文档库 最新最全的文档下载
当前位置:文档库 › 南昌大学 数字信号处理 实验报告 实验二时域采样与频域采样

南昌大学 数字信号处理 实验报告 实验二时域采样与频域采样

南昌大学 数字信号处理 实验报告  实验二时域采样与频域采样
南昌大学 数字信号处理 实验报告  实验二时域采样与频域采样

一、实验名称:时域采样与频域采样

二、实验目的: 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求

掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

三、实验原理与方法:

时域采样定理:

a) 对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱

)(?Ωj X 是原模拟信号频谱()a

X j Ω以采样角频率s Ω(T s /2π=Ω)为周

期进行周期延拓。公式为:

)](?[)(?t x

FT j X a a =Ω )(1∑∞-∞

=Ω-Ω=n s a jn j X T b) 采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。

C) 计算机进行实验的公式为:T j a e X j X Ω==Ωωω)()(?

即理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将

自变量ω用T Ω代替即可。 频域采样定理:

a) 对信号x(n)的频谱函数X(e

j ω

)在[0,2π]上等间隔采样N 点,得到

2()()

, 0,1,2,,1j N k N

X k X e k N ωπω===-

则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:

()IDFT[()][

()]()N N N N

i x n X k x n iN R

n ∞

=-∞

==+∑

b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),

才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。如果N>M ,()N x n 比原序列尾部多N-M 个零点;如果N

四、实验内容及步骤:

(1)验证时域采样理论。

模拟信号:)()sin()(0t u t Ae t x t a Ω=-α

式中A =444.128,α=502π,0Ω=502πrad/s 。它的幅频特性曲线如下图。

)(t x a 的幅频特性曲线

按照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。观测时间选ms T p 50=。

为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。

)()sin()()(0nT u nT Ae nT x n x nT a Ω==-α

要求: 编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。观察分析频谱混叠失真。

实验程序:

A=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi;

Tp=50/1000;F1=1000;F2=300;F3=200; %观察时间Tp=50ms T1=1/F1;T2=1/F2;T3=1/F3; %不同的采样频率 n1=0:Tp*F1-1;n2=0:Tp*F2-1;n3=0:Tp*F3-1; %产生不同的长度区间n1,n2,n3

x1=A*exp(-a*n1*T1).*sin(w0*n1*T1); %产生采样序列x1(n) x2=A*exp(-a*n2*T2).*sin(w0*n2*T2); %产生采样序列x2(n)

x3=A*exp(-a*n3*T3).*sin(w0*n3*T3); %产生采样序列x3(n)

f1=fft(x1,length(n1)); %采样序列x1(n)的FFT变换

f2=fft(x2,length(n2)); %采样序列x2(n)的FFT变换

f3=fft(x3,length(n3)); %采样序列x3(n)的FFT变换

k1=0:length(f1)-1;

fk1=k1/Tp; %x1(n)的频谱的横坐标的取值k2=0:length(f2)-1;

fk2=k2/Tp; %x2(n)的频谱的横坐标的取值k3=0:length(f3)-1;

fk3=k3/Tp; %x3(n)的频谱的横坐标的取值subplot(3,2,1)

stem(n1,x1,'.')

title('(a)Fs=1000Hz');

xlabel('n');ylabel('x1(n)');

subplot(3,2,3)

stem(n2,x2,'.')

title('(b)Fs=300Hz');

xlabel('n');ylabel('x2(n)');

subplot(3,2,5)

stem(n3,x3,'.')

title('(c)Fs=200Hz');

xlabel('n');ylabel('x3(n)');

subplot(3,2,2) plot(fk1,abs(f1))

title('(a) FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度') subplot(3,2,4) plot(fk2,abs(f2))

title('(b) FT[xa(nT)],Fs=300Hz'); xlabel('f(Hz)');ylabel('幅度') subplot(3,2,6) plot(fk3,abs(f3))

title('(c) FT[xa(nT)],Fs=200Hz'); xlabel('f(Hz)');ylabel('幅度')

运行结果:

由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。当采样频率为1000Hz 时频谱混叠很小;当采样频率为300Hz 时,在折叠频率150Hz 附近频谱混叠很严重;当采样频率为200Hz 时,在折叠频率110Hz 附近频谱混叠更很严重。 (2)验证频域采样理论。

给定信号如下:

??

?

??≤≤-≤≤+=其它02614271301)(n n n n n x

编写程序分别对频谱函数()FT[()]j X e x n ω

=在区间]2,0[π上等间隔采样32 和16点,得到)()(1632k X k X 和: 32232

()()

, 0,1,2,31j k X k X e k ω

πω=

==

162

16

()()

, 0,1,2,15j k

X k X e k ω

πω=

==

再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和:

323232()I F F T

[()] , 0,1,2,,31x n X k n == 161616()I F F T

[()] , 0,1,2,

,15

x n X k n == 分别画出()j X e ω

、)()(1632k X k X 和的幅度谱,并绘图显示x (n)、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论。

实验程序:

M=27;N=32;n=0:M; %产生M 长三角波序列x(n)

xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb];

Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的TF X32k=fft(xn,32) ;%32点FFT[x(n)]

x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n) X16k=X32k(1:2:N); %隔点抽取X32k 得到X16(K) x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n) subplot(3,2,2);stem(n,xn,'.');box on

title('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20]) k=0:1023;wk=2*k/1024; %

subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');

xlabel('\omega/\pi');h=ylabel('|X(e^j^\omega)|');

set(h,'rotation',0);axis([0,1,0,200])

k=0:N/2-1;

subplot(3,2,3);stem(k,abs(X16k),'.');box on

title('(c) 16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])

n1=0:N/2-1;

subplot(3,2,4);stem(n1,x16n,'.');box on

title('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])

k=0:N-1;

subplot(3,2,5);stem(k,abs(X32k),'.');box on

title('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])

n1=0:N-1;

subplot(3,2,6);stem(n1,x32n,'.');box on

title('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20]) 运行结果:

由图可知,对信号x(n)的频谱函数X(e jω)在[0,2π]上等间隔采样N=16时, N点X k]得到的序列正是原序列x(n)以16为周期进行周期延拓后的主值区序列:IDFT[()

