sitive validation is possible,e.g.the Norwegian set for which dialect speakers judgements of proximity is available(Heeringa et al.,2006);this is clearly a point at which further work would be rewarding.

At a more abstract level,we emphasise that the correlation between acoustic distances on the one hand and the segment distances induced by the PairHMMs on the other con?rm both that align-ments created by the PairHMMs are linguistically responsible,and also that this linguistic structure in-?uences the range of variation.The segment dis-tances induced by the PairHMMs re?ect the fre-quency with which such segments need to be aligned in Baum-Welch training.It would be conceivable that dialect speakers used all sorts of correspon-dences to signal their linguistic provenance,but they do not.Instead,they tend to use variants which are linguistically close at the segment level.

Finally,we note that the view of diachronic change as on the one hand the accumulation of changes propagating geographically,and on the other hand as the result of a tendency toward local convergence suggests that we should?nd linguis-tically similar varieties nearby rather than further away.The segment correspondences PairHMMs in-duce correspond to those found closer geographi-cally.

We have assumed a dialectological perspective here,focusing on local variation(Dutch),and using similarity of pronunciation as the organising varia-tionist principle.For the analysis of relations among languages that are further away from each other—temporally and spatially—there is substantial con-sensus that one needs to go beyond similarity as a basis for postulating grouping.Thus phylogenetic techniques often use a model of relatedness aimed not at similarity-based grouping,but rather at creat-ing a minimal genealogical tree.Nonetheless sim-ilarity is a satisfying basis of comparison at more local levels.

Acknowledgements

We are thankful to Greg Kondrak for providing the source code of the PairHMM training and testing al-gorithms.We thank the Meertens Instituut for mak-ing the GTRP data available for research and espe-

cially Boudewijn van den Berg for answering our questions regarding this data.We would also like to thank Vincent van Heuven for phonetic advice and Peter Kleiweg for providing support and the soft-ware we used to create the maps.

References

Patti Adank.2003.Vowel normalization-a perceptual-acoustic study of Dutch vowels.Wageningen:Ponsen &Looijen.

Leonard E.Baum,Ted Petrie,George Soules,and Nor-man Weiss.1970.A maximization technique oc-curring in the statistical analysis of probabilistic func-tions of Markov Chains.The Annals of Mathematical Statistics,41(1):164–171.

Georges De Schutter,Boudewijn van den Berg,Ton Goe-man,and Thera de Jong.2005.Morfologische at-las van de Nederlandse dialecten-deel1.Amster-dam University Press,Meertens Instituut-KNAW, Koninklijke Academie voor Nederlandse Taal-en Let-terkunde.

Richard Durbin,Sean R.Eddy,Anders Krogh,and Graeme Mitchison.1998.Biological Sequence Anal-ysis:Probabilistic Models of Proteins and Nucleic Acids.Cambridge University Press,July.

Ton Goeman and Johan Taeldeman.1996.Fonologie en morfologie van de Nederlandse dialecten.een nieuwe materiaalverzameling en twee nieuwe atlasprojecten.

Taal en Tongval,48:38–59.

Wilbert Heeringa,Peter Kleiweg,Charlotte Gooskens, and John Nerbonne.2006.Evaluation of string dis-tance algorithms for dialectology.In John Nerbonne and Erhard Hinrichs,editors,Linguistic Distances, pages51–62,Shroudsburg,PA.ACL.

Wilbert Heeringa.2004.Measuring Dialect Pronunci-ation Differences using Levenshtein Distance.Ph.D.

thesis,Rijksuniversiteit Groningen.

Brett https://www.wendangku.net/doc/ff13294387.html,putational dialectology in Irish Gaelic.In Proceedings of the seventh conference on European chapter of the Association for Computa-tional Linguistics,pages60–66,San Francisco,CA, USA.Morgan Kaufmann Publishers Inc.

William Labov.2001.Principles of Linguistic Change.

Vol.2:Social Factors.Blackwell,Malden,Mass. Boris M.Lobanov.1971.Classi?cation of Russian vow-els spoken by different speakers.Journal of the Acous-tical Society of America,49:606–608.Wesley Mackay and Grzegorz https://www.wendangku.net/doc/ff13294387.html,-puting word similarity and identifying cognates with Pair Hidden Markov Models.In Proceedings of the 9th Conference on Computational Natural Language Learning(CoNLL),pages40–47,Morristown,NJ, USA.Association for Computational Linguistics. Wesley Mackay.2004.Word similarity using Pair Hid-den Markov Models.Master’s thesis,University of Alberta.

John Nerbonne and Peter Kleiweg.2005.Toward a di-alectological yardstick.Accepted for publication in Journal of Quantitative Linguistics.

John Nerbonne,Wilbert Heeringa,Erik van den Hout,Pe-ter van der Kooi,Simone Otten,and Willem van de Vis.1996.Phonetic distance between Dutch dialects.

In Gert Durieux,Walter Daelemans,and Steven Gillis, editors,CLIN VI:Proc.from the Sixth CLIN Meet-ing,pages185–202.Center for Dutch Language and Speech,University of Antwerpen(UIA),Antwerpen. Louis C.W.Pols,H.R.C.Tromp,and R.Plomp.1973.

Frequency analysis of Dutch vowels from50male speakers.The Journal of the Acoustical Society of America,43:1093–1101.

