文档库 最新最全的文档下载
当前位置:文档库 › 材料结构与性能答案

材料结构与性能答案

材料结构与性能答案
材料结构与性能答案

1.材料的结构层次有哪些,分别在什么尺度,用什么仪器进行分析?

现在,人们通过大量的科学研究和工程实践,已经充分认识到物质结构的尺度和层次是有决定性意义的。

在不同的尺度下,主要的,或者说起决定性的问题现象和机理都有很大的差异,因此需要我们用不同的思路和方法去研究解决这些问题。更值得注意的是空间尺度与时间尺度还紧密相关,不同空间尺度下事件发生及进行的时间尺度也很不相同。一般地讲,空间尺度越大的,则描述事件的时间尺度也应越长。不同的学科关注不同尺度的时空中发生的事件。现代科学则按人眼能否直接观察到,且是否涉及分子、原子、电子等的内部结构或机制,而将世界粗略地划分为宏观(Macro-scopic)世界和微观(Microscopic)世界。之后,又有人将可以用光学显微镜观察到的尺度范围单独分出,特别地称作/显微结构(世界)。随着近年来材料科学的迅速发展,材料科学家中有人将微观世界作了更细致地划分。而研究基本粒子的物理学家可能还会把尺度向更小的方向收缩,并给出另外的命名。对于宏观世界,根据尺度的不同,或许还可以细分为/宇宙尺度/太阳系尺度/地球尺度和/工程及人体尺度等。人类的研究尺度已小至基本粒子,大至全宇宙。但到目前为止,关于/世界的认识还在不断深化,因而对其划分也就还处于变动之中。即使是按以上的层次划分,其各界之间的边界也比较模糊,有许多现象会在几个尺度层次中发生。

在材料科学与工程领域中,对于材料结构层次的划分尚不统一,可以列举出许多种划分方法,例如:有的材料设计科学家按研究对象的空间尺度划分为三个

层次:

(1)工程设计层次:尺度对应于宏观材料,涉及大块材料的加工和使用性能的设计研究。

(2)连续模型尺度:典型尺度在1Lm量级,这时材料被看作连续介质,不考虑其中单个原子、分子的行为。

(3)微观设计层次:空间尺度在1nm量级,是原子、分子层次的设计。

国外有的计算材料学家,按空间和时间尺度划分四个层次〔1〕,即

(1)宏观

这是人类日常活动的主要范围,即人通过自身的体力,或借助于器械、机械等所能通达的时空。人的衣食住行,生产、生活无不在此尺度范围内进行。其空间尺度大致在0.1mm(目力能辨力最小尺寸)至数万公里人力跋涉之最远距离),时间尺度则大致在0.01秒(短跑时人所能分辨的速度最小差异)至100年(人的寿命差不多都在百年以内)。现今风行的人体工程学就是以人体尺度1m上下为主要参照的。

(2)介观

介观的由来是说它介于/宏观与/微观之间。其尺度主要在毫米量级。用普通光学显微镜就可以观察。在材料学中其代表物是晶粒,也就是说需要注意微结构了,如织构,成分偏析,晶界效应,孔中的吸附、逾渗、催化等问题都已开始显现。现在,介观尺度范围的研究成果在材料工程领域,如耐火材料工业、冶金工业等行业中有许多直接而成功的应用。

(3)微观

其尺度主要在微米量级,也就是前面所说/显微结构(世界)0。多年以来借助于光学显微镜、电子显微镜、X)衍射分析、电子探针等技术对于晶态、非晶态材料在这一尺度范围的行为表现有较多的研究,许多方法已成为材料学的常规手段。在材料学中,这一尺度的代表物有晶须、雏晶、分相时产生的液滴等。

(4)纳观

其尺度范围在纳米至微米量级,即10-6~10-9m,大致相当于几十个至几百个原子集合体的尺寸。在这一尺度范围已经显现出量子性,已经不再能将研究对象作为/连续体0,不能再简单地

以其统计平均量作为表征,微结构中的缺陷、掺杂等所起的作用明显加大。

2.不同凝聚状态在结构上有什么不同?

3.脆性断裂的本质是什么?格里菲斯微裂纹理论是如何解释的?

1.脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形。一般规定光滑拉伸试样的断面收缩率小于5%者为脆性断裂,该材料即称为脆性材料;反之,大于5%者则为韧性材料。

脆性断裂的特点1.断裂前无明显的预兆2.断裂处往往存在一定的断裂源3.由于断裂源的存在,实际断裂强度远远小于理论强度

2.1 (1)为了传递力,力线一定穿过材料组织到达固定端力以音速通过力管(截面积为A),把P/n大小的力传给此端面。远离孔的地方,其应力为:ā=(P/n)/A (2)孔周围力管端面积减小为A1 ,孔周围局部应力为:ā=(P/n)/A1

(3)椭圆裂纹越扁平或者尖端半径越小,其效果越明显。应力集中:材料中存在裂纹时,裂纹尖端处的应力远超过表观应力。

2.2 Griffith提出的关于裂纹扩展的能量判据

断裂能的种类

热力学表面能:固体内部新生单位原子面所吸收的能量。

塑性形变能:发生塑变所需的能量。

相变弹性能:晶粒弹性各向异性、第二弥散质点的可逆相变等特性,在一定的温度下,引起体内应变和相应的内应力。结果在材料内部储存了弹性应变能。

微裂纹形成能:在非立方结构的多晶材料中,由于弹性和热膨胀各向异性,产生失配应变,在晶界处引起内应力。当应变能大于微裂纹形成所需的表面能,在晶粒边界处形成微裂纹。

4.什么是延展性?

延展性(ductility and malleability),是物质的一种机械性质,表示材料在受力而产生(fracture)之前,其的能力。延展性是由延性、展性两个概念相近的机械性质合称。常见及许多均有延展性。

在中,延性(Ductility)是材料受到(tensile stress)变形时,特别被注目的材料能力。延性它主要表现在材料被拉伸成线条状时。展性(Malleability)是另外一个较相似的概念,但它表示为材料受到压缩应力(compressive stress)变形,而不破裂的能力。展性主要表现在材料受到锻造或轧制成薄板时。延性和展性两者间并不总是相关,如具有良好的延性和展性,但仅仅有良好的展性而已。然而,通常上因这两个性质概念相近,常被称为延展性。

5.提高材料强度改善脆性的措施及其原理

影响材料强度的因素是多方面的。而决定材料强度的本质因素是材料内部质点的结合力。提高材料的强度是指提高其抗弹性、塑性及断裂形变的能力,这几项主要决定的指标是 E 或G ,γ 及裂纹长度。弹性模量表示原子间的结合力,它是一种结构不敏感性能常数,γ 则现微观结构有关( 但单相材料的微观结构对其影响不大) 。故关键的因素是是裂纹长度,因为裂纹长度与工艺过程有关,是可以改变的,所起的效果也是不错的。

1 提高无机材料抗弹性形变的能力

主要是提高E( 或G) ,即提高弹性刚度。

方法一:改变材料中的键合力( 原子结构) 。由于对于同类材料来说,熔点越大,模量E 、G 也就越大。因此,可试图变换其中的原子,而使健合力提高,从而达到增大 E 、G 的目标,而提高抗弹性形变的能力。