N

()IDFT[()][()]()N N N N i x n X k x n iN R n ∞

=-∞

==+∑

由于NM ,频域采样定理,所以不存在时域混叠失真,因此。()N x n 与x(n)相同。

五、思考题:

如果序列x(n)的长度为M ,希望得到其频谱()j X e ω

在]2,0[π上的N 点等间隔采样,当N

答:先对原序列x(n)以N 为周期进行周期延拓后取主值区序列,

()[()]()N N i x n x n iN R n ∞

=-∞

=+∑

再计算N 点DFT 则得到N 点频域采样:

2()DFT[()] =()

, 0,1,2,,1j N N N k N

X k x n X e k N ωπ

ω=

==-

六、 实验心得:

通过本次实验,我深刻理解了时域采样定理以及频域采样定理,理解了X(k)的含义。

WEB编程实验报告---南昌大学

实验报告 实验课程:JA V A WEB编程技术 学生姓名: 学号: 专业班级:物流101班 2013年 06 月 12 日 目录

实验一WEB编程环境......................... 错误!未定义书签。实验二HTML和CSS编程技术 (7) 实验三JA V ASCRIPT编程技术 (10) 实验四SERVLET编程技术 (13) 实验五JSP编程技术 (16) 实验六JA V ABEAN编程技术 (21) 实验七基于MVC模式构建系统 (25) 南昌大学实验报告 学生姓名:学号:专业班级:物流101班

实验类型:□验证□综合■设计□创新实验日期:实验成绩: 一、实验项目一Web编程环境 二、实验目的 第1章搭建Web编程环境,能正确安装配置java运行环境、WEB服务器和数据库服务器 第2章熟悉WEB编程集成环境MYEclipse. 第3章熟练掌握WEB工程的创建、发布、运行流程。 三、实验内容 1.安装并配置java运行环境JDK和JRE 2.安装Web服务器tomcat, 配置Tomcat服务器 3.安装并配置数据库MySQL. 4.安装MyEclispe,熟悉各项菜单项 5.为MyEclispe集成配置JDK和Tomcat 6.创建、发布、运行一个WEB工程。 四、实验仪器及耗材 计算机,JDK,TOMCA T, MySQL, MyEclipse等软件。 五、实验步骤 1.先安装jdk1.6,选择自定义安装,安装到C:\JDK 2.配置环境变量,class:.;C:\JDK\bin , classpath:.;C:\JDK\lib ,java_home: C:\JDK 安装tomcat,安装在C:\ Tomcat 下,配置tomcat_home环境变量,CATALINA_HOME: C: \Tomcat,CATALINA_BASE: C: \Tomcat,TOMCAT_HOME: C:\Tomcat 然后修改环境变量中的classpath,把tomat安装目录下的common\lib下的servlet.jar 追加到classpath中去,修改后的classpath如下: classpath=.;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools.jar;%CATALINA_HOME%\c ommon\lib\servlet.jar;

实验报告GPS静态测量

实验四GPS静态测量 一、实验目的 实验的目的是使学生了解采用GPS定位技术建立工程控制网的过程,使所学理论知识与实践相结合,巩固和加深对新知识的理解,增强学生的动手能力,培养学生解决问题、分析问题的能力。通过学习,应达到如下要求: 1、熟练掌握GPS接收机的使用方法,外业观测的记录要求。选点、埋石的要求。 2、合理分配时段、掌握星历预报对时段的要求。PDOP值的大小对观测精度的影响,图形结构的设计及外业工作。外业观测时手机或对讲机的合理应用。 3、掌握GPS控制测量数据处理处理的流程,能独立完成基线解算及网平差 二、实验地点: 城市学院校区内,实验学时:4小时 三、实验前的准备工作 1、实验内容介绍:对实验的任务和意义作好充分了解。 2、使用的仪器及物品:GPS接收机(含电池)、基座、脚架若干台,作业调度表,外业观测手簿,小钢尺,铅笔,安装有传输软件和数据处理软件的计算机,数据传输线若干根,便携式存储器。 3、搜集资料 ①广泛收集测区及其附近已有的控制测量成果和地形图资料 a.控制测量资料包括成果表、点之记、展点图、路线图、计算说明和技术总结等。收集资料时要查明施测年代、作业单位、依据规范、坐标系统和高程基准、施测等级和成果的精度评定。 b.收集的地形图资料包括测区范围内及周边地区各种比例尺地形图和专业用图,主要查明地图的比例尺、施测年代、作业单位、依据规范、坐标系统、高程系统和成图质量等。 c.如果收集到的控制资料的坐标系统、高程系统不一致,则应收集、整理这些不同系统间的换算关系。 (注:本实验采用地科系2013年5月建立的校园控制网资料) ②收集有关GPS测量定位的技术要求 通过参考测量规范,收集有关的测量技术要求。GPS测量规范包括: a.《全球定位系统GPS测量规范》GB/T 18314-2009 b.《工程测量规范》 GB 50026-2007

DSP实验报告

一、综合实验内容和目的 1、实验目的 (1) 通过实验学习掌握TMS320F28335的浮点处理; (2) 学习并掌握A/D模块的使用方法; (3) 学习并掌握中断方式和查询方式的相关知识及其相互之间的转换; (4) 学习信号时域分析的方法,了解相关电量参数的计算方法; (5) 了解数字滤波的一些基本方法。 2、实验内容 要求1:对给定的波形信号,采用TMS320F28335的浮点功能计算该信号的以下时域参数:信号的周期T,信号的均方根大小V rms、平均值V avg、峰-峰值V pp。 其中,均方根V rms的计算公式如下: V= rms 式中N为采样点数,()u i为采样序列中的第i个采样点。 要求2:所设计软件需要计算采样的波形周期个数,并控制采样点数大于1个波形周期,且小于3个波形周期大小。 要求3:对采集的数据需要加一定的数字滤波。 二、硬件电路 相关硬件:TMS320F28335DSP实验箱,仿真器。