Lawrence R.Rabiner.1989.A tutorial on Hidden Markov Models and selected applications in speech recognition.Proceedings of the IEEE,77(2):257–286. Johan Taeldeman and Geert Verleyen.1999.De FAND: een kind van zijn tijd.Taal en Tongval,51:217–240.

D.J.P.J.Van Nierop,Louis C.W.Pols,and R.Plomp.

1973.Frequency analysis of Dutch vowels from25 female speakers.Acoustica,29:110–118.

Martijn Wieling,Wilbert Heeringa,and John Nerbonne.

2007.An aggregate analysis of pronunciation in the Goeman-Taeldeman-Van Reenen-Project data.Taal en Tongval.submitted,12/2006.

Walt Wolfram and Natalie Schilling-Estes.2003.Dialec-tology and linguistic diffusion.In Brian D.Joseph and Richard D.Janda,editors,The Handbook of Historical Linguistics,pages713–735.Blackwell,Malden,Mas-sachusetts.

随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链 5.1连续时间的马尔可夫链 考虑取非负整数值的连续时间随机过程}.0),({≥t t X 定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意 121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有 })(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++ =})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链. 由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关. 记(5.1)式条件概率一般形式为 ),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij = 其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij 以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程. 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记 i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有 },{}{t h P s h t s h P i i i >=>+> 可见,随机变量i h 具有无记忆性,因此i h 服从指数分布. 由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

Tesla Model S底盘全透视..

水平对置、后置后驱、低重心、前双横臂后多连杆、全铝合金车架、5门5座,你以为笔者说的是保时捷新车型吗?那笔者再补充多几个关键词好了,后置的水平对置双电刷电动机、0油耗、藏在地板下的笔记本电池组,同时拥有这些标签的,便是Tesla第二款车型Model S。Model S是五门五座纯电动豪华轿车,布局设计及车身体积与保时捷Panamera相当,并且是目前电动车续航里程的纪录保持者(480公里)。虽然现在纯电动在我国远未至于普及,但是在香港地区却是已经有Tesla的展厅,在该展厅内更是摆放了一台没有车身和内饰,只有整个底盘部分的Model S供人直观了解Model S的技术核心。 图:Tesla Model S。

图:拆除车壳之后,Model S的骨架一目了然。

图:这套是Model S的个性化定制系统,可以让买家选择自己喜爱的车身颜色、内饰配色和轮圈款式,然后预览一下效果。可以看到Model S共分为普通版、Sign at ure版和Performance版,后面两个型号标配的是中间的21寸轮圈,而普通版则是两边的19寸款式。Signature版是限量型号,在美国已全部售罄,香港也只有少量配额。 图:笔者也尝试一下拼出自己心目中的Model S,碳纤维饰条当然是最爱啦。

图:参观了一下工作车间,不少Roadster在等着检查保养呢,据代理介绍,不同于传统的汽车,电动车的保养项目要少很多,至少不用更换机油和火花塞嘛,换言之电动车的维护成本要比燃油汽车要低。 Tesla于2010年5月进军香港市场,并于翌年2011年9月成立服务中心。由于香港政府对新能源车的高度支持,香港的电动车市场发展比起大陆地区要好得多。例如Tesla的第一款车型Roadster(详见《无声的革命者——Tesla Roadster Sport 》),在香港获得豁免资格,让车主可以节省将近100万港元的税款。在这样的优惠政策之下,Tesla Roadster尽管净车价达100万港元,但50台的配额已经基本售罄。而Model S目前在香港已经开始接受报名预定,确定车型颜色和配置之后约两个月左右可以交车。

第五章 连续时间的Markov链

第五章 连续时间的马尔可夫链 第四章我们讨论了时间和状态都是离散的M arkov 链,本章我们研究的是时间连续、状态离散的M arkov 过程,即连续时间的M arkov 链. 连续时间的M arkov 链可以理解为一个做如下运动的随机过程:它以一个离散时间M arkov 链的方式从一个状态转移到另一状态,在两次转移之间以指数分布在前一状态停留. 这个指数分布只与过程现在的状态有关,与过去的状态无关(具有无记忆性),但与将来转移到的状态独立. 5.1 连续时间马尔可夫链的基本概念 定义 5.1 设随机过程{(),0}X t t ≥,状态空间{,1}n I i n =≥,若对任意的正整数 1210n t t t +≤<<< 及任意的非负整数121,,,n i i i I +∈ ,条件概率满足 {}111122()|(),(),,()n n n n P X t i X t i X t i X t i ++==== {}11()|()n n n n P X t i X t i ++=== (5.1) 则称{(),0}X t t ≥为连续时间的M arkov 链. 由定义知,连续时间的M arkov 链是具有M arkov 性(或称无后效性)的随机过程,它的直观意义是:过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1n t +的状态只依赖于现在的状态而与过去的状态无关. 记(5.1)式条件概率的一般形式为 {()|()}(,)ij P X s t j X s i p s t +=== (5.2) 它表示系统在s 时刻处于状态i ,经过时间t 后在时刻s t +转移到状态j 的转移概率,通常称它为转移概率函数.一般地,它不仅与t 有关,还与s 有关. 定义 5.2 若(5.2)式的转移概率函数与s 无关,则称连续时间M arkov 链具有平稳的转移概率函数,称该M arkov 链为连续时间的齐次(或时齐)M arkov 链. 此时转移概率函数简记为(,)()ij ij p s t p t =.相应地,转移概率矩阵简记为()(()),(,,0)ij P t p t i j I t =∈≥. 若状态空间{0,1,2,}I = ,则有 ()00010210 11 12 012() ()() ...()()()()()... ... .. ....()()( )...... .. .... ij n n n p t p t p t p t p t p t P t p t p t p t p t ?? ? ? ?== ? ? ?? ? (5.3) 假设在某时刻,比如说时刻0,M arkov 链进入状态i ,在接下来的s 个单位时间内过程 未离开状态i (即未发生转移),我们要讨论的问题是在随后的t 个单位时间中过程仍不离开状态i 的概率是多少?由M arkov 性知,过程在时刻s 处于状态i 的条件下,在区间[,] s s t +