这种方法是不可取的。这是因为人们使用的材料是大量的,添加少量的异种原子所起的作用较小, E 、G 代表晶格的平均键合力,是结构不敏感性能。

方法二:复合材料

i) 在基体中加入弹性模量高的复合材料( 纤维、晶粒或其它材料) ,可使弹性模迅速增大。

对于连续纤维单向强化复合材料,若纤维与基体的应变相,即ε c = εf =ε m ,则有:

E c = E f V f + E m V m

σ c = σ f V f + σ m V m

V f + V m = 1

E c 、σ c :复合材料的弹性模量和应力;

V f 、E f 、σ f :纤维材料的体积分数、弹性模量和应力;

V m 、E m 、σ m :基体材料的体积分数、弹性模量和应力;

上述式子所描述的为理想状态,也是对复合材料弹性模量的强度的最高估计,故称为上限模量或上限强度。

在复合材料中,纤维与基体的应变是一样的,即:

ε m = ε f = σ m /E m = σ f /E f

设ε m 超过基体的临界应变时,复合材料就破坏,但此时纤维尚达到其临界应力。据这一条件,将上式代入( ) 中,可求得复合材料的最低强度值( 下限强度) 。

σ c = σ m [1 + V f (E f /E m -1)

若纤维与基体共同受力,实际的σ f 及σ m 总会比单独测定时的临界值要高,故实际的复合材料强度数值介于上限与下限强度之间。

例子:玻璃、硼等脆性材料为纤维

聚酯环氧树脂、铅等延性材料的基体。

可对基体起增强作用。

ii) 短纤维也可使材料的强度增大,但短纤维的最短长度应要有个限制。根据力的平衡条件,求出

τ my πd l c / 2 = σ f π d 2 /4

即:l c = σ fy d / 2τ my

式中, d :纤维直径;σ fy :纤维的拉伸屈服应力;τ my :剪应力沿纤维全长达到界面的结合强度或基本的屈服强度;只有当l > l c 时,短纤维才有强化的效果。而当l = 10l c 时,强化效果可相当于长纤维的95% 。短纤维复合材料强度为:

σ c = σ fy (1 - l c / 2l ) V f + σ m * (1 - V f )

σ m * 为应变与纤维屈服应变相同时的基体应力。

问题:纤维和晶须的品种不多,应用受到限制。

iii) 纤维复合材料的工艺原则

由于纤维的强化作用取决于纤维与基体的性质,二者的结合强度以及纤维在基体中的排列方式,要达到强化的目的,应注意如下几个工艺原则:

①使纤维尽可能多地承担外加负荷,

方法:选用σ f > σ m ; E f > E m 的材料。这是因为当两者的应变相同时,纤维与基体所受的应力之比为弱性模量之比,即:σ f / σ m = E f /E m ;

②结合强度相当,使基体中所承受的应力能传递到纤维上,过弱时,纤维的作用较小,其体材料则如存在缺陷一样,使总体的强度降低;过强时,纤维可分担大部分应力,但在断裂过程中,没有纤维自基体中拨出这种吸收能量的作用,使复合材料表现为脆性断裂;

③应力的方向应与纤维平行;

④纤维与基体膨胀系数相艾匹配,最好应要使α f 略大于α m ,这样,当温度由高降低时,纤维受拉,基体受压,能起到预应力的作用;

⑤二者在高温下的要具有好的化学相容性。

iv) 纤维强化复合材料的失效机制有四种:基体开裂、分层、纤维断裂和界面脱胶。

2 提高无机材料抗断裂能力

a) 断裂的原因:

存在一条( 多数情况下为微观的) 最长的初始裂纹。

裂纹产生的原因:

●遗留在工件上的制造或加工缺陷;

●工件运转时,由于摩擦、腐蚀或形变强化的结果导致的初始裂纹。

其结果必然导致应力集中( 即应力在工件上分布不均匀) ,当这些初始裂出现在如下一些重要地方时,更容易导致试件的破坏。

●表面上:划痕、刀痕、受压或锤击部位,腐蚀损伤,易造成缺口;

●试样内:在硬质点( 熔渣夹杂物、弥散罐头化物、脆性相等) 的周界处,在滑移系统的交界处,晶界上。

b) 措施

i) 尽可能地减小初始裂纹的长度。

方法:

●清除表面上的或组织中的不均匀性,以避免可导致危险的应力集中源常采用精整表面( 如常采用抛光与化学处理的防腐蚀和防磨损的方法) 和表面

强化( 有表面热处理和化学强化的方法) 。

表面热处理:如钢化玻璃。方法是将玻璃加热到转变温度以上,熔点以下,然后淬冷,这样就会出现如下的现象:刚淬冷时,表面由于冷却变为刚性,处于受拉状态,而在材料内部,仍然是熔融状态,相对来说处于受压状态。继续冷却,在材料的表面几乎与刚冷却时相同,但在材料内部却以更大的速率继续收缩,处于受拉状态,其结果在材料表面形成了残留压应力,从而提高了其强度。其它,如Al 2 O 3 在1700℃于硅油中淬冷,除了造成表面的压应力外,还可使晶粒细化,提高强度。

陶瓷的釉的膨胀系数α 应要略小于坯体,才可使釉带有压应力。

化学强化:通过离子交换的办法,改变表面的化学组成,使表面的摩尔体积大于其内部,也可产生压应力。这种表面压应力和体积变化的关系近似服从虎克定律:

σ = K ΔV/V = [E / 3(1-2μ)]×[(ΔV/V)]

ii) 优化材料的显微结构

●向微晶、高密度与高纯度方向发展

σ f = σ 0 + K Ⅰd -0.5 (σ 0 、K Ⅰ为材料常数)

在多晶材料中,晶界的表面能要小于晶粒本身,也即,晶界间比晶粒中的容易更容易产生裂纹。细晶材料晶界比例大,沿晶界破坏时,裂纹的扩展要走迂回曲折的道路,晶粒愈细,此路程愈长。相应地,K Ⅰc ( 断裂阻力也就愈大) 。

再材料中的初始裂尺寸与晶粒粒度相当,晶粒愈细,初始裂纹长度也就愈短,相应地,就提高了临界应力。

纤维材料与晶须,强度大。[ 一般纤维比块体提高 1 个数量级,晶须又比纤维提高一个数量级] 。

提高密度(减小孔隙率),气孔对材料的强度影响很大,因为它的存在既减小了负荷面积,又可导致气孔邻近区域应力的集中,减弱材料的负荷能力。再气孔多分布于晶界上,往往可以构成开裂源。

杂质的存在,可有如下几种危害:一是形成夹杂物,在夹杂物周围,往往是薄弱带,从而初始裂纹容易在此产出;另一是形成缺陷,职固溶体替换,也会形成缺陷,尤其是不等价替换。

●在材料中设置吸收能量的机构―― 增韧

脆性这一致命的弱点限制了陶瓷材料的应用。韧化成了陶瓷材料研究的核心课题之一。现已探索出了一些有效的韧化途径 .