硬件结构图 三、程序流程图 1、主程序流程图 程序的主流程图2、子程序流程图

参数计算的流程图 四、实验结果和分析 1、实验过程分析 (1) 使用的函数原型声明 对ADC模件相关参数进行定义:ADC时钟预定标,使外设时钟HSPCLK 为25MHz,ADC模块时钟为12.5MHz,采样保持周期为16个ADC时钟。 (2) 定义全局变量 根据程序需要,定义相关变量。主要有:ConversionCount、Voltage[1024]、Voltage1[1024]、Voltage2[1024]、filter_buf[N]、filter_i、Max、Min、T、temp、temp1、temp2、temp3、Num、V、Vav、Vpp、Vrm、fre。这些变量的声明请见报告后所附的源程序。 (3) 编写主函数 完成系统寄存器及GPIO初始化;清除所有中断,初始化PIE向量表,将程

江苏大学 计算机图形学第三次实验报告 二维图形变换

计算机科学与通信工程学院 实验报告 课程计算机图形学 实验题目二维图形变换 学生姓名 学号 专业班级 指导教师 日期

成绩评定表

二维图形变换 1. 实验内容 完成对北极星图案的缩放、平移、旋转、对称等二维变换。 首先要建好图示的北极星图案的数据模型(顶点表、边表)。另外,可重复调用“清屏”和“暂停”等函数,使整个变换过程具有动态效果。 2. 实验环境 操作系统:Windows XP 开发工具:visual studio 2008 3. 问题分析 为了建立北极星图形,首先在二维空间中根据坐标绘制出北极星图形。并且在此坐标系中确定好走笔顺序以便于进行连线操作。 同时需要好好的使用清屏函数以使得显示正常。 1. 放大缩小变换 放大缩小变换公式为:x’=x.a, y’=y.d; 其中a,d分别为x,y方向的放缩比例系数。 可通过不同的比例系数来显示程序运行结果。当a=d时为等比例放缩操作。可令变换矩阵为T。 2. 对称变换 包括以x轴对称、y轴对称和原点O对称三种。由于屏幕坐标只有第一象限,我们可以将原点平移到(500,240)处。在第一象限画出一个三角形,然后分别求出三个对称图形。 3. 旋转变换 将图形上的点(x,y)旋转θ角度,得到新的坐标(x’,y’)为: x’=xcosθ-ysinθ, y’=xsinθ+ycosθ;

旋转矩阵T为4.平移变换 4. 算法设计 5. 源代码

//北极星 void hzbjx(CDC* pDC,long x[18],long y[18]) { CPen newPen1,*oldPen; newPen1.CreatePen(PS_SOLID,2,RGB(255,0,0)); oldPen = pDC->SelectObject(&newPen1); POINT vertex1[11]={{x[1],y[1]},{x[2],y[2]},{x[3],y[3]},{x[4],y[4]},{x[5],y[5]},{x[3],y[3]},{x[1],y[1]},{ x[6],y[6]},{x[3],y[3]},{x[7],y[7]},{x[5],y[5]}}; pDC->Polyline(vertex1, 11); newPen1.DeleteObject(); newPen1.CreatePen(PS_SOLID, 2, RGB(0,255,0)); oldPen = pDC->SelectObject(&newPen1); POINT vertex2[5]={{x[6],y[6]},{x[8],y[8]},{x[9],y[9]},{x[3],y[3]},{x[8],y[8]}}; pDC->Polyline(vertex2, 5); POINT vertex3[5]={{x[4],y[4]},{x[10],y[10]},{x[11],y[11]},{x[3],y[3]},{x[10],y[10]}}; pDC->Polyline(vertex3, 5); newPen1.DeleteObject(); newPen1.CreatePen(PS_SOLID, 2, RGB(255,0,90)); oldPen = pDC->SelectObject(&newPen1); POINT vertex4[11]={{x[12],y[12]},{x[13],y[13]},{x[3],y[3]},{x[9],y[9]},{x[14],y[14]},{x[15],y[15]},{x[ 3],y[3]},{x[11],y[11]},{x[12],y[12]},{x[3],y[3]},{x[14],y[14]}}; pDC->Polyline(vertex4, 11); newPen1.DeleteObject(); newPen1.CreatePen(PS_SOLID, 2, RGB(0,100,255)); oldPen = pDC->SelectObject(&newPen1); POINT vertex5[5]={{x[15],y[15]},{x[16],y[16]},{x[3],y[3]},{x[16],y[16]},{x[7],y[7]}}; pDC->Polyline(vertex5, 5); POINT vertex6[5]={{x[2],y[2]},{x[17],y[17]},{x[3],y[3]},{x[17],y[17]},{x[13],y[13]}};

南昌大学化学实验报告

南昌大学化学实验报告 篇一:南昌大学实验报告 南昌大学实验报告 学号:6100512094 专业班级:信息管理与信息系统122班 实验类型:□验证□综合□设计□创新实验日期:XX/4/3 实验成绩: 实验一实验环境的建立 一、实验目的: 1.了解SQL Server XX常用版本和对操作系统的不同要求 2.熟悉SQL Server XX的基本性能 3.正确安装和配置SQL Server XX 二、实验基本原理 SQL即结构化查询语言,是关系数据库的标准语言,SQL 是一个综合的、功能极强同时又简洁易学的语言。它集数据查询、数据操纵、数据定义和数据控制功能于一体。自SQL 成为国际标准语言之后,各个数据库厂家纷纷推出各自的SQL软件或与SQL的接口软件。这就使大多数 数据库均用SQL作为共同的数据存取语言和标准接口,使不同数据库系统之间的互操作有了共同的基础。