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

特斯拉整体介绍

Tesla Model S 特斯拉Model S是一款纯电动车型,外观造型方面,该车定位一款四门Coupe车型,动感的车身线条使人过目不忘。此外在前脸造型方面,该车也采用了自己的设计语言。另值得一提的是,特斯拉Model S的镀铬门把手在触摸之后可以自动弹出,充满科技感的设计从拉开车门时便开始体现。该车在2011年年中正式进入量产阶段,预计在2012年年内将有5000台量产车投放市场。 目录 1概述 2售价 3内饰 4动力 5车型 6技术规格 7性能表现 8荣誉 9对比测试 10车型参数 1概述

Tesla Model S是一款由Tesla汽车公司制造的全尺寸高性能电动轿车,预计于2012年年中投入销售,而它的竞争对手则直指宝马5系。该款车的设计者Franz von Holzhausen,曾在马自达北美分公司担任设计师。在Tesla汽车公司中,Model S拥有独一无二的底盘、车身、发动机以及能量储备系统。Model S的第一次亮相是在2009年四月的一期《大卫深夜秀》节目中 4 Tesla Model S 。 2售价 Model S的电池规格分为三种,分别可以驱动车辆行驶260公里、370公里和480公里。而配备这三种电池的Model S的售价则分别为57400美元、67400美元和77400美元。下线的首批1000辆签名款车型将配有可以行驶480公里的蓄电池。尽管官方尚未公布该签名款车型的具体售价,但据推测,价格将会保持在50000美元左右。 Tesla汽车公司称其将会对市场出租可以提供480公里行驶距离的电池。而从Model S中取得的收益将为第三代汽车的发展提供资金保障。 3内饰

基于4P-4C-4R理论的特斯拉电动汽车品牌营销策略探究

基于4P-4C-4R理论的特斯拉电动汽车品牌营销策略探究 兰州大学管理学院:鲍瑞雪指导老师:苏云【摘要】:特斯拉汽车作为新兴的电动汽车品牌,其发展速度是十分惊人的,尤其是自2014年进入中国市场后更是在中国新能源汽车业引起巨大的轰动,其成功模式值得深思,其中特斯拉汽车公司的营销策略,不仅根据目标市场进行分析,还结合了自身的实际情况,通过对多种营销策略的综合利用,最终实现了成功,促进了企业的持续发展。本文基于营销学4P-4C-4R理论对特斯拉汽车公司的营销策略进行深入分析,研究表明特斯拉从顾客角度出发,采取4P、4C、4R相结合的营销策略。4P是战术,4C是战略,应用4C、4R来思考, 4P角度来行动。 【关键词】: 4P 4C 4R 品牌营销策略特斯拉电动汽车 一、研究背景 当前,美国电动汽车企业特斯拉公司已经成为世界电动汽车界的一匹黑马。特斯拉公司成立于2003年,不同于其它新能源汽车企业,它主要从事电动跑车等高端电动汽车的设计、制造和销售。成立仅仅10年,特斯拉就已经开始在新能源汽车企业和高端汽车企业中崭露头角。作为新兴电动汽车品牌,特斯拉汽车的成功不是偶然的,这与其注重品牌营销策略密不可分。特斯拉汽车公司不仅对目标市场进行具体细分,结合自身实际进行有特色的精准的定位,还充分利用名人效应,提升品牌形象,并借助已有成功模式,寻求找到符合自身发展的途径,出一条饱含自己特色的品牌营销之路。 二、理论依据及文献综述 (一)理论依据 本文以经典的营销学理论4P-4C-4R理论为理论依据,着力探究4P-4C-4R 理论与特斯拉电动汽车营销策略之间的内在联系,分析特斯拉电动汽车品牌营销策略的经典之处。 1、4P营销理论 4P营销理论被归结为四个基本策略的组合,即产品(Product)、价格(Price)、渠道(Place)、促销(Promotion)。该理论注重产品开发的功能,要求产品有独特的卖点,把产品的功能诉求放在第一位。在价格策略方面,企业应当根据不