方法一:弥散增韧。大基体中加入具有一定颗粒尺寸的微细粉料,如金属粉未( 可吸收弹性应变能的释放量,从而增加断裂表面能,改善韧性) 及非金属粉未( 在与基体生料粉未均匀混合后,在烧结或热压时,多半存在于晶界相中,以其高弹性模量和高温强度增加了整体的断裂表面能,特别是高温的断裂韧性) 。要求:弥散相与基体相具有化学相容性与物理湿润性,使其在烧结后成为完整的整体,而不臻于产生有害的第三种物质。

方法二:相变增韧。利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称为相变增韧。如ZrO 2 。由单斜相转变为四方相时,体积增大3 ~5% 。利用这种体积变化,在基体上形成大量的微裂纹或可观的挤压奕力,从而吸收断裂时的多余能量,防止裂纹的扩展达到增韧的作用。

3 合理使用陶瓷材料

a) 使用应力不要超过临界应力,这样,裂纹就不会快速失稳扩展了。

b) 合理使用陶瓷材料,尽可能在构件中扬长避短。

长处:耐压好,抗拉强度较差。典型例子:砖和混凝土建造的大楼很少因为其抗压强度的不足而被压裂或压碎,但用混凝土制成的防空壕盖板,却常因为自重而被折断。因此在设计制品时,尽可能地用其长而避其短。

6.热韧化是什么处理方法

7.塑性形变的特点是什么?

塑性形变是指一种在外力移去后不能恢复的形变;材料经受塑性形变而不破坏的能力叫延展

性(或塑性)。

8.什么是蠕变和弛豫,什么是蠕变断裂?

蠕变:材料在高温和恒定应力作用下,即使应力低于弹性极限,也会发生缓慢的塑性变形,

这种现象就称为蠕变。

在长的恒温恒应力作用下缓慢产生塑性变形的称为。零件由于这种变形而引起的断裂称为蠕

变断裂。

9.尺寸效应是指什么?

尺寸效应(effectofsize)

与穿透深度或相干长度可相比拟的实心和空心超导体(如壁和膜的厚度),它们的物性状态,如电磁性质,相变,状态的稳定性,磁通量子跃迁等等与样品尺寸大小也有关。最显著的如临界尺寸,屏蔽因子等所呈现的特征。样品这种尺寸改变有较明显地影响物性的情形称超导电性质的尺寸效应。

无机定义:同样材质而尺寸大小不同时,强度

10.材料的静态疲劳是什么?

静态疲劳 - 概述

材料的破坏与损伤大部分都从微细损伤现象开始,萌生出微小裂纹并可能扩展至断裂,为了

防止这一破坏过程发生至危害状态,微细缺陷或者夹杂物以及由变形引起的级缺陷的力学行

为特别是瞬间状态下微细变化以及定量地检测,评价材料和器件的、高精度的预测、疲劳裂

纹尖端开口变化和间的关系、与裂纹萌生间的关系等。

静态疲劳,是材料科学中的专业术语,材料的破坏与损伤大部分都从微细损伤现象开始,萌

生出微小裂纹并可能扩展至断裂。

11.典型蠕变曲线分几个阶段,并论述各阶段特点?

12、分别从原子间力和位能的角度阐述热膨胀的机理。

所谓线性振动是指质点间的作用力与距离成正比,即微观弹性模量β为常数。非线性振动是指作用力并不简单地与位移成正比,热振动不是左右对称的线性振动而是非线性振动。

13、什么是热应力?产生热应力的原因有哪些?

由于材料热膨胀或收缩引起的内应力称为热应力。

热应力产生的直接原因是温度场的变化。

14、抗热震性是指材料的什么性能?

抗热震性,指材料在承受急剧温度变化时,评价其抗破损能力的重要指标。si3N.各测试值之间越接近,精密度就越高。反之,精密度就越低抵抗损伤的能力。曾称热稳定性,热震稳定性,抗热冲击性,抗温度急变性,耐急冷急热性等。

15、何谓离子式电导?

一些束缚不牢固的离子在电场作用下成为载流子产生电导。可分为两类:一类是由构成晶体点阵的基本离子的迁移造成的,也称本征电导。另一类是掺杂物(杂质)离子运动造成的,称为掺杂物(杂质)离子电导。离子型晶体主要是离子电导,如氧化锆固溶体等。通常离子电导的能力随温度的升高而增强。

16、压电效应是什么?

正压电效应(顺压电效应):某些电介质,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的一定表面上产生电荷,当外力去掉后,又重新恢复不带电状态的现象。当作用力方向改变时,电荷极性也随着改变。

逆压电效应(电致伸缩效应):当在电介质的极化方向施加电场,这些电介质就在一定方向上产生机械变形或机械压力,当外加电场撤去时,这些变形或应力也随之消失的现象。

17、画出电滞回线,并指明各点的物理意义。

磁滞:指铁磁材料的磁性状态变化时,磁化强度滞后于磁场强度,它的磁通密度B与磁场强度H之间呈现磁滞回线关系

剩磁Br:磁滞回线中,外磁场减小为零时,铁磁质所具有的磁感应强度

矫顽力Hc:为使剩磁降低为零而施加的反向外磁场强度

磁致损耗:铁磁材料在磁化过程中由磁滞现象引起的能量损耗。经一次循环,磁滞损耗等于磁滞回线的面积

18、什么是热释电效应,什么样的材料才能产生这种效应,在什么条件下产生?

温度引起自发极化强度发生变化,从而在它们的两端产生异号的束缚电荷,这种现象称为热释电效应。具有这种性质的材料称为热释电体。

热释电材料首先是一种电介质,是绝缘体。它是一种对称性很差

的压电晶体,由于分子间电荷中心不重合而产生的自发电极化即固有电偶极距。

具有自发电极化的物体,当它的温度发生变化时会产生过剩的表面热释电电荷,进而发生热释电效应。

19、光线入射到介质时能量都分布在哪些方面,从能量的角度解释一下材料为什么会透明,如果想提高材料透光性应该采取什么措施?其原理是什么。

反射、折射、光的吸收与透射。

?1.提高原材料纯度

2.掺加外加剂

目的是降低材料的气孔率,气孔由于相对折射率的关系,其影响程度远大于杂质等其它结构因素。

?3.工艺措施

采取热压法比普通烧结法更便于排除气孔,因而是获得透明陶瓷较为有效的工艺,热等静压法效果更好。

材料结构与性能历年真题

材料结构与性能历年真 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2009年试题 1.一外受张应力载荷力500MPa的无机材料薄板(长15cm,宽10cm,厚,其 中心部位有一裂纹(C=20μm)。该材料的弹性模量为300GPa,(1Pa=1N/m2)断裂能为15J/m2(1J=1Nm)。 a)计算该裂纹尖端应力强度因子K I (Y=) b)判断该材料是否安全 ,可知,即材料的裂纹尖端应力强度应子超过了材料的临界断裂应子,则材料不安全。 2.测定陶瓷材料的断裂韧性常用的方法有几种并说明它们的优缺点。 答: 方法优点缺点 单边切口梁法(SENB)简单、快捷①测试精度受切口宽度的影响,且过分要求窄的切口;②切口容易钝化而变宽,比较适合粗晶陶瓷,而对细晶体陶瓷测试值会偏大。 Vickers压痕弯曲梁法 (SEPB)测试精度高,结果较准 确,即比较接近真实值 预制裂纹的成功率低;控制裂纹的深度尺 寸较困难。 直接压痕法(IM)①无需特别制样;②可 利用很小的样品;③测 定H V的同时获得K IC, 简单易行。 ①试样表面要求高,无划痕和缺陷;②由 于压痕周围应力应变场较复杂,没有获得 断裂力学的精确解;③随材料性质不同会 产生较大误差;④四角裂纹长度由于压痕 周围残余应力的作用会发生变化;产生压 痕裂纹后若放置不同时间,裂纹长度也会 发生变化,影响测试精度。