三、主要仪器设备及耗材 相互连成LAN的计算机2台以上,windows XX server 操作系统,SQL Server XX安装标准版安装软件。 四、实验步骤 安SQL Server XX:将安装光盘放入CD-ROM,将自动弹出“SQL Server自动菜单”界面,如果没有自动弹出则选择光盘根目录下的autorun.exe,双击运行: 选择运行“安装SQL Server XX组件”进入安装组件界面,选择“安装数据库服务器”。进入安装界面后,按照安装提示进行安装;一般需要人工进行干预的有: 选择安装类型和安装路径:安装类型有:典型安装、最小安装、和自定义安装。安装路径是指SQL Server的系统文件和数据文件的安装位置。默认情况下“安装类型”是典型安装,“安装路径”是操作系统设定的“Program Files”文件夹。你可以自行改变,初次安装最好不要改变他,按默认情况使用; 配置启动服务的帐号:有两类用户帐号:一类是与Windows操作系统的集成帐号,一类是混合帐号。选择第一类帐号进行安装;配置服务器端网络库:SQL Server支持多种网络库,这些网络库必须与操作系统的网络协议共同工作,才能实现客户机与数据库服务器的通信。安装完成后,可以通过操作系统的开始菜单操作:“开始”―>SQL Server”->

GPS单点定位实验报告

GPS原理与应用实验题目:GPS单点定位 专业:测绘工程 班级:12-01 学号:2012212600 姓名:王威 指导教师:陶庭叶 时间:2014.11

目录 一、实验目的 (3) 二、实验原理 (3) 三、实验内容 (3) 四、实验效果图 (9) 五、实验总结 (9)

一.实验目的 1.深入了解单点定位的计算过程; 2.加强单点定位基本公式和误差方程式,法线方程式的记忆; 3.通过上机调试程序加强动手能力的培养。 二.实验原理 一个接收机接受三个火三个以上卫星信号,得出卫星坐标和伪距,利用间接平差计算接收机的坐标。 三.实验内容 1.程序流程图 2、实验数据

3、实验程序代码 Private Sub Command1_Click() CommonDialog1.Filter = "TXT files|*.txt|" CommonDialog1.FilterIndex = 1 CommonDialog1.ShowOpen Open https://www.wendangku.net/doc/fb14431827.html,monDialog1.FileName For Input As #1 Do While Not EOF(1) Line Input #1, Text textbuff = textbuff + Text + vbCrLf Loop Close #1 kk = MSFlexGrid1.Rows - 1 Dim a ReDim a(kk - 1) a = Split(textbuff, vbCrLf) For j = 1 To kk For i = 1 To 5 MSFlexGrid1.TextMatrix(j, i) = a(j - 1 + 5 * (i - 1)) Next i Next j For k = 1 To kk MSFlexGrid1.TextMatrix(k, 0) = "第" & k & "个点" Next k MSFlexGrid1.TextMatrix(0, 1) = "X" MSFlexGrid1.TextMatrix(0, 2) = "Y" MSFlexGrid1.TextMatrix(0, 3) = "Z" MSFlexGrid1.TextMatrix(0, 4) = "伪距" MSFlexGrid1.TextMatrix(0, 5) = "钟差" End Sub

DSP实验报告

东南大学自动化学院 实验报告 课程名称: DSP技术及课程设计 实验名称:直流无刷电机控制综合实验 院(系):自动化专业:自动化 姓名:ssb 学号:08011 实验室:304 实验组别: 同组人员:ssb1 ssb2 实验时间:2014年 6 月 5 日评定成绩:审阅教师:

目录 1.实验目的和要求 (3) 1.1 实验目的 (3) 1.2 实验要求 (3) 1.2.1 基本功能 (3) 1.2.2 提高功能 (3) 2.实验设备与器材配置 (3) 3.实验原理 (3) 3.1 直流无刷电动机 (3) 3.2 电机驱动与控制 (5) 3.3 中断模块 (7) 3.3.1 通用定时器介绍及其控制方法 (7) 3.3.2 中断响应过程 (7) 3.4 AD模块 (8) 3.4.1 TMS320F28335A 芯片自带模数转换模块特性 (8) 3.4.2 模数模块介绍 (8) 3.4.3 模数转换的程序控制 (8) 4.实验方案与实验步骤 (8) 4.1 准备实验1:霍尔传感器捕获 (8) 4.1.1 实验目的 (8) 4.1.2 实验内容 (9) 4.1.2.1 准备 (9) 4.1.2.2 霍尔传感器捕获 (9) 4.2 准备实验2:直流无刷电机(BLDC)控制 (10) 4.2.1 程序框架原理 (10) 4.2.1.1 理解程序框架 (10) 4.2.1.2 基于drvlib281x库的PWM波形产生 (11) 4.2.2 根据捕获状态驱动电机运转 (12) 4.2.2.1 目的 (12) 4.2.2.2 分析 (12) 4.3 考核实验:直流无刷电机调速控制系统 (13) 4.3.1 初始化工作 (13) 4.3.2 初始化定时器0.... . (13) 4.3.3初始化IO口 (13) 4.3.4中断模块.... (13) 4.3.5 AD模块 (14) 4.3.6在液晶屏显示 (15) 4.3.7电机控制 (17) 4.3.7.1 控制速度方式选择 (17) 4.3.7.2 控制速度和转向 (18) 4.3.8延时子函数 (19) 4.3.9闭环PID调速 (19)

江苏大学物理实验考试题库和答案完整版

大学物理实验A(II)考试复习题 1.有一个角游标尺,主尺的分度值是°,主尺上29个分度与游标上30个分度等弧长,则这个角游标尺的最小分度值是多少? 30和29格差1格,所以相当于把这1格分成30份。这1格为°=30′,分成30份,每份1′。 2.电表量程为:0~75mA 的电流表,0~15V 的电压表,它们皆为级,面板刻度均为150小格,每格代表多少?测量时记录有效数字位数应到小数点后第几位(分别以mA 、V 为记录单位)?为什么? 电流表一格小数点后一位 因为误差, 电压表一格小数点后两位,因为误差,估读一位 ***3.用示波器来测量一正弦信号的电压和频率,当“Y轴衰减旋钮”放在“2V/div”档,“时基扫描旋钮”放在“div”档时,测得波形在垂直方向“峰-峰”值之间的间隔为格,横向一个周期的间隔为格,试求该正弦信号的有效电压和频率的值。 f=1/T=1÷×= U 有效=÷根号2= ***4.一只电流表的量程为10mA ,准确度等级为级;另一只电流表量程为15mA ,准确度等级为级。现要测量9mA 左右的电流,请分析选用哪只电流表较好。 量程为10mA ,准确度等级为级的电流表最大误差,量程为15mA ,准确度等级为级,最大误差,所以选用量程为15mA ,准确度等级为级 5. 测定不规则固体密度 时,,其中为0℃时水的密度,为被测物在空气中的称量质量,为被测物完全浸没于水中的称量质量,若被测物完全浸没于水中时表面附 有气泡,试分析实验结果 将偏大还是偏小?写出分析过程。 若被测物浸没在水中时附有气泡,则物体排开水的体积变大,物体所受到的浮力变大,则在水中称重结果将偏小,即m 比标准值稍小,可知0ρρm M M -=将偏小 6.放大法是一种基本的实验测量方法。试写出常用的四种放大法,并任意选择其中的两种方法,结合你所做过的大学物理实验,各举一例加以说明。 累计放大法 劈尖干涉测金属丝直径的实验中,为了测出相邻干涉条纹的间距 l ,不是仅对某一条纹测量,而是测量若干个条纹的总间距 Lnl ,这样可减少实验的误差。 机械放大法 螺旋测微器,迈克尔孙干涉仪读数系统