详解特斯拉Model S

详解特斯拉Model S 1、Model S的核心技术是什么? 核心技术是软件,主要包括电池管理软件,电机以及车载设备的电控技术。最重要的是电池控制技术。 Model S的加速性能,续航里程、操控性能的基础都是电池控制技术,没有电池控制技术,一切都就没有了。 2、Model S的电池控制技术有什么特色? 顶配的Model S使用了接近7000块松下NCR 18650 3100mah电池,对电池两次分组,做串并联。设置传感器,感知每块电池的工作状态和温度情况,由电池控制系统进行控制。防止出现过热短路温度差异等危险情况。 在日常使用中,保证电池在大电流冲放电下的安全性。 其他厂商都采用大电池,最多只有几百块,也没有精确到每块电池的控制系统。 3、为什么要搞这么复杂的电池控制系统? 为了能够使用高性能的18650钴锂电池。高性能电池带来高性能车。因为18650钴锂电池的高危性,没有一套靠谱的系统,安全性就不能保证。这也是大多数厂商无论电力车,插电车,混合动力车都不太敢用钴锂电池,特别是大容量钴锂电池的原因。 松下NCR 18650 3100mah,除了测试一致性最好,充放电次数多,安全性相对较好以外,最重要的是能量大,重量轻,价格也不高。 由于能量大,重量轻,在轿车2吨以内的车重限制下,可以塞进去更多的电池,从而保证更长的续航里程。因为电池输出电流有限制,电池越多,输出电流越大,功率越大,可以使用的电机功率也就越大。电机功率越大,相当于发动机功率大,车就有更快的加速性能,而且可以保持较长的一段时间。 4、作为一辆车,Model S有哪些优点?这些优点是电动车带来的吗? 作为一辆车,Model S主要具有以下几个优点 (1)起步加速快,顶配版本0-100公里加速4秒多,能战宝马M5

TESLA特斯拉解析

TESLA 硅谷工程师、资深车迷、创业家马丁·艾伯哈德(Martin Eberhard)在寻找创业项目时发现,美国很多停放丰田混合动力汽车普锐斯的私家车道上经常还会出现些超级跑车的身影。他认为,这些人不是为了省油才买普锐斯,普锐斯只是这群人表达对环境问题的方式。于是,他有了将跑车和新能源结合的想法,而客户群就是这群有环保意识的高收入人士和社会名流。 2003年7月1日,马丁·艾伯哈德与长期商业伙伴马克·塔彭宁(Marc Tarpenning)合伙成立特斯拉(TESLA)汽车公司,并将总部设在美国加州的硅谷地区。成立后,特斯拉开始寻找高效电动跑车所需投资和材料。

由于马丁·艾伯哈德毫无这方面的制造经验,最终找到AC Propulsion公司。当时,对AC Propulsion公司电动汽车技术产生兴趣的还有艾龙·穆思科(Elon Musk)。在AC Propulsion公司CEO汤姆·盖奇(Tom Gage)的引见下,穆思科认识了艾伯哈德的团队。2004年2月会面之后,穆思科向TESLA投资630万美元,但条件是出任公司董事长、拥有所有事务的最终决定权,而艾伯哈德作为创始人任TESLA的CEO。 在有了技术方案、启动资金后,TESLA开始开发高端电动汽车,他们选择英国莲花汽车的Elise作为开发的基础。没有别的原因,只是因为莲花是唯一一家把TESLA放在眼里的跑车生产商。

艾伯哈德和穆思科的共同点是对技术的热情。但是,作为投资人,穆思科拥有绝对的话语权,随着项目的不断推进,TESLA开始尝到“重技术研发轻生产规划、重性能提升轻成本控制”的苦果。2007年6月,离预定投产日期8月27日仅剩下两个月时,TESLA还没有向零部件供应商提供Roadster的技术规格,核心的部件变速箱更是没能研制出来。另一方面,TESLA在两个月前的融资中向投资人宣称制造Roadster的成本为6.5万美元,而此时成本分析报告明确指出Roadster最初50辆的平均成本将超过10万美元。 生意就是生意,尤其硅谷这样的世界级IT产业中心,每天都在发生一些令人意想不到的事情。投资人穆思科以公司创始人艾伯哈德产品开发进度拖延、成本超支为由撤销其

特斯拉电动汽车电池管理系统解析

1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C 之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。 图 1.(a)是一层(sheet)内部的热管理系统。冷却管道曲折布置在电池间,冷却液在管道内部流动,带走电池产生的热量。图 1.(b)是冷却管道的结构示意图。冷却管道内部被分成四个孔道,如图 1.(c)所示。为了防止冷却液流动过程中温度逐渐升高,使末端散热能力不佳,热管理系统采用了双向流动的流场设计,冷却管道的两个端部既是进液口,也是出液口,如图 1(d)所示。电池之间及电池和管道间填充电绝缘但导热性能良好的材料(如Stycast 2850/ct),作用是:1)将电池与散热管道间的接触形式从线接触转变为面接触;2)有利于提高单体电池间的温度均一度;3)有利于提高电池包的整体热容,从而降低整体平均温度。

