文档库 最新最全的文档下载
当前位置:文档库 › 生物化学考试重点

生物化学考试重点

生物化学考试重点
生物化学考试重点

一、糖类化学

1、糖的概念与分类糖是多羟基的醛或酮及其缩聚物和某些衍生物。单糖是最简单的糖,不能再被水解为更小的单位。寡糖是由2~10个分子单糖缩合而成,水解后产生单糖。低聚糖通常是指20以下的单糖缩合的聚合物

多糖是由多个单糖分子缩合而成。多糖中由相同的单糖基组成的称同多糖,不相同的单糖基组成的称杂多糖。按其分子中有无支链,则有直链、支链多糖之分按其功能不同,可分为结构多糖、贮存多糖、抗原多糖等按其分布来说,则又有胞外多糖、胞多糖、胞壁多糖之别如果糖类化合物含有非糖物质部分,则称糖缀合物或复合糖类,例如糖肽、糖脂、糖蛋白等。

2、单糖的构型、结构、构象

1)构型是指一个分子由于其中各原子特有的固定的空间排列,而使该分子所具有的特定的立体化学形式。当某一物质由一种构型转变为另一种构型时,要求共价键的断裂和重新形成。★2)单糖的D-、L-型:以距羰基最远的不对称碳原子为准,羟基在左面的为L构型,羟基在右面为D构型。3)环状结构——葡萄糖的某些性质不能用链式结构来解释: 葡萄糖不似醛发生NaHSO3和Schiff试剂的加成反应;葡萄糖不能和醛一样与两分子醇形成缩醛,只能与一分子醇反应;葡萄糖溶液有变旋现象。

4)一般规定半缩醛碳原子上的羟基(称为半缩醛羟基)与决定单糖构型的碳原子上的羟基在同一侧的称为α-葡萄糖,不在同一侧的称为β-葡萄糖。

5) 构象指一个分子中,不改变共价键结构,仅靠单键的旋转或扭曲而改变分子中基团在空间的排布位置,而产生不同的排列方式。

3、寡糖

寡糖是少数单糖(2-10个)缩合的聚合物。

低聚糖通常是指20以下的单糖缩合的聚合物。

4、多糖

多糖是由多个单糖基以糖苷键相连而形成的高聚物。

多糖完全水解时,糖苷键裂断而成单糖。

4.1 淀粉

1)直链淀粉:葡萄糖分子以α(1-4)糖苷键缩合而成的多糖链。可溶于热水、250~300个糖分子、遇碘呈紫蓝色

2)支链淀粉:由多个较短的1、4-苷键直链结合而成,不可溶于热水、可溶于冷水、>6000个糖分子、遇碘呈紫红色

3)淀粉的降解:在酸或淀粉酶作用下被降解,终产物为葡萄糖:

淀粉→红色糊精→无色糊精→麦芽糖→葡萄糖

4.2 糖原:α-D-葡萄糖多聚物

1)结构:同支链淀粉;区别在于分支频率及分子量为其二倍。

2)分布:主要存在于动物肝、肌肉中。

3)特点:遇碘呈红色。

4)功能:同淀粉,亦称动物淀粉。其合成与分解取决于血糖水平

4.3 纤维素--植物细胞壁结构多糖

1)结构:由D-葡萄糖以β(1-4)糖苷键连接起来的无分支线形聚合物。

2)性质:游离-OH中的H可被其它基团取代,构成各种高分子化合物;纤维素酶水解成葡萄糖

4.4 几丁质:N-乙酰D-氨基葡萄糖以β(1,4)糖苷键缩合而成。结构与纤维素类似,但氢键比其多。藻类、昆虫及甲壳类动物的结构组分。基本单位是乙酰氨基葡萄糖

5、糖复合物——糖与非糖物质结合而成。

5.1糖与蛋白质的复合物

1)糖蛋白——主要性质接近蛋白质

种类多:酶、激素、血浆糖蛋白、补体、粘液物质及膜蛋白。

特点:高粘度

功能多:润滑作用、保护作用、肽链加工、运输作用、分子识别、临床鉴定。

血浆糖蛋白:除清蛋白外,其余均含糖。有运输功能、参与凝血酶原和纤维蛋白原。

2)蛋白多糖——性质以多糖为主

蛋白聚糖:由糖胺聚糖与核心蛋白以共价键连接而成。有结缔组织的组分;抗凝血作用;保护作用等功能。

透明质酸:葡萄糖醛酸和N-乙酰氨基葡萄糖以β-1,3和β-1,4糖苷键交替连接而成在皮肤、眼玻璃体、脐带等组织及卵子表面,起保护作用

硫酸软骨素:由N-乙酰半乳糖胺硫酸酯与葡糖醛酸组成。是软骨、腱和骨的主要结构成分。肝素:由2-硫酸艾杜糖醛酸与二硫酸氨基葡糖以β-1,4和α-1,4糖苷键交替连接而成。

抗血凝剂。

3)糖脂类——脂类与糖的缩合物

种类:脑苷脂、神经节苷脂、脂多糖、

功能:主要在细胞膜表面,是细胞识别的分子基础。

糖代

糖的生理功能:结构物质、能量物质、为其它物质合成提供碳骨架、功能物质

结构物质:1)糖脂、糖蛋白构成生物膜;2)核糖构成核酸;3)抗体、酶、激素、受体均有糖

功能物质:保持水分、防止震动、信息传递、细胞识别、防止血液凝固

1、多糖和低聚糖的酶促降解:糖类中多糖和低聚糖,由于分子大,不能透过细胞膜,所以在被生物利用之前必须水解成单糖,其水解均依靠酶的催化。

1)淀粉(或糖原)的酶水解

α-淀粉酶:切酶,随机水解链α-1,4糖苷键,产生α-构型的还原末端

β-淀粉酶:外切酶,作用于非还原端,水解α-1,4糖苷键,放出β-麦芽糖。

α-,β-淀粉酶不能水解α-1,6糖苷键

α-1,6糖苷键酶水解淀粉中的α-1,6糖苷键

淀粉酶水解:淀粉→糊精→麦芽糖

2)纤维素的酶促水解:不少微生物如细菌、真菌、放线菌、原生动物等能产生纤维素酶及纤维二糖酶,它们能催化纤维素完全水解成葡萄糖。

3)双糖的酶水解:有麦芽糖酶、纤维二糖酶、蔗糖酶、乳糖酶等。食物中的双糖类经肠道消化为葡萄糖,果糖,半乳糖等单糖。

4)糖的吸收: D-葡萄糖、半乳糖和果糖可被小肠粘膜上皮细胞吸收不能消化的二糖、寡糖及多糖不能吸收,由肠细菌分解,以CO2、甲烷、酸及H2形式放出或参加代

2、糖的分解代

★糖酵解:酶将葡萄糖降解成丙酮酸并伴随着生成ATP的过程。

a、与酵解有关的物质:1)磷酸(磷酸酯);2)辅酶(NAD+);3)ADP、ATP及金属离子;4)抑制剂(碘乙酸、氟化物)

b、糖酵解中的变化:1)碳骨架的变化:6C糖变为2个3C糖;葡萄糖变为2 乳酸或葡萄糖变为2 乙醇 + 2 CO2;