3.写出断裂强度和断裂韧性的定义,二者的区别和联系。 答: 断裂强度δr断裂韧性K IC 定义材料单位截面承受应力而不发生断裂的能力材料抵抗裂纹失稳扩展或断裂能力 联系①都表征材料抵抗外力作用的能力;②都受到E、的影响,提高E、既可提高断裂强度,也可提高断裂韧性;③在一定的裂纹尺寸下,提高K IC也会提高δr,即增韧的同时也会增强。 区别除了与材料本身的性质有关外,还与 裂纹尺寸、形状、分布及缺陷等有关 是材料的固有属性,是材料的结构和显微 结构的函数,与外力、裂纹尺寸等无关 4.写出无机材料的增韧原理。 答:增韧原理:一是在裂纹扩展过程中使之产生有其他能量消耗机构,从而使外加负载的一部分或大部分能量消耗掉,而不致集中于裂纹扩展上;二是在陶瓷体中设置能阻碍裂纹扩展的物质场合,使裂纹不能再进一步扩展。 根据断裂力学,抗弯强度,断裂韧性,可以看出要提高陶瓷材料强度,必须提高断裂表面能和弹性模量以及减小裂纹尺寸;要提高断裂韧性,必须提高断裂表面能和弹性模量。 5.试比较以下材料的热导率,并按大小顺序排列,说明理由。氮化硅(Si3N4)陶 瓷、氧化镁(MgO)陶瓷、镁橄榄石(2MgO·SiO2)、纯银(Ag)、镍铬合金 (NiCr)。 答:热导率大小顺序:纯银>镍铬合金>氮化硅>氧化镁>镁橄榄石 理由:1)一般金属的热导率比非金属的热导率高,这是由于金属中存在大量的自由电子,电子质量轻,平均自由程很大,故可以快速的实现热传导;而非金属主要是通过声子来进行热传导的,声子的平均自由程要比自由电子的小很多,自由电子的热传导速率是声子的20倍,故纯银和镍铬合金的热导率高。2)单质的热导率要比混合物质的热导率高,故纯银大于镍铬合金。3)固溶体的热导率要比纯物质的小,故镁橄榄石的热导率小于氮化硅和氧化镁。4)共价键强的晶体热导率高,故氮化硅的热导率强于氧化镁。 6.对于组成范围为0-50%K2O,100-50%SiO2的玻璃,推断其膨胀系数的变 化,试通过玻璃的结构来解释所得的结果。

《材料结构与性能》习题

《材料结构与性能》习题 第一章 1、一 25cm长的圆杆,直径 2.5mm,承受的轴向拉力4500N。如直径拉细成 2.4mm,问: 1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度; 2)在此拉力下的真应力和真应变; 3)在此拉力下的名义应力和名义应变。 比较以上计算结果并讨论之。 2、举一晶系,存在S14。 3、求图 1.27 所示一均一材料试样上的 A 点处的应力场和应变场。 4、一陶瓷含体积百分比为95%的 Al 2O(3 E=380GPa)和 5%的玻璃相( E=84GPa),计算上限及下限弹性模量。如该陶瓷含有5%的气孔,估算其上限及下限弹性模量。 5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的 关系。并注出: t=0,t= ∞以及 t= τε(或τσ)时的纵坐标。 6、一 Al 2O3晶体圆柱(图1.28 ),直径 3mm,受轴向拉力 F ,如临界抗剪强度τ c=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。同时 计算在滑移面上的法向应力。

第二章 1、求融熔石英的结合强度,设估计的表面能为 1.75J/m 2;Si-O 的平衡原子间距为 1.6 ×10-8 cm;弹性模量值从60 到 75GPa。 2、融熔石英玻璃的性能参数为:E=73GPa;γ =1.56J/m 2;理论强度。如材料中存在最大长度为的内裂,且此内裂垂直于作用力的方向,计算由此而导致的强度折减系数。 3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式: 与 是一回事。

4、一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图 2.41所示。如果 E=380GPa,μ =0.24 ,求 KⅠc值,设极限载荷达50 ㎏。计算此材料的断裂表面能。 5、一钢板受有长向拉应力350 MPa,如在材料中有一垂直于拉应力方向的 中心穿透缺陷,长 8mm(=2c)。此钢材的屈服强度为 1400MPa,计算塑性区尺 寸 r 0及其与裂缝半长 c 的比值。讨论用此试件来求 KⅠc值的可能性。 6、一陶瓷零件上有以垂直于拉应力的边裂,如边裂长度为:①2mm;②0.049mm;③ 2μ m,分别求上述三种情况下的临界应力。设此材料的断裂韧性为 2 1.62 MPa〃m。讨论诸结果。 7、画出作用力与预期寿命之间的关系曲线。材料系ZTA陶瓷零件,温度在 2 ,慢裂纹扩展指数-40 ,Y 取π 。设保 900℃, KⅠc为 10MPa〃m N=40,常数 A=10 证实验应力取作用力的两倍。 8、按照本章图 2.28 所示透明氧化铝陶瓷的强度与气孔率的关系图,求出经验公式。 9、弯曲强度数据为: 782,784,866,884,884,890,915,922,922,927,942, 944,1012 以及 1023MPa。求两参数韦伯模量数和求三参数韦伯模量数。 第三章 1、计算室温( 298K)及高温( 1273K)时莫来石瓷的摩尔热容值,并请和安杜龙—伯蒂规律计算的结果比较。 2、请证明固体材料的热膨胀系数不因内含均匀分散的气孔而改变。