DSP实验报告

实验0 实验设备安装才CCS调试环境 实验目的: 按照实验讲义操作步骤,打开CCS软件,熟悉软件工作环境,了解整个工作环境内容,有助于提高以后实验的操作性和正确性。 实验步骤: 以演示实验一为例: 1.使用配送的并口电缆线连接好计算机并口与实验箱并口,打开实验箱电源; 2.启动CCS,点击主菜单“Project->Open”在目录“C5000QuickStart\sinewave\”下打开工程文件sinewave.pjt,然后点击主菜单“Project->Build”编译,然后点击主菜单“File->Load Program”装载debug目录下的程序sinewave.out; 3.打开源文件exer3.asm,在注释行“set breakpoint in CCS !!!”语句的NOP处单击右键弹出菜单,选择“Toggle breakpoint”加入红色的断点,如下图所示; 4.点击主菜单“View->Graph->Time/Frequency…”,屏幕会出现图形窗口设置对话框 5.双击Start Address,将其改为y0;双击Acquisition Buffer Size,将其改为1; DSP Data Type设置成16-bit signed integer,如下图所示; 6.点击主菜单“Windows->Tile Horizontally”,排列好窗口,便于观察 7.点击主菜单“Debug->Animate”或按F12键动画运行程序,即可观察到实验结果: 心得体会: 通过对演示实验的练习,让自己更进一步对CCS软件的运行环境、编译过程、装载过程、属性设置、动画演示、实验结果的观察有一个醒目的了解和熟悉的操作方法。熟悉了DSP实验箱基本模块。让我对DSP课程产生了浓厚的学习兴趣,课程学习和实验操作结合为一体的学习体系,使我更好的领悟到DSP课程的实用性和趣味性。

南昌大学《MATLAB与控制系统仿真》实验报告综述

实验报告 实验课程: MATLAB与控制系统仿真 姓名: 学号: 专业班级: 2016年 6月

目录实验一 MATLAB的环境与基本运算(一) 实验二 MATLAB的环境与基本运算(二) 实验三 MATLAB语言的程序设计 实验四 MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一 MATLAB的环境与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MA TLAB常用命令 表1 MA TLAB常用命令 3.MATLAB变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表2 MA TLAB算术运算符 表4 MATLAB逻辑运算符

表5 MATLAB特殊运算 4.MATLAB的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四、实验内容 1.新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2.启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3.学习使用help命令。 4.窗口命令 ● close ● close all ● clc ● hold on ● hold off 了解其功能和作用,观察command window、command history和workspace等窗口的变化结果。5.工作空间管理命令 ● who ● whos ● clear 6.随机生成一个2×6的矩阵,写出实现矩阵左旋(以第1行第1列为中心逆时针)90°或右旋(顺

GPS实验报告

实验一 GPS静态定位数据采集 一、实验目的和要求 1. 练习GPS天线的整平、对中、安装; 2. 练习GPS接收机静态系统配置与连接; 3. 了解GPS接收机静态系统参数设置; 4. 掌握GPS接收机测站信息采集与设置; 5. 熟悉GPS接收机静态数据采集观测信息评价方法 6.通过课程实验,加深对卫星导航定位基本理论的理解,提高综合创新能力。熟练 掌握GPS仪器设备的使用方法,并且能独立完成GPS数据后处理工作,得到可靠的点位坐 标 二.实验仪器 1.华测X90接收机一台 2.脚架一个 3.电池一个 4.基座一个 5.2米钢尺一把 三.实验内容 1.认识华测X90 GPS接收机的各个部件。 2.掌握GPS接收机各个部件之间的连接方法。 3. 熟悉GPS接收机前面板各个按键的功能。 4. 熟悉GPS接收机后面板各个接口的作用。 5.学会使用GPS接收机查看天空GPS卫星的分布状况、PDOP值以及测站经纬度。 6.学会使用GPS接收机采集数据,并给采集的数据编辑文件名;学会GPS接收机天线 高的输入方法。 四.实验步骤 1、GPS接收机安置 a). 作业员到测站后应先安置好接收机使其处于静置状态,然后再安置天线; b).天线用脚架直接安置在测量标志中心的垂线方向上,对中误差应≤3mm。 天线应整平,天线基座上的圆气泡应居中; c).天线定向标志应指向正北,定向误差不宜超过±5°。对于定向标志不明 显的接收机天线,可预先设置标记。每次应按此标记安置仪器。 d)每时段开机前,作业员应先量取天线高,结束后再量一次天线高,取平均值作为该观测时段的天线高 2.华测GPS X90的使用 a)按下电源键开始观测 b)常按切换键直至切换到静态观测 c)各接受机同时开始观测,观测45分钟左右,关机结束观测任务,整理仪 器

DSP实验报告-深圳大学-自动化

深圳大学实验报告课程名称:DSP系统设计 实验项目名称:DSP系统设计实验 学院:机电与控制工程学院 专业:自动化 指导教师:杜建铭 报告人1:. 学号:。班级:3 报告人2:. 学号:。班级:3 报告人3:. 学号:。班级:3 实验时间: 实验报告提交时间: 教务处制