Tesla Model S电池组设计全面解析

Tesla Model S电池组设计全面解析 对Tesla来说最近可谓是祸不单行;连续发生了3起起火事故,市值狂跌40亿,刚刚又有3名工人受伤送医。Elon Musk就一直忙着到处“灭火”,时而还跟公开表不对Tesla“不感冒”的乔治·克鲁尼隔空喊话。在经历了首次盈利、电池更换技术·穿越美国、水陆两栖车等头条新闻后,Elon Musk最近总以各种负面消息重返头条。这位"钢铁侠。CE0在201 3年真是遭遇各种大起大落。 其中最为人关注的莫过于Model S的起火事故,而在起火事故中最核心的问题就是电池技术。可以说,牵动Tesla股价起起落落的核心元素就是其电池技术,这也是投资者最关心的问题。在美国发生的两起火事故有着相似的情节Model S 撞击到金属物体后,导致电池起火,但火势都被很好地控制在车头部分。在墨西哥的事故中,主要的燃烧体也是电池;而且在3起事故中,如何把着火的电池扑灭对消防员来说都是个难题。 这让很多人产生一个疑问:Model S的电池就这么不禁撞吗?在之前的一篇文章中,我跟大家简单讨论了一下这个问题,但只是停留在表面。读者普遍了解的是,Model S的电池位于车辆底部,采用的是松下提供的18650钴酸锂电池,整个电池组包含约8000块电池单元;钴酸锂电池能量密度大,但稳定性较差,为此Tesla研发了3级电源管理体系来确保电池组正常运作。现在,我们找到了Tesla的一份电池技术专利,借此来透彻地了解下Model S电池的结构设计和技术特征。 电池的布局与形体

FIG3 如专利图所示,Model S的电池组位于车辆的底盘,与轮距同宽,长度略短于轴距。电池组的实际物理尺寸是:长2.7m,宽1.5m,厚度为0.1 m至0.1 8m。其中0.1 8m较厚的部分是由于2个电池模块叠加而成。这个物理尺寸指的是电池组整体的大小,包括上下、左右、前后的包裹面板。这个电池组的结构是一个通用设计,除了18650电池外,其他符合条件的电池也可以安装。此外,电池组采用密封设计,与空气隔绝,大部分用料为铝或铝合金。可以说,电池不仅是一个能源中心,同时也是Model S底盘的一部分,其坚固的外壳能对车辆起到很好的支撑作用。 由于与轮距等宽,电池组的两侧分别与车辆两侧的车门槛板对接,用螺丝固定。电池组的横断面低于车门槛板。从正面看,相当于车门槛板"挂着。电池组。其连接部分如下图所示。 FIG, 4

特斯拉Model S电动汽车性能介绍

特斯拉Model S 特斯拉Model S并非小尺寸、动力不足的短程汽车——这是某些人对电动车的预期。作为特斯拉三款电动车中体积最大的车型,根据美国环保署认证,这款快捷、迷人的运动型轿车一次充电能够行驶265英里(426公里),不过特斯拉声称可以达到300英里。不管哪种情况,这肯定是电动车行业的新高。Model S Performance版本的入门级价格为94,900美元,我测试的版本价格为101,600美元(按照美国联邦税收抵免,可以在此基础上扣减7,500美元)。 在一次开放驾驶上,这款特斯拉汽车硕大的85千瓦时电池的确可以至少行驶426公里。电流来自于车底的电池组,里面有大约7,000颗松下锂电池,重量约为590公斤(1,300磅). 试驾的第二天是前往威斯康辛州,在行驶了320公里后电几乎用光,不过其中包括了在芝加哥的一场交通拥堵中无奈爬行的两个小时。这天的测试充满野心,更多是针对性能而非行驶里程,包括这款特斯拉汽车迅速地用4.4秒时间从0加速到时速97公里(0至60英里每小时),此外测试达到的最高时速为210公里。 我有没有提到,在0到时速100英里的加速时间方面,这款310千瓦(416马力)的特斯拉汽车将击败威力巨大、使用汽油的413千瓦(554马力)宝马M5?部分原因在于这款特斯拉汽车的同步交流电发动机能够即时提供600牛·米(443英尺磅)的扭矩。像电灯开关一样轻点特斯拉的油门,最大的扭矩已经准备就绪,一分钟内能够实现从0到5,100转。后悬挂、液冷式发动机可以保持1.6万转每分钟,通过一个单速变速箱将动力传导至后轮。 它就像一头冷酷的猛兽,在出奇安静之中让内燃机这个猎物消失于无形——安静到何种程度呢?来自轮胎和风阻的声音比在其他大部分豪华车中感受到的更加明显。安装于车底的电池让特斯拉获得与很多超级车相当的重心,这非常有利于稳定操控。Model S经过弯道的时候也能很好地保持贴地感。 尽管这款特斯拉汽车看起来并不笨重,但其重量达到2,108公斤;随着速度和重力的提升,这些多余的重量表露无遗。加大油门后,沉重的尾部会产生震动。在操控手感的愉悦性方面,特斯拉无法与宝马相提并论,甚至连马自达都赶不上。 美妙的试驾体验在你进入车内之前就开始了,你靠近汽车时,可伸缩的车门把手自动弹出。接着看到的是特斯拉标志性的驾驶室特色内容,一个43厘米(17英寸)电容触摸屏,看起来就像一对相互配合的iPad. 在其用铝合金加强的底盘和车身内,Model S可以容纳5人。一个可爱但是奇怪的按钮可以在车门位置增加脸朝车后的儿童座椅,从而实现最多承载7人。将第二排座椅向下折,可以扩展后座载货空间,可用于家得宝(Home Depot)采购之旅。由于引擎盖下面没有发动机,这些空间可以作为有用的前置行李箱,特斯拉将其称为“前备箱”(“frunk”),就像保时捷911一样。