材料工程基础思考题

主要的高分子材料的合成类型和方法;高分子单体、单元结构的概念以及与高分子组成和结构性质的关系;聚合物的反应掌握高分子链结构的长、柔和复杂的特点;掌握高分子分子量与分子量分布的表征,理解高分子聚集态结构的多样性、复杂性与多缺陷特点,掌握相变与转变温度的物理意义以及对加工性质和力学性质的影响;理解高聚物高弹性的特点 1.为什么说柔顺性是高分子独有的性质? 答:因为柔顺性是高分子链通过内旋转作用改变其构象的性能,分子内旋转是导致分子链柔顺性的根本原因,因此只有在高分子内部,具有一定的内旋转自由度,出现分子链的内部旋转,才会表现出柔顺性。 2.高分子的分子量相对于小分子和无机物有何特点,主要的表示和描述方法有 哪些? 高聚物分子量有两个特点:一是分子量大,二是分子量的多散性。 首先,从相对分子质量来看——小分子和无机化合物的相对分子质量只有几十到几百; 高聚物的相对分子质量相对高得多 其次,高聚物的晶态结构比小分子物质的晶态有序程度差得多,高聚物的非晶态结构比小分子物质液态的有序程度高。 综上,高分子的分子量可以用聚合物的多分散性、平均分子量、多分散系数来表示。 3.高分子的聚集体包括哪些内容,为什么聚合物不易形成100%的结晶以及宏观 单晶?另外试述高分子的聚集体有哪些特点,以及成型加工条件、性能的关系? 4.如何理解高分子材料拉伸的应力-应变的时温等效性和蠕变特性? 时温等效原理;时间温度等效原理;时间温度对应原理;time temperature correspondence 分子式:CAS号:性质:又称时间温度对应原理。观察高分子材料的某种力学响应(如力学松弛),既可在较低温度下通过足够长的观察时间来实现,也可在较高温度下短时间内观察来实现,简单地说,升高温度与延长观察时间具有相同的效果。 高分子材料蠕变指的是高分子材料在外界恒定应力作用下,由于材料内部分子的位移产生的应变(即外观形变)随着时间而变大。当应力去掉后,由于高分子材料有弹性记忆回复能力,形变可以部分回复。 5.高分子材料组成和结构的基本特征、高分子链的组成和结构、高分子链的聚 集态结构。 ①高分子材料组成和结构的基本特征是: 1、平均分子量大和存在分子量分布 2、具有多种形态 3、组成与结构的多层次性 ②高分子链的组成和结构主要指组成高分子链的结构单元的化学组成、键接方式、空间构 型和高分子链的形态等。 A、高分子链中的原子类型 根据主链上原子类型,高分子链可分为:碳链高分子、杂链高分子、元素有机高分子、无机高分子、梯形和螺旋形高分子。 B、结构单元的键接方式 共有三种可能的键接方式:头头接、尾尾接、头尾接。其造成的原子排列方式为:无规共聚、交替共聚、嵌段共聚和接枝共聚。

材料结构与性能试题及详细答案

一、名词解释(分) 原子半径,电负性,相变增韧、气团 原子半径:按照量子力学地观点,电子在核外运动没有固定地轨道,只是概率分布不同,因此对原子来说不存在固定地半径.根据原子间作用力地不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径.通常把统和双原子分子中相邻两原子地核间距地一半,即共价键键长地一半,称作该原子地共价半径();金属单质晶体中相邻原子核间距地一半称为金属半径();范德瓦尔斯半径()是晶体中靠范德瓦尔斯力吸引地两相邻原子核间距地一半,如稀有气体.资料个人收集整理,勿做商业用途 电负性:等人精确理论定义电负性为化学势地负值,是体系外势场不变地条件下电子地总能量对总电子数地变化率.资料个人收集整理,勿做商业用途 相变增韧:相变增韧是由含地陶瓷通过应力诱发四方相(相)向单斜相(相)转变而引起地韧性增加.当裂纹受到外力作用而扩展时,裂纹尖端形成地较大应力场将会诱发其周围亚稳向稳定转变,这种转变为马氏体转变,将产生近地体积膨胀和地剪切应变,对裂纹周围地基体产生压应力,阻碍裂纹扩展.而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性.资料个人收集整理,勿做商业用途 气团:晶体中地扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用地结果使溶质原子富集于层错区内,造成层错区内地溶质原子浓度与在基体中地浓度存在差别.这种不均匀分布地溶质原子具有阻碍位错运动地作用,也成为气团.资料个人收集整理,勿做商业用途 二、简述位错与溶质原子间有哪些交互作用.(分) 答:从交互做作用地性质来说,可分为弹性交互作用、静电交互作用和化学交互作用三类.弹性交互作用:位错与溶质原子地交互作用主要来源于溶质原子与基体原子间由于体积不同引起地弹性畸变与位错间地弹性交互作用.形成气团,甚至气团对晶体起到强化作用.弹性交互作用地另一种情况是溶质原子核基体地弹性模量不同而产生地交互作用.资料个人收集整理,勿做商业用途 化学交互作用:基体晶体中地扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用地结果使溶质原子富集于层错区内,造成层错区内地溶质原子浓度与在基体中地浓度存在差别,具有阻碍位错运动地作用.资料个人收集整理,勿做商业用途 静电交互作用:晶体中地位错使其周围原子偏离平衡位置,晶格体积发生弹性畸变,晶格畸变将导致自由电子地费米能改变,对于刃型位错来讲,滑移面上下部分晶格畸变量相反,导致滑移面两侧部分地费米能不相等,导致位错周围电子需重新分布,以抵消这种不平衡,从而形成电偶极,位错线如同一条电偶极线,在它周围存在附加电场,可与溶质原子发生静电交互作用.资料个人收集整理,勿做商业用途 三、简述点缺陷地特点和种类,与合金地性能有什么关系(分) 答:点缺陷对晶体结构地干扰作用仅波及几个原子间距范围地缺陷.它地尺寸在所有方向上均很小.其中最基本地点缺陷是点阵空位和间隙原子.此外,还有杂质原子、离子晶体中地非化学计量缺陷和半导体材料中地电子缺陷等.资料个人收集整理,勿做商业用途 在较低温度下,点缺陷密度越大,对合金电阻率影响越大.另外,点缺陷与合金力学性能之间地关系主要表现为间隙原子地固溶强化作用.资料个人收集整理,勿做商业用途 四、简述板条马氏体组织地组织形态、组织构成与强度与韧性地关系.(分) 答:板条马氏体地组织形态主要出现在低碳钢中,由许多成条排列地马氏体板条组成,大致平行地马氏体条组成地领域为板条束.每个晶粒内一般有个板条束,束地尺寸约为μ.一个马氏体板条束又由若干个板条组成,这些板条具有相同地惯习面,位向差很小,而板条束之间