实验一、CCS入门试验 一、实验目的 1. 熟悉CCS集成开发环境,掌握工程的生成方法; 2. 熟悉SEED-DEC2812实验环境; 3. 掌握CCS集成开发环境的调试方法。 二、实验仪器 1.TMS320系列SEED-DTK教学试验箱24套 2. 台式PC机24台 三、实验内容 1.仿真器驱动的安装和配置 2. DSP 源文件的建立; 3. DSP程序工程文件的建立; 4. 学习使用CCS集成开发工具的调试工具。 四、实验准备: 1.将DSP仿真器与计算机连接好; 2.将DSP仿真器的JTAG插头与SEED-DEC2812单元的J1相连接; 3.启动计算机,当计算机启动后,打开SEED-DTK2812的电 源。SEED-DTK_MBoard单元的+5V,+3.3V,+15V,-15V的电源指示灯及SEED-DEC2812的电源指示灯D2是否均亮;若有不亮,请断开电源,检查电源。 五、实验步骤 (一)创建源文件 1.进入CCS环境。

2.打开CCS选择File →New →Source File命令 3.编写源代码并保存 4.保存源程序名为math.c,选择File →Save 5.创建其他源程序(如.cmd)可重复上述步骤。 (二)创建工程文件 1.打开CCS,点击Project-->New,创建一个新工程,其中工程名及路径可任意指定弹 出对话框: 2.在Project中填入工程名,Location中输入工程路径;其余按照默认选项,点击完成 即可完成工程创建; 3.点击Project选择add files to project,添加工程所需文件;

GPS_GLONASS单点定位的数据处理

GPS G LO NASS单点定位的数据处理 高星伟 葛茂荣 (中国测绘科学研究院 100039) (清华大学土木工程系 100084) 【摘 要】 本文讨论了GPS、GLONA SS及GPS GLONA SS伪距单点定位的数学模型和数据处理方法,分析了定位结果的精度。 GPS和GLONA SS分别是美国和前苏联(现由 俄罗斯负责)研制的全球卫星导航系统,两个系统的 构成、定位原理很相似。目前GPS系统已进入正常 工作阶段,而GLONA SS系统的可用性则有待于进 一步完善。但是GPS的SA和A S措施,使民用用户 的实时定位精度降低到100m,同时GPS系统的21 个卫星覆盖并不能保证在全球范围内实现用户定位 的自主完备性监测RA I M。因此,基于GPS和 GLONA SS两个卫星定位系统的全球导航卫星系统 GN SS是现代定位技术的一个发展方向。与单独的 GPS或GLONA SS系统相比,双卫星定位系统的可 用性、自主完备性和精度都有明显地提高。不管将 GLONA SS作为一个单独的卫星定位系统,还是与 GPS联合构成双卫星定位系统,研究GLONA SS定 位方法,开发GLONA SS或GPS GLONA SS数据 处理软件都是必要的。本文主要讨论GLONA SS及 GPS GLONA SS伪距单点定位问题。通过实际观测 数据的处理,分析和比较了GPS和GLONA SS及 GPS GLONA SS定位的精度。 一、数学模型 尽管GLONA SS与GPS的系统构成、定位原 理相类似,但在具体实现和数据处理上存在一定的 区别。就联合定位的数据处理而言,应考虑两个系统 的坐标系统和时间系统差异,卫星星历表示的差异 和两个系统伪距观测值的精度差异。 GPS系统中使用的是W GS284坐标系统, GLONA SS系统使用的是PZ290坐标系统,进行联 合数据处理时,必须进行坐标转换。坐标转换公式 为[1] x y z W GS284= 1.0-1.9×10-60. 1.9×10-61.00.0 0.00. 01.0 ? x y z PZ290 + 0.0 2.5 0.0 (1) GPS系统采用的是GPS时间(GPST), GLONA SS系统采用的是GLONA SS时间 (GLONA SST)。GPST与U TC相差为整数跳秒, GLONA SST与U TC相差3h。联合数据处理时,除 了要做上述时间系统转换外,还要考虑两个时间系 统可能存在的同步误差。 GPS星历给出的是卫星轨道的Kep ler根数及 其变化参数,GLONA SS星历给出的是卫星在PZ2 90坐标系中给定时刻的位置和速度及日月引力摄 动加速度。GLONA SS卫星坐标要根据卫星运动方 程用数值积分方法得出[2]。 由于在单点定位中一般把SA的影响作为观测 噪声,所以GPS观测模型的精度远远低于 GLONA SS的观测模型,必须考虑两个观测值随机 模型的差异。 根据以上讨论,GPS和GLONA SS单点定位的 观测方程为 v g i=[(x-X g i)2+(y-Y g i)2+(z-Z g i)2]1 2+ c?T g r-O g i,p g i(2) 式中,上标g表示GPS或GLONA SS,下标i为观 测值序号;(x,y,z)为测站的W GS284坐标;(X g, Y g,Z g)为卫星在W GS284坐标系中的坐标, GLONA SS卫星的坐标要用公式(1)转换到W GS2 84坐标系中;?3gp s r为接收机钟差,?3g lonass r为接收机 钟差加GPST与GLONA SST的同步误差;O g i为加 上卫星钟差、大气折射、相对论效应和地球自转改正 的伪距观测值;v g i为观测值噪声;p g i为观测值的权。 将观测方程(2)线性化,得出用于参数估计的线 性观测方程。观测方程中包括测站坐标和接收机钟 差及两个时间系统同步误差五个未知参数,用最小 二乘或滤波方法进行参数估计。 二、数据处理及结果分析 在清华大学主楼的已知点上用A ST ECH公司 的GG24型单频接收机记录了1.5h的观测数据, 采样率设为1s。GG24接收机有24个通道,可同时 8 测 绘 通 报 1999年 第4期