特斯拉纯电动车

目录 一、特斯拉简介 (3) 二、特斯拉纯电动车主要功能特点 (3) (一)Model S 主要特点 (3) (二)Model X 主要特点 (9) (三)Model 3 主要特点 (12) 三、特斯拉的电池技术 (13) (一)特斯拉动力电池简介 (13) (二)85kwh电池板的拆解分析 (14) (三)单体电池的能量密度 (20) (四)电量的衰减性能 (22) (五)电池检测实验室:从源头保证锂电池单体一致性 (24) (六)动力电池系统PACK技术 (25) (七)电池管理系统(BMS) (27) 四、特斯拉的充电技术 (35) (一)家用充电桩 (35) (二)超级充电桩 (37) (三)目的地充电桩 (38) (四)计划使用太阳能为超级充电站供电 (38) 五、电机及电控的主要技术 (38) (一)感应电机与永磁电机的对比 (39) (二)Model S采用三相交流感应电机 (40)

(三)双电机可以有效减少高速时的效率降低,并延长续航能力 (41) (四)电机的结构改进提效并易于自动化 (41) (五)逆变器采用分散塑封IGBT,实现低散热要求 (43) 六、车身的主要技术 (46) (一)全铝车身 (46) (二)Model X的双铰链鹰翼门 (47) 七、安全方面的主要技术 (48) (一)车身的安全设计 (49) (二)电池的安全性 (50) (三)信息安全技术 (51) 八、智能化技术 (51) (一)空中升级 (51) (二)远程诊断 (52) (三)自动求助 (52) (四)交互关系 (52)

特斯拉纯电动车的核心技术分析 一、特斯拉简介 特斯拉(Tesla),是一家美国电动车及能源公司,产销电动车、太阳能板、及储能设备。总部位于美国加利福尼亚州硅谷帕洛阿尔托(Palo Alto)。 特斯拉第一款汽车产品Roadster发布于2008年,为一款两门运动型跑车。2012年,特斯拉发布了其第二款汽车产品——Model S,一款四门纯电动豪华轿跑车;第三款汽车产品为Model X,豪华纯电动SUV ,于2015年9月开始交付。特斯拉的下一款汽车为Model 3,首次公开于2016年3月,并将于2017年末开始交付。 2016年11月17日特斯拉电动车收购美国太阳能发电系统供应商SolarCity,使得特斯拉转型成为全球唯一垂直整合的能源公司,向客户提供包括Powerwall能源墙、太阳能屋顶等端到端的清洁能源产品。2017年2月1日,特斯拉汽车公司(Tesla Motors Inc.)正式改名为特斯拉(Tesla Inc.)。这意味着汽车不再是特斯拉的唯一业务。 二、特斯拉纯电动车主要功能特点 (一)Model S 主要特点 得益于特斯拉独特的纯电动动力总成,Model S 的性能表现十分出色,0-100公里/小时加速最快仅需2.7 秒。通过Autopilot 自动辅助驾驶(选装),Model S 还可以使高速公路驾驶更为安全且轻松,让你更好的享受驾驶乐趣。

深度揭秘特斯拉Model S底盘:电池组电机四驱

深度揭秘特斯拉Model S底盘:电池组/电机/四驱 特斯拉的第一代产品Roadster,用的是莲花Elise的底盘。这台车当时卖了2000多台。现在,这个经典的跑车底盘又被底特律电动车(Detroit Electric)拿来做另外一款“Roadster”了。 2012年,特斯拉发布Model S。底盘结构由特斯拉自主研发,并为其今后的车系奠定了基础。与燃油汽车不同,特斯拉一个底盘就可以涵盖所有级别的车型。比如将于2017年上市的Model 3,其底盘是在Model S的基础上缩短了轴距而已。 本期,我们来彻底解构下特斯拉Model S的底盘结构。共分为三部分来讲:电池组、电机,以及四驱。先从电池组说起。 特斯拉的电池,是特斯拉的核心专利技术之一,可以说是整台Model S最核心的一个零件。特斯拉一共拥有249项专利,其中有104项是跟电池有关的。与很多采用几个大的电池单元成电池组的布局不同,特斯拉采用的是与笔记本一样的电池。整台Model S的整备质量为2108kg(2.1吨),其中电池组的重量就占了600kg(0.6吨)。作为一辆D级豪华车,特斯拉Model S并没有超重。这在很大程度上得益于Model S的全铝车身。

由于电池组横贯于位于车辆底部,这使得Model S的重心得以降低,平衡了配重,从而提升了操控性。根据官方数据,Model S的前后配重比为48:52。 在Model S刚上市时,按照电池划分共有3款型号,分别是85kWh、60kWh,以及40kWh。2013年,由于40kWh车型销量惨淡,特斯拉决定停止销售。不久前,特斯拉又推出了70Kwh车型,来取代之前的60kWh版本。 值得一提的是,当年60kWh的车型与40kWh的车型,电池组其实是一样的;两者的区别在于,特斯拉将40kWh的电池进行了软件限制,从而在一个可容纳60kWh电量的电池组中,只有40kWh的电量可用。 而85kWh电池与60kWh电池的区别,主要是电池组中装配的电池单元数量。85kWh的电池组电压为400V,由一共16个电池包组成,每个电池包装配了444颗电池单元,所以这个电池组一共有7104颗电池组成。60kWh,则是由14个电池包,共计6216颗电池单元组成。这里所说的电池单元,是由松下提供的 NCR-18650A型电池。 18650是可充电锂离子电池的一种型号,它的命名来源于这种电池的尺寸 --18mm*65mm,但由于还要加入保护电路,所以电池的实际尺寸要略微大几零点几毫米。18650电池的主要用途,是笔记本电脑的电池,它有很多生产厂商;而特斯拉则选用了松下提供的18650电池,但要注意特斯拉使用的电池与笔记本中的电池还是有差别。18650只是一个统称。