非织造学作业

非织造学作业 第一章作业 1、试说明非织造材料与其他四大柔性材料的相互关系。 2、从广义上讲,非织造工艺过程由哪些步骤组成? 3、试阐述非织造工艺的技术特点。 4、试按我国国标给非织造材料给予定义。 5、试根据成网或加固方法,将非织造材料进行分类。 6、试阐明非织造材料的特点。 7、试列出非织造材料的主要应用领域。 第二章作业 1、试述纤维在非织造材料中的作用。 2、试述纤维性能对非织造材料性能的影响。 3、非织造材料选用纤维原料的原则是什么? 4、从天然纤维、化学纤维、无机纤维几个方面,列举几种非织造常用纤维和特种纤维,根据它们的性能讨论其在非织造中的用途。 5、非织造材料一般用到哪些特种纤维? 第三章作业 1、梳理的目的是什么,实现的目标是什么? 2、梳理的基本功能有那些?要实现这些功能需什么条件? 3、什么是梳理单元,梳理单元是如何工作的? 4、梳理机的主要种类有那两种?各自特点及其主要差异是什么? 5、高速梳理机主要有哪两种形式,增产原理是什么? 6、杂乱梳理有哪几种形式,其原理是什么? 7、机械梳理成网工艺中,可以加入铺网装置,它的作用是什么? 8、铺网的形式有哪些?各自特点如何? 9、四帘式铺网机应用很广,经铺网后,纤网结构产生什么变化?铺叠层数如何决定? 10、铺网机中采用“储网技术”和“整形技术”,各起什么作用?其工作原理是什么? 11、机械梳理的定向纤网,在铺网后,也可使之成为杂乱纤网,须采用什么装置?其杂乱原理是什么? 12、气流成网原理是什么?气流成网有哪几种型式? 13、气流成网形成的杂乱纤网是如何形成的?请分析其原理。 第四章作业 1、名词解释:植针密度、针刺深度、针刺频率、针刺动程、针刺密度、针刺力。 2、简述针刺加固原理和针刺机的基本结构。 3、针刺机采用何方法使蓬松纤网顺利喂入针刺区? 4、阐明几种常见针刺机的性能特点。 5、花纹针刺机是如何实现花纹针刺的? 6、刺针在结构上可有那些变化?这些变化对针刺非织造材料的性状有何影响? 7、选用刺针的原则是什么? 8、试讨论针刺深度和针刺密度对针刺非织造材料性能的影响。

材料性能期中答案

1、What is the definition for Materials Properties (MP )?How do we classify materials properties?And please list some classification for MP.(材料特性(MP )的定义是什么?我们如何分类材料特性,请列出一些MP 的分类。) 答:MP :Materials ’Response to External Stimulus. 材料性能:材料在给定的外界条件下的行为。 怎样分类:根据材料对外界刺激做出的响应的类型进行分类。 分类:复杂性能(使用性能,工艺性能,复合性能) 化学性能(抗渗入性,耐腐蚀性等) 力学性能(刚度强度韧性等) 物理性能(热学光学磁学电学性能) 2. What is the core relationship between materials science and engineering? In order to obtain desired materials properties, what should we consider first to do with the materials? (材料科学与工程的核心是什么关系?为了获得所需的材料性能,我们应该首先考虑的材料的什么?) 答:材料科学与工程学的核心关系是性能(课件上面那个三角形的图) 为了提高对于材料性能的期望,我们首先要研究材料的结构与性能的关系,即研究材料学。 3. What is the most determinant for Materials mechanical properties? Why?(材料力学性能的决定因素是什么?为什么呢?) 答:材料的力学性能主要指材料在力的作用下抵抗变形和开裂的性能,影响材料力学性能的最重要的因素是材料的结构。这些结构包括:subatomic-atomic-molecular-nano-micro-macro.由于材料的结构决定了材料的屈服强度,塑性韧性,刚度等性质,所以材料的结构对材料的力学性能影响最大。 4. what is strength of materials? Please try to identify the difference yield strength ,tensile strength ,fatigue strength and theoretical fracture strength? (材料的强度是什么?请尝试找出屈服强度,拉伸强度,疲劳强度和理论断裂强度的差异?)(中文ppt) 材料在载荷作用下抵抗变形和破坏的能力就是材料的强度。 屈服强度代表材料开始产生明显塑性变形的抗力 疲劳强度是材料在承受大小和方向同时间做周期性变化的交变应力时,往往在远小于强度极限甚至小于屈服极限的应力作用下就发生断裂。 理论断裂强度是无缺陷材料的理论预测值, 其中E 为杨氏模量,为解理面的表面能,a 为材料内部原子间的距离 5.Please describe yielding phenomena for materials, and its practical/engineering meaning. As long as there are no yielding phenomena for some materials, how do we determine the yield strength? (请描述为材料的屈服现象(书上p16),其实际/工程意义。有一些材料没有屈服现象,我们如何确定的屈服强度?) 屈服现象是材料开始产生明显塑性变形的标志,对应图中bd 段, 2 1)(a E c s γσ≈

《材料结构与性能》课程论文

《材料结构与性能》课程论文 刚玉-尖晶石浇注料微结构参数控制及其强度、热震稳定性和抗渣性能研究 学生姓名:周文英 学生学号:201502703043 撰写日期:2015年11月

摘要 本文通过使用环境对耐火材料的要求,耐火材料与结构参数的分析,耐火材 料结构控制措施进展分析等方面总结了耐火材料的使用现状,并提出了下一步耐 火材料的改进措施。分别是:在基质中加入一定量的硅微粉,改变液相的粘度, 提高抗渣性;控制铝镁浇注料基质的粒径分布,使大颗粒含量一定保证其高温强度;使用球形轻骨料代替原来的致密骨料,提高气孔率,降低体积密度,提高能 源利用率,降低能耗。 关键词:铝镁浇注料;高温强度;抗渣性;热震稳定性 Abstract Requirements of the apply for fire resistance, analysis of refractory materials and structure parameters, current application and the promotion about the refractory are introduced in this paper. It included that: add some sillicon power into matrix in order to improve the viscosity of the liquid for abtaining better slag resistance; control the distribution of the particle in the matrix to ensure the high temperature strength; use spherical light aggregate instead of the original density aggregate to improve porosity and the rate of energy. Keywords:Alumina-Magnesia castable; high temperature strength; slag resistance; themal shock resistance.

材料结构与性能(珍藏版)

材料结构与性能(珍藏版) 一、何为金属键?金属的性能与金属键有何关系? 二、试说明金属结晶时,为什么会产生过冷? 三、结合相关工艺或技术说明快速凝固的组织结构特点。 四、画出铁碳合金相图,并指出有几个基本的相和组织?说明它们的结构和 性能特点。 五、说明珠光体和马氏体的形成条件、组织形态特征和性能特点。 六、试分析材料导热机理。金属、陶瓷和玻璃导热机制有何区别?将铬、 银、Ni-Cr合金、石英、铁等物质按热导率大小排序,并说明理由。 七、从结构上解释,为什么含碱土金属的玻璃适用于介电绝缘? 八、列举一些典型的非线性光学材料,并说明其优缺点。 九、什么是超疏水、超亲水?超疏水薄膜对结构与表面能有什么要求? 十、导致铁磁性和亚铁磁性物质的离子结构有什么特征? 答案自测 特别重要的名词解释 原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径 (r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。

电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。 相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。 Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。

材料性能学作业及答案

本学期材料性能学作业及答案 第一次作业P36-37 第一章 1名词解释 4、决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 10、将某材料制成长50mm,直径5mm的圆柱形拉伸试样,当进行拉伸试验时塑性变形阶段的外力F与长度增量ΔL的关系为: F/N 6000 8000 10000 12000 14000 ΔL 1 2.5 4.5 7.5 11.5

求该材料的硬化系数K及应变硬化指数n。 解:已知:L0=50mm,r=2.5mm,F与ΔL如上表所示,由公式(工程应力)σ=F/A0,(工程应变)ε=ΔL/L0,A0=πr2,可计算得:A0=19.6350mm2 σ1= 305.5768,ε1=0.0200, σ2=407.4357 ,ε2=0.0500, σ3= 509.2946,ε3=0.0900, σ4= 611.1536,ε4=0.1500, σ5= 713.0125,ε5=0.2300, 又由公式(真应变)e=ln(L/L0)=ln(1+ε),(真应力)S=σ(1+ε),计算得: e1=0.0199,S1=311.6883, e2=0.0489,S2=427.8075, e3=0.0864,S3=555.1311, e4=0.1402,S4=702.8266, e5=0.2076,S5=877.0053, 又由公式S=Ke n,即lgS=lgK+nlge,可计算出K=1.2379×103,n=0.3521。 11、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆

材料结构与性能试题及详细答案

《材料结构与性能》试题 一、名词解释(20分) 原子半径,电负性,相变增韧、Suzuki气团 原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径(r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。 电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。 相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。 Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。 二、简述位错与溶质原子间有哪些交互作用。(15分) 答:从交互做作用的性质来说,可分为弹性交互作用、静电交互作用和化学交互作用三类。 弹性交互作用:位错与溶质原子的交互作用主要来源于溶质原子与基体原子间由于体积不同引起的弹性畸变与位错间的弹性交互作用。形成Cottrell气团,甚至Snoek气团对晶体起到强化作用。弹性交互作用的另一种情况是溶质原子核基体的弹性模量不同而产生的交互作用。 化学交互作用:基体晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别,具有阻碍位错运动的作用。 静电交互作用:晶体中的位错使其周围原子偏离平衡位置,晶格体积发生弹性畸变,晶格畸变将导致自由电子的费米能改变,对于刃型位错来讲,滑移面上下部分晶格畸变量相反,导致滑移面两侧部分的费米能不相等,导致位错周围电子需重新分布,以抵消这种不平衡,从而形成电偶极,位错线如同一条电偶极线,在它周围存在附加电场,可与溶质原子发生静电交互作用。 三、简述点缺陷的特点和种类,与合金的性能有什么关系(15分) 答:点缺陷对晶体结构的干扰作用仅波及几个原子间距范围的缺陷。它的尺寸在所有方向上均很小。其中最基本的点缺陷是点阵空位和间隙原子。此外,还有杂质原子、离子晶体中的非化学计量缺陷和半导体材料中的电子缺陷等。 在较低温度下,点缺陷密度越大,对合金电阻率影响越大。另外,点缺陷与合金力学性能之间的关系主要表现为间隙原子的固溶强化作用。

最新材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

材料结构与性能作业题Homework and Solution-2012

Homework (Due Oct. 29, 2013) 1.Show that the minimum cation-to-anion radius ratio for a coordination number of 6 is 0.414 [Hint: use the NaCl crystal structure and assume that anions and cations are just touching along tube edges and across face diagonals. 2.In terms of bonding, explain why silicate materials have relatively low density. 3.If cupric oxide (CuO) is exposed to reducing atmospheres at elevated temperatures, some of the Cu2+ ions will become Cu+. a)name one crystalline defect that you would expect to form in order to maintain charge neutrality under these conditions, b)How many Cu+ ions are required for the creation of each defect? c)How would you express the chemical formula for this nonstoichiometric material?. 4.The modulus of elasticity for titanium carbide (TiC) having 5 vol% porosity is 310 GPa (6 45?psi). a) Calculate the modulus of elasticity for the nonporous 10 material. b) At what volume percent porosity will the modulus of elasticity be 240 GPa (6 10 35?psi)? 5.Calculate the room-temperature electrical conductivity of silicon that has been doped with 2×1024m?3 of boron atoms. 6.Explain why a brass lid ring on a glass canning jar will loosen when heated. Suppose the ring is made of tungsten instead of brass. What will be the effect of heating the lid and the jar? Why? 7.Zinc telluride has a band gap of 2.26 eV. Over what range of wavelengths of visible light is it transparent? What might be its color? 8.Selecting one of the advanced materials listed below(including, but not limited to), mak e a PPT with text and graphics to describe characteristics and applications of the materials, then present your PPT in class in 5 minites . TiNi-based Shape memory alloy,GaAs photonic crystal,LiNbO3 laser crystal,PZT pizeoelectrics,NiCuZn-ferrite,BiFeO3 multiferroics,ZnO Nanorods,graphene,Fullerene,cathode materials for Li-ion batteries,amorphous silicon thin film transistors,polycrystalline silicon thin films by vacuum evaporation,carbon nanotube membrane,Nonlinear Optical Crystals,etc. (List all your references. Answers without proper references will receive no credit.)

材料结构与性能复习题答案(仅供参考)讲课稿

1 钢分类的方法有哪几种?钢中常用合金元素有哪些是强碳化物形成元素?中强碳化物形成元素? 钢的分类方法有5种:1)按化学成分,有碳素钢(低碳钢,中碳钢,高碳钢),合金钢;2)按质量,有普通钢,优质钢,高级优质钢;3)按用途,有结构钢,工具钢,特殊钢;4)按炼钢方法,有转炉钢,平炉钢,电炉钢;5)按浇筑前脱氧程度,有镇静钢,沸腾钢,半镇静钢。 强碳化合物形成元素:Hf,Zr,Ti,Ta,Nb,V 中强碳化合物形成元素:W,Mo 2 合金钢的主要优点是什么?常用以提高钢淬透性的元素有哪些?强烈阻碍奥氏体晶粒长大的元素有哪些?提高回火稳定性的元素有哪些? 合金钢主要优点:优异的力学性能和其他性能,既有高的强度,又有足够韧性和塑性。 提高钢淬透性的元素:B,Mn,Cr,Mo,Si,Ni 强烈阻碍奥氏体晶粒长大的元素:Hf,Zr,Ti,Ta,Nb,V 提高回火稳定性的元素:V,Nb,Cr,Mo,W 3 解释下列现象:(1)大多数合金钢的热处理温度比相同含碳量的碳素钢高;(2)大多数合金钢比相同含碳量的碳素钢具有较高的回火稳定性;(3)含碳量为0.4%、含铬量为12%的铬钢属于过共析钢,而含碳量为1.5%、含铬量为12%的铬钢属于莱氏体钢;(4)高速钢在热断货热轧后经空冷获得马氏体钢。 1) 热处理目的是让碳及合金元素充分溶解,合金元素扩散速度慢,另外合金元素形成的碳化物溶解需要更高温度和时间。 2) 由于合金钢中含有较多的碳化物形成元素如,Cr、W、Mo、Ti、V等,它们与碳有较强的亲和力,使碳化物由马氏体向奥氏体溶解时,合金元素扩散困难,加之合金碳化物的稳定性高,使碳化物的溶解比较困难,合金钢在加热时需要较高的温度和较长的时间。因此,合金钢具有较高的回火稳定性。 3) 按照金相组织来看,含碳量为0.4%、含铬量为12%的铬钢平衡态是渗碳体加珠光体,含碳量为1.5%、含铬量为12%的铬钢平衡态出现莱氏体。 4)由于高速钢的合金元素含量高,C曲线右移,一般合金元素越高临界冷却速度越小,淬透性越好,当空冷的冷却速度大于临界冷却速度时,空冷即可获得马氏体。 4 有资料表明,南京长江大桥采用16Mn钢比普通碳素钢节约钢材15%,简要解释原因。低合金高强度钢是在碳素工程钢基础上加入少量合金元素(Mn,Si,Ti,Nb,V,Al等)形成的,以此获得较好的塑性,韧性,焊接性能,性能的提高使得在相同的工程条件要求下大大降低了钢材的使用量。16Mn属于低合金高强度结构钢,这类钢适应大型工程结构,减轻结构重量,提高使用的可靠性及节约钢材,因此与碳素钢相比可以节省15%材料。 5 试比较45钢与40Cr钢的应用范围,以此说明合金元素Cr在调质钢中的作用。 45钢属优质碳素结构钢,大量的模具生产会用到,做模具钢使用。 40Cr钢经调质后用于制造承受中等负荷及中等速度工作的机械零件,如汽车的转向节;经淬火及中温回火后用于制造承受高负荷、冲击及中等速度工作的零件,如齿轮;经淬火及低温回火后用于制造承受重负荷、低冲击及具有耐磨性、截面上实体厚度在25mm以下的零件,如蜗杆;经调质并高频表面淬火后用于制造具有高的表面硬度及耐磨性而无很大冲击的零件,如套筒;此外,这种钢又适于制造进行碳氮共渗处理的各种传动零件,如直径较大和低温韧性好的齿轮和轴。 Cr能增加钢的淬透性,提高钢的强度和回火稳定性,具有优良的机械性能。 6 说明渗碳钢、调质钢、弹簧钢、轴承钢的化学成分、最终热处理及组织、性能特点。 渗碳钢:一般都是低碳钢,碳的质量分数一般在0.12%-0.25%范围,主要合金元素有Ni,Cr,Mn