dsp实验报告

DSP 实验课大作业实验报告 题目:在DSP 上实现线性调频信号的脉冲压缩,动目标显示和动目标检测 (一)实验目的: (1)了解线性调频信号的脉冲压缩、动目标显示和动目标检测的原理,及其DSP 实现的整个流程; (2)掌握C 语言与汇编语言混合编程的基本方法。 (3)使用MATLAB 进行性能仿真,并将DSP 的处理结果与MATLAB 的仿真结果进行比较。 (二)实验内容: 1. MATLAB 仿真 设定信号带宽为B= 62*10,脉宽-6=42.0*10τ,采样频率为62*10Fs =,脉冲重复周期为-4T=2.4*10,用MATLAB 产生16个脉冲的线性调频信号,每个脉冲包含三个目标,速度和距离如下表: 对回波信号进行脉冲压缩,MTI ,MTD 。并且将回波数据和频域脉压系数保存供DSP 使用。 2.DSP 实现 在Visual Dsp 中,经MATLAB 保存的回波数据和脉压系数进行脉压,MTI 和MTD 。 (三)实验原理 1.脉冲压缩原理 在雷达系统中,人们一直希望提高雷达的距离分辨力,而距离分辨力定义为:22c c R B τ?==。其中,τ表示脉冲时宽,B 表示脉冲带宽。从上式中我们可以看

出高的雷达分辨率要求时宽τ小,而要求带宽B大。但是时宽τ越小雷达的平均发射功率就会很小,这样就大大降低了雷达的作用距离。因此雷达作用距离和雷达分辨力这两个重要的指标变得矛盾起来。然而通过脉冲压缩技术就可以解决这个矛盾。脉冲压缩技术能够保持雷达拥有较高平均发射功率的同时获得良好的距离分辨力。 在本实验中,雷达发射波形采用线性调频脉冲信号(LFM),其中频率与时延成正比关系,因此我们就可以将信号通过一个滤波器,该滤波器满足频率与时延成反比关系。那么输入信号的低频分量就会得到一个较大的时延,而输入信号的高频分量就会得到一个较小的时延,中频分量就会按比例获得相应的时延,信号就被压缩成脉冲宽度为1/B的窄脉冲。 从以上原理我们可以看出,通过使用一个与输入信号时延频率特性规律相反的滤波器我们可以实现脉冲压缩,即该滤波器的相频特性与发射信号时共轭匹配的。所以说脉冲压缩滤波器就是一个匹配滤波器。从而我们可以在时域和频域两个方向进行脉冲压缩。 滤波器的输出() h n= y n为输入信号() x n与匹配滤波器的系统函数() *(1) y n x n s N n =--。转换到频域就是--卷积的结果:* ()()*(1) s N n =。因此我们可以将输入信号和系统函数分别转化到频域:Y k X k H k ()()( Y k,然后将结果再转化到时域, h n H k →,进行频域相乘得() ()() x t X k →,()() 就可以得到滤波器输出:()() →。我们可用FFT和IFFT来实现作用域的 Y k y n 转换。原理图如下: 图1.脉冲压缩原理框图 2.MTI原理 动目标显示(MTI)技术是用来抑制各种杂波,来实现检测或者显示运动目标的技术。利用它可以抑制固定目标的信号,显示运动目标的信号。以线性调频

卫星导航定位实验报告

China University of Mining and Technology 《卫星导航定位算法与程序设计》 实验报告 学号: 07122825 姓名:王亚亚 班级:测绘12—1 指导老师:王潜心/张秋昭/刘志平 中国矿业大学环境与测绘学院 2015-07-01

实验一编程实现读取下载的星历 一、实验要求: 读取RINEX N 文件,将所有星历放到一个列表(数组)中。并输出和自己学号相关的卫星编号的星历文件信息。读取RINEX O文件,并输出指定时刻的观测信息。 二、实验步骤: 1、下载2014年的广播星历文件和观测值文件,下载地址如下: ftp://https://www.wendangku.net/doc/fb14431827.html,/gps/data/daily/2014/ 2、要求每一位同学按照与自己学号后三位一致的年积日的数据文件和星历文件,站点的选择必须选择与姓氏首字母相同的站点的数据,以王小康同学为例,学号:07123077,需下载077那天的数据。有些同学的学号365<后三位 <730,则取学号后三位-365,以姜平同学为例:学号10124455,下载455- 365=90 天的数据,有些同学的学号730<后三位<=999,则取学号后三位-730,以万伟同学为例:学号:07122854,则下载854-730 = 124天的数据。可以选择wnhu0124.14n wnhu0124.14o 根据上述要求我下载了2014年第95天的数据,选择其中的wsrt0950.14n和wsrt0950.14o星历文件。指定时刻(学号后五位对应在年积日对应的秒最相近时刻)的观测值信息如张良09123881,后五位23881,取23881-3600*6= 2281秒,6点38分01秒,最近的历元应该是6点38分00秒的数据。根据计算与我最接近的观测时刻为2014年4月5日6点20分30.00秒。 3、编程思路: 利用rinex函数读取星历文件中第14颗卫星的星历数据并输出显示。对数据执行762次循环找到对应的2014年4月5日6点20分30.00秒,并输出观测值。 4、程序运行结果:

北邮DSP实验报告

北京邮电大学 数字信号处理硬件实验 实验名称:dsp硬件操作实验姓名:刘梦颉班级: 2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 实验一常用指令实验 一、实验目的 了解dsp开发系统的组成和结构,熟悉dsp开发系统的连接,熟悉dsp的开发界面,熟 悉c54x系列的寻址系统,熟悉常用c54x系列指令的用法。 二、实验设备 计算机,ccs 2.0版软件,dsp仿真器,实验箱。 三、实验操作方法 1、系统连接 进行dsp实验之前,先必须连接好仿真器、实验箱及计算机,连接方法如下所示: 1)上电复位 在硬件安装完成后,接通仿真器电源或启动计算机,此时,仿真盒上的“红色小灯”应 点亮,否则dsp开发系统与计算机连接有问题。 2)运行ccs程序 先实验箱上电,然后启动ccs,此时仿真器上的“绿色小灯”应点亮,并且ccs正常启 动,表明系统连接正常;否则仿真器的连接、jtag接口或ccs相关设置存在问题,掉电,检 查仿真器的连接、jtag接口连接,或检查ccs相关设置是否正确。 四、实验步骤与内容 1、实验使用资源 实验通过实验箱上的xf指示灯观察程序运行结果 2、实验过程 启动ccs 2.0,并加载“exp01.out”;加载完毕后,单击“run”运行程序; 五、实验结果 可见xf灯以一定频率闪烁;单击“halt”暂停程序运行,则xf灯停止闪烁,如再单击 “run”,则“xf”灯又开始闪烁; 关闭所有窗口,本实验完毕。 六、源程序代码及注释流程图: 实验二资料存储实验 一、实验目的 掌握tms320c54的程序空间的分配;掌握tms320c54的数据空间的分配;熟悉操作 tms320c54数据空间的指令。 二、实验设备 计算机,ccs3.3版软件,dsp仿真器,实验箱。 三、实验系统相关资源介绍 本实验指导书是以tms32ovc5410为例,介绍相关的内部和外部内存资源。对于其它类型 的cpu请参考查阅相关的资料手册。下面给出tms32ovc5410的内存分配表: 对于存储空间而言,映像表相对固定。值得注意的是内部寄存器与存储空间的映像关系。 因此在编程应用时这些特定的空间不能作其它用途。对于篇二:31北邮dsp软件实验报告北京邮电大学 dsp软件

(完整版)江苏大学物理实验考试题库和答案完整版

WORD 格式 整理 大学物理实验A(II)考试复习题 1.有一个角游标尺,主尺的分度值是0.5°,主尺上29个分度与游标上30个分度等弧长,则这个角游标尺的最小分度值是多少? 30和29格差1格,所以相当于把这1格分成30份。这1格为0.5°=30′,分成30份,每份1′。 2.电表量程为:0~75mA 的电流表,0~15V 的电压表,它们皆为0.5级,面板刻度均为150小格,每格代表多少?测量时记录有效数字位数应到小数点后第几位(分别以mA 、V 为记录单位)?为什么? 电流表一格0.5mA 小数点后一位 因为误差0.4mA, 电压表一格0.1V 小数点后两位,因为误差0.08V ,估读一位 ***3.用示波器来测量一正弦信号的电压和频率,当“Y 轴衰减旋钮”放在“2V/div ”档,“时基扫描旋钮”放在“0.2ms/div ”档时,测得波形在垂直方向“峰-峰”值之间的间隔为8.6格,横向一个周期的间隔为9.8格,试求该正弦信号的有效电压和频率的值。 f=1/T=1÷(9.8×0.0002)=510.2 U 有效=8.6÷根号2=6.08V ***4.一只电流表的量程为10mA ,准确度等级为1.0级;另一只电流表量程为15mA ,准确度等级为0.5级。现要测量9mA 左右的电流,请分析选用哪只电流表较好。 量程为10mA ,准确度等级为1.0级的电流表最大误差0.1mA,量程为15mA ,准确度等级为0.5级,最大误差0.075mA,所以选用量程为15mA ,准确度等级为0.5级 5. 测定不规则固体密度 时,,其中为0℃时水的密度,为被测物在空气中的称量质量,为被测物完全浸没于水中的称量质量,若被测物完全浸没于水中时表面附 有气泡,试分析实验结果 将偏大还是偏小?写出分析过程。 若被测物浸没在水中时附有气泡,则物体排开水的体积变大,物体所受到的浮力变大,则在水中称重结果将偏小,即m 比标准值稍小,可知0ρρm M M -=将偏小 6.放大法是一种基本的实验测量方法。试写出常用的四种放大法,并任意选择其中的两种方法,结合你所做过的大学物理实验,各举一例加以说明。 累计放大法 劈尖干涉测金属丝直径的实验中,为了测出相邻干涉条纹的间距 l ,不是仅对某一条纹测量,而是测量若干个条纹的总间距 Lnl ,这样可减少实验的误差。

南昌大学实验报告

南昌大学实验报告 学生姓名:学号:专业班级:_____________ 实验类型:■验证□综合□设计□创新实验日期: 2012-12 实验成绩:______ 实验三三容水箱的专家控制实验 一、实验目的 ①掌握三容水箱的基本构成,能够熟练地运用专家PID控制原理,来实现 对三容水箱的液位控制。 ②进一步掌握专家控制原理,清楚了解PID控制的过程和相应的matlab程 序实现方法。 ③了解matlab中关于的相关绘图函数的使用方法,懂得有关向量的定义及 循环操作,熟练掌握MATLAB的编程语句。 二、实验设备及条件 微型计算机,且此计算机必须装有matlab软件。 三、实验原理 专家系统是一类包含知识和推理的智能计算机程序,其内部包含某领域专 家水平的知识和经验,具有解决专门问题的能力。 直接型专家控制器用于取代常规控制器,直接控制生产过程或被控对象。 具有模拟(或延伸、拓展)操作工人智能的功能。该控制器的任务和功能相对 比较简单,但需要在线、实时控制。因此,其知识表达和知识库也比较简单, 通常由几十条产生式规则构成,以便于增删和修改。直接型专家控制器的结构 如a图中的虚线所示。 专家PID控制的实质是:基于受控对象和控制规律的各种知识,无需知道 被控对象的精确模型,利用专家经验来设计PID参数。专家PID控制是一种直 接型专家控制器。 本实验的专家控制器输入为h3的设定值,而输出为阀门开度kk,根据实 验的要求设计专家PID控制器的基本原理框图如下图所示Array 图(a)

三容水箱结构框图如下 四、实验要求 通过专家PID 控制,随着下水箱流量q4的正弦变化,要求能够通过调节阀门开度kk 来使第三个水箱中的下水箱液位h3稳定在设定值,并且其他两水箱水不会流尽和溢出。 五、 实验设计过程及结果 1、 三容水箱数学模型 可应用实验一建立的三容水箱数学模型 3 33433| 0.45)+i *pi *(2.58sin |*343222 321112kk *1q 21h h h s q q h y q s q q h h y q s q q h h y q a ?+=-=?=-=?=-=?==

相关文档
相关文档 最新文档