特斯拉电动车2013全球销量

特斯拉电动车2013全球销量

————————————————————————————————作者:————————————————————————————————日期:

特斯拉的2013年:利润超1亿美元售车2.25万辆 2014年02月20日来源:第一电动网 特斯拉(NASDAQ:TSLA)将2013年一季度创出的盈利“奇迹”延续到了全年。按照特斯拉一贯采纳的非通用会计准则(Non-GAAP),特斯拉2013年赚得超过1亿美元的利润。特斯拉的电动汽车销量也大为增长,达到了约2.25万辆。 近日,特斯拉发布财务数据称,根据GAAP准则,即不计入股权奖励支出及其他一次性项目,特斯拉2013年营业收入为20.13496亿美元,对比2012年的4.13256亿美元,同比增长387.2%。而按照非GAAP准则,特斯拉2013年营业收入为24.77662亿美元,对比2012年的4.13256亿美元,同比增长499.5%。 根据GAAP准则,特斯拉去年亏损额为7401.4万美元,2012年则为39621.3万美元,同比削减81.3%。按照非GAAP准则,特斯拉去年实现利润10356.3万美元,2012年亏损34421.4万美元。 特斯拉汽车于美国时间本周三下午发布了2013年的致股东邮件。邮件显示,第四季度,特斯拉创纪录地销售了6892辆电动汽车,全年销量22477辆。 未来,特斯拉还计划在美国发展超级充电站网络和服务中心,推动汽车销售。此外特斯拉还预计,欧洲和中国市场将带来巨大销量。2014年的汽车总销量将达到3.5万辆,比今年的22477辆高55%。

特斯拉分析报告

特斯拉分析报告 Revised as of 23 November 2020

目录 特斯拉电动汽车国际发展分析报告 综合经营教育 组织:市场策划1301 班 指导老师:胡子娟 组长:符美丹 组员:徐宝怡、李嘉尊、张家梦、杨伟怡 华南农业大学珠江学院 电话: 乐享科技 2016-4-6

一、背景 (一)公司概况 2003年7月1日,马丁艾伯哈德与长期商业伙伴马克塔彭宁合伙成立特斯拉(TESLA)汽车公司,并将总部设在美国加州的硅谷地区2004年2月,埃隆马斯克向特斯拉投资630万美元,但条件是出任公司董事长、拥有所有事务的最终决定权,而马丁艾伯哈德作为特斯拉之父任公司的CEO。不可忽视的是,特斯拉的背后,站着众多超级投资人。其中包括谷歌创始人拉里佩奇、谢尔盖布林等人,还包括丰田、戴姆勒奔驰的子公司和松下等传统汽车巨头。松下是特斯拉的锂电池电芯供应商,而特斯拉汽车的部分设计也受益于奔驰的启发特斯拉刷新了世界对电动汽车的认知,从这一点出发,特斯拉可以称得上是一个改变了世界的公司。特斯拉当前的创新应该更多在商业模式以及对电动汽车的发展的推动上,是一个令人充满期待,并且值得让人敬佩的公司。从诞生之日起,特斯拉的品牌一直都与“环保”、“高科技”等标签贴在一起,时时闪现出高冷的明星气质。这的确在品牌初期为其吸引了众多支持者,并获得了意想不到的营销效果。而借助这层光环加持,特斯拉开始了自己的故事。在本土市场较为稳定之后特斯拉开始开拓中国市场。 (二)公司产品 1.T esla Roadster 2.T esla Model S 3.T esla Model X