高分子物理习题集-材料科学与工程学院

《高分子物理》标准化作业本 (仅供内部使用) 沈阳化工学院材料科学与工程学院 《高分子物理》课程组 2009.1

第一章 高分子链的结构 一、 概念 1、 构型 2、 构象 3、 均方末端距 4、 链段 5、 全同立构 6、 无规立构 二、选择答案 1、高分子科学诺贝尔奖获得者中,( )首先把“高分子”这个概念引进科学领域。 A 、H. Staudinger, B 、K.Ziegler, G .Natta, C 、P. J. Flory, D 、H. Shirakawa 2、下列聚合物中,( )是聚异戊二烯(PI)。 A 、 C CH 2 n CH CH 2 3 B 、 O NH O C NH C 6H 4 C 6H 4n C 、 CH Cl CH 2 n D 、O C CH 2 CH O O n O C 3、链段是高分子物理学中的一个重要概念,下列有关链段的描述,错误的是( )。 A 、高分子链段可以自由旋转无规取向,是高分子链中能够独立运动的最小单位。 B 、玻璃化转变温度是高分子链段开始运动的温度。 C 、在θ条件时,高分子“链段”间的相互作用等于溶剂分子间的相互作用。 D 、聚合物熔体的流动不是高分子链之间的简单滑移,而是链段依次跃迁的结果。 4、下列四种聚合物中,不存在旋光异构和几何异构的为( )。 A 、聚丙烯, B 、聚异丁烯, C 、聚丁二烯, D 、聚苯乙烯 5、下列说法,表述正确的是( )。 A 、工程塑料ABS 树脂大多数是由丙烯腈、丁二烯、苯乙烯组成的三元接枝共聚物。 B 、ABS 树脂中丁二烯组分耐化学腐蚀,可提高制品拉伸强度和硬度。

材料结构与性能答案(DOC)

1.材料的结构层次有哪些,分别在什么尺度,用什么仪器进行分析? 现在,人们通过大量的科学研究和工程实践,已经充分认识到物质结构的尺度和层次是有决定性意义的。 在不同的尺度下,主要的,或者说起决定性的问题现象和机理都有很大的差异,因此需要我们用不同的思路和方法去研究解决这些问题。更值得注意的是空间尺度与时间尺度还紧密相关,不同空间尺度下事件发生及进行的时间尺度也很不相同。一般地讲,空间尺度越大的,则描述事件的时间尺度也应越长。不同的学科关注不同尺度的时空中发生的事件。现代科学则按人眼能否直接观察到,且是否涉及分子、原子、电子等的内部结构或机制,而将世界粗略地划分为宏观(Macro-scopic)世界和微观(Microscopic)世界。之后,又有人将可以用光学显微镜观察到的尺度范围单独分出,特别地称作/显微结构(世界)。随着近年来材料科学的迅速发展,材料科学家中有人将微观世界作了更细致地划分。而研究基本粒子的物理学家可能还会把尺度向更小的方向收缩,并给出另外的命名。对于宏观世界,根据尺度的不同,或许还可以细分为/宇宙尺度/太阳系尺度/地球尺度和/工程及人体尺度等。人类的研究尺度已小至基本粒子,大至全宇宙。但到目前为止,关于/世界的认识还在不断深化,因而对其划分也就还处于变动之中。即使是按以上的层次划分,其各界之间的边界也比较模糊,有许多现象会在几个尺度层次中发生。 在材料科学与工程领域中,对于材料结构层次的划分尚不统一,可以列举出许多种划分方法,例如:有的材料设计科学家按研究对象的空间尺度划分为三个 层次: (1)工程设计层次:尺度对应于宏观材料,涉及大块材料的加工和使用性能的设计研究。 (2)连续模型尺度:典型尺度在1Lm量级,这时材料被看作连续介质,不考虑其中单个原子、分子的行为。 (3)微观设计层次:空间尺度在1nm量级,是原子、分子层次的设计。 国外有的计算材料学家,按空间和时间尺度划分四个层次〔1〕,即 (1)宏观 这是人类日常活动的主要范围,即人通过自身的体力,或借助于器械、机械等所能通达的时空。人的衣食住行,生产、生活无不在此尺度范围内进行。其空间尺度大致在0.1mm(目力能辨力最小尺寸)至数万公里人力跋涉之最远距离),时间尺度则大致在0.01秒(短跑时人所能分辨的速度最小差异)至100年(人的寿命差不多都在百年以内)。现今风行的人体工程学就是以人体尺度1m上下为主要参照的。 (2)介观 介观的由来是说它介于/宏观与/微观之间。其尺度主要在毫米量级。用普通光学显微镜就可以观察。在材料学中其代表物是晶粒,也就是说需要注意微结构了,如织构,成分偏析,晶界效应,孔中的吸附、逾渗、催化等问题都已开始显现。现在,介观尺度范围的研究成果在材料工程领域,如耐火材料工业、冶金工业等行业中有许多直接而成功的应用。 (3)微观 其尺度主要在微米量级,也就是前面所说/显微结构(世界)0。多年以来借助于光学显微镜、电子显微镜、X)衍射分析、电子探针等技术对于晶态、非晶态材料在这一尺度范围的行为表现有较多的研究,许多方法已成为材料学的常规手段。在材料学中,这一尺度的代表物有晶须、雏晶、分相时产生的液滴等。 (4)纳观 其尺度范围在纳米至微米量级,即10-6~10-9m,大致相当于几十个至几百个原子集合体的尺寸。在这一尺度范围已经显现出量子性,已经不再能将研究对象作为/连续体0,不能再简单地

相关文档