(完整版)特斯拉汽车案例介绍

特斯拉汽车案例介绍 一、 1、发展背景 2003年在美国硅谷成立了一家汽车公司,这个在选址上独具一格的传统汽车公司名为特斯拉,在企业一开始发展的阶段就将公司的选址放在美国西部的科技圣地——硅谷,这个二十一世纪电子和计算机业的王国,突然诞生了一家汽车公司,于周围的企业显得格格不入,但就在这样的环境下,从硅谷走出了一辆通向未来的汽车。 在众多传统巨头坚持不住的时候,特斯拉默默无闻的坚持了下来,并且发展的如火如荼,目前特斯拉的股票突破了100美元大关,直追日本丰田,成为了美国股市之中为数不多的超过100美元的汽车公司,超越了众多的汽车行业巨头。这个不太出名的小汽车企业是如何发展起来的呢? 在1990年,由美国通用汽车研发并制造了第一款现代化电动汽车EV-1,这款低风阻、双门双座的电动汽车却采用租赁的方式对外进行,大多数租户第一次接触到现代电动汽车,对EV-1表现得尤为满意,但EV-1的结局却让人感慨万千,由于这款车的投入和产量不大,在生产一千多台后停止生产,1999年通用回收销毁EV-1,让租户们很不理解,大多数租户都愿意对租的车进行购买,最终全部被通用回收,分批销毁,最后只有几台放置在博物馆。参于EV-1的工程师不甘心失败,于是创建研究铅酸电池的AC Propulsion汽车公司,由于研发铅酸电池一直没大规模突破,马丁·艾伯哈德投资了15万美元,他希望尝试用笔记本电脑的锂电池作为电动汽车电池, 艾伯哈德劝说AC Propulsion公司为他制造一辆电动汽车,就这样科尼在无意成立汽车公司。艾伯哈德于是决定自己来。艾伯哈德在寻找创业项目时发现,停放跑车的私家车道上常有着丰田混合动力汽车的身影。艾伯哈德觉得,所以,有了将跑车和电动汽车结合的主意。2003年7月1日,马丁·艾伯哈德于长期商业伙伴马克·塔彭宁合伙成立特斯拉(TESLA)汽车公司,并将总部设在美国加州的硅谷地区。 2公司现状 特斯拉企旗下现售四款电动汽车,以经营高性能纯电动汽车为主,早在2016年年营业额突破了70亿,说起电动汽车,在这个领域内特斯拉却是行业中的大头,处于翘楚地位,无人驾驶技术较为先进成熟,量产出L3级高度驾驶系统,同样是搭载锂电池的特斯拉续航能力远远超越其他同类电动汽车,是目前新能源汽车领域的佼佼者,更是当前新能源行业的领头羊。在2018全球电动汽车销量排行中特斯拉汽车占据了前五位中的三个,市场份额就占据了整个市场中的11%,可以彰显出特斯拉在电动汽车行业的领导地位。

Tesla motor特斯拉电动汽车分析

Tesla Motors Norbert Binkiewicz Justin Chen Matt Czubakowski June 4, 2008

1SWOT Analysis Strengths ?Good engineering and technology research capability ?Able to raise large amounts of capital ?First mover advantage; the first company to offer a relatively practical fully electric car, customers include high-profile figures like Arnold Schwarzenegger, George Clooney, and Jay Leno ?Designs and builds many of the components in its cars, including the power electronics, motor and battery packs Weaknesses ?Doesn’t have much brand recognition among the general public ? A very small company with small sales volume, so no economies of scale ?Possible supply problems with components, especially if demand increases ?The Tesla Roadster hasn’t been on the market for very long, the longevity of fully electric cars remains to be proven Opportunities ?Moving towards the family sedan market and making a product that is meant for more of the automotive market ?Price of oil and gasoline skyrocketing, making the price premium for an electric car less of an issue ?Expanding into developing lithium-ion batteries and other energy technologies, partnering with a battery company to improve battery technology Threats ?Wrightspeed X1, a prototype high performance electric car that caters to the same market; the only direct competitor to Tesla that offers a similar product ?Large automobile companies entering the market with full and hybrid electric cars, the GM Volt and Toyota Prius ?The price of oil falling dramatically in the short run ? A competitor having a breakthrough in related energy technologies, like hydrogen powered cars, natural gas, or ethanol

特斯拉家用充电桩参数及规格

特斯拉家用充电桩参数及规格 目前,特斯拉在市场仅投放了MODEL S车型,根据配置的不同,其续航里程在442-502km之间。特斯拉Model S目前有四种充电方式:家用充电桩、目的地充电桩、超级充电站、通用移动充电器。 特斯拉电动车有三种充电形式,分别为: 1、传统110V电源,每小时充电30英里(约50km) 2、高效充电站,充电效率提高一倍 3、超级充电站,每小时充电300英里(480km) 所以,前两种都是可以从家庭的普通插座引出,特斯拉是考虑了家庭充电的需要的。 不过,需要注意的是,美国民用电的电压等级是AC 110V,进入中国后需要对电源适配器做改造。 特斯拉为旗下车型标配了一个家用充电桩,该充电桩使用的是220V的电压,其每小时充电可行驶里程约为40km。在2015年第三季度,特斯拉还将为用户提供高功率家用充电桩可选,其使用的是380V电压,每小时充电行驶里程可达100km左右。充电费用方面,220V 充电桩采用的是民用电价,380V充电桩则需要采用工业电价。 值得注意的是,特斯拉的所有充电桩都是没有密码锁或者其他锁定装置的,这意味着若该家庭充电桩被安装在开放式停车场,别的特斯拉车型可以随时用该充电桩进行充电。 在安装家用充电桩时,一般是需要有固定车位的,而对于没有固定车位的消费者,特斯拉也不会拒绝安装,其将会同物业协调争取专属的充电位置,作为暂时使用。 目前,特斯拉主要委托第三方服务商为客户提供充电桩的安装服务,在所有问题都协商好的情况下,特斯拉承诺在1周之内便可以完成家庭充电桩的安装工作。其安装服务已经覆盖到以全国21个主要城市为中心的350公里半径范围区域,涵盖了全国80%以上的主要城市。若用户不在服务范围内,特斯拉将会就近派遣工作人员前往安装,但是需要用户提

相关文档
相关文档 最新文档