2)能量的变化:酵解(产生乳酸) 2ATP

发酵(产生酒精) 2ATP

物质代 ADP+Pi ATP

放能过程吸能过程

c、酵解途径:1)葡萄糖磷酸化形成6-磷酸葡萄糖,反应是不可逆的,已糖激酶是一个限速酶。2)6-磷酸葡萄糖转化成6-磷酸果糖(F-6-P)是一个同分异构化反应,由磷酸葡萄糖异构酶所催化。3)F-6-P磷酸化成1,6-二磷酸果糖(F-1,6-2P)F-6-P被磷酸果糖激酶所催化。反应是不可逆的,酵解中的关键反应步骤。因此磷酸果糖激酶是重要的限速酶。4)F-1,6-2P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP)在1,6-二磷酸果糖醛缩酶的催化下进行。5)磷酸三碳糖的同分异构化,在磷酸丙糖同分异构酶的催化下进行6)3-磷酸甘油醛氧化成1,3-二磷酸甘油酸,在3-磷酸甘油醛脱氢酶催化下进行,此反应既是氧化反应又是磷酸化反应。7)3-磷酸甘油酸磷酸将酰基转给ADP形成了磷酸甘油酸和ATP,在磷酸甘油激酶催化下进行,第一次产生ATP,也是底物水平的磷酸化反应。8)3-磷酸甘油酸转变成2-磷酸甘油酸。凡是在催化分子化学功能基团的位置移动的酶都称为变位酶。Mg2+在催化反应中是必须的。在磷酸甘油酸变位酶催化下进行。9)2-磷酸甘油酸脱水形成磷酸烯醇式丙酮酸,在Mg2+或Mn2+存在下,经烯醇化酶催化下进行。10)磷酸烯醇式丙酮酸将磷酰基转移给ADP形成ATP和丙酮酸,经丙酮酸激酶催化,反应需K+,Mg2+或Mn2+参加。

(1)(2)

(3)(4)

(5)(6)

(7)(8)

d、葡萄糖酵解总反应式为:葡萄糖+2Pi+2ADP+NAD+→2丙酮酸+2ATP+ NADH+2H+ +2H2O

2、糖的有氧氧化

a

1

植物和微生物,在有氧的情况下将酵解产生的丙酮酸氧化脱羧形成乙酰CoA。乙酰CoA经一系列氧化、脱羧,最终生成CO2和H2O并产生能量的过程。

2、循环历程:①草酰乙酸与乙酰CoA缩合成柠檬酸;②经顺乌头酸生成异柠檬酸③异柠檬酸氧化形成α酮戊二酸。

NAD为辅酶,需Mg2+(线粒体)

异柠檬酸脱氢酶

NADP为辅酶(胞质也有)

④α酮戊二酸氧化脱羧形成琥珀酰-CoA;

⑤琥珀酰-CoA转化为琥珀酸

哺乳动物—GTP/ATP 三羧酸循环中唯一底物水平磷酸化

植物、微生物—ATP 直接产生高能磷酸的步骤

⑥琥珀酸脱氢形成延胡索酸

FAD与酶共价连接,丙二酸为竞争性抑制剂,这是三羧酸循环中第三步氧化还原反应,由琥珀酸脱氢酶催化,氢的受体是酶的辅基FAD。

⑦延胡索酸水合生成 L-苹果酸,由延胡索酸酶催化。此酶具有立体异构特异性

⑧ L-苹果酸脱氢形成草酰乙酸,被草酰乙酸与乙酰CoA缩合(高度放能)反应所推动。这是三羧酸循环中第4次氧化还原反应,也是最后一步。

3、三羧酸循环所生成的ATP:每分子葡萄糖经酵解,三羧酸循环及氧化磷酸化3个阶段共产生32个ATP分子。

4、三羧酸循环的生物学意义:动物、植物及微生物,都普遍存在着三羧酸循环途径,因此它具有普遍的生物学意义。三羧酸循环为完成糖代、产生大量能量供机体生命活动之用的重要反应,他不仅是糖代所需的重要反应,而且亦是脂质和氨基酸分解代的共同必须的重要反应。

5、三羧酸循环的重要性:①是机体利用糖或其他物质氧化而获得能量的最有效方式。②糖、脂、蛋白质三大物质转化的枢纽;③中间产物,是其他化合物的生物合成的起点。

★磷酸戊糖途径(磷酸己糖支路)

1、磷酸戊糖途径的生理意义:在组织中添加酵解抑制剂如碘乙酸或氟化物等葡萄糖仍可以被消耗,证明葡萄糖还有其它代途径。

2、磷酸戊糖途径的全过程

磷酸戊糖途径的总反应式为:

注:是位于细胞质的代途径。合成5分子6-磷酸葡萄糖并非是开始反应时的分子骨架

3、磷酸戊糖途径的生物学意义:(1)NADPH的生成及其功能特点。是生物体NADPH来源的主要途径①在许多物质(如:脂肪酸,胆固醇,类固醇)的生成合成中作为H和电子供体。

② NADPH是生物体一些酶的辅酶。

(2)在磷酸戊糖途径中,5-磷酸核糖是重要的中间产物。5-磷酸核糖是合成核苷酸、ATP、ADP、核酸的原料。

(3)磷酸戊糖途径中4-磷酸赤藓糖也是一个非常重要的中间产物。4-磷酸赤藓糖是合成苯丙氨酸、酪氨酸、色氨酸的原料,因而磷酸戊糖途径与蛋白质代关系密切。

(4)磷酸戊糖途径与糖酵解有着共同的中间产物,因而两条途径是可以互相转变的、互相协调的

糖的其他代途径

★葡萄糖异生

——以非糖物质为前体合成葡萄糖

机体先消耗葡萄糖

然后消耗糖原

糖异生维持血糖稳定

1、糖异生途径

部位:肝脏(线粒体、细胞质)

克服糖酵解中3个不可逆步骤

动物可以将丙酮酸、甘油、乳酸及某些氨基酸等非糖物质转化成糖。

2、糖异生的生理功能:(1)重要的生物合成葡萄糖的途径。(2)在饥饿、剧烈运动造成糖原下降后,糖异生使酵解产生的乳酸,脂肪分解产生的甘油及生糖氨酸等中间产物重新生成糖。

3、糖异生途径

a、丙酮酸生成磷酸烯醇式丙酮酸

(1)丙酮酸生成草酰乙酸

丙酮酸羧化酶的羧化作用需要ATP和二价离子,如Mg2+,Mn2+等参加。此酶需要生物素为辅酶。由于动物体中的丙酮酸羧化酶存在线粒体中,因此存在胞液中的丙酮酸经运载系统进入线粒体中再羧化为草酰乙酸。

丙酮酸羧化酶联系着三羧酸循环和糖的异生作用。

(2)草酰乙酸转变成苹果酸才能穿过线粒体转移至细胞质中,NADH是氢的供体。

苹果酸通过线粒体膜的二羧酸转运系统与其他二羧酸或磷酸盐交换而离开线粒体。

(3)细胞质中的苹果酸又被细胞质中的苹果酸脱氢酶再氧化形成草酰乙酸。NAD+是受氢体

(4)磷酸烯醇丙酮酸羧化激酶催化草酰乙酸形成磷酸烯醇式丙酮酸,反应需GTP供给磷酰基。

从丙酮酸生成磷酸烯醇式丙酮酸的总反应式是:

b、磷酸烯醇式丙酮酸沿酵解途径逆向反应转变成1,6-二磷酸果糖

C、1,6-二磷酸果糖转化成6-磷酸果糖

经果糖二磷酸酶的催化使1,6-二磷酸果糖的磷酸酯水解。

果糖二磷酸酶是异构酶:

负效应物:AMP,2,6-二磷酸果糖;

正效应物:ATP,柠檬酸,3-磷酸甘油酸;

这是糖异生作用的关键反应

d、6-磷酸果糖至葡萄糖

生物化学考试重点总结

生化总结 1。蛋白质的pI:在某一pH溶液中,蛋白质解离为正离子和解离为负离子的过程和趋势相等,处于兼性离子状态,该溶液的pH值称蛋白质的pI。 2。模体:在蛋白质分子中,二个或二个以上具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间现象,具有特殊的生物学功能。 3。蛋白质的变性:在某些理化因素的作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质的改变和生物学活性丧失的现象。 4。试述蛋白质的二级结构及其结构特点。 (1)蛋白质的二级结构指蛋白质多肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。主要包括,α-螺旋、β-折叠、β-转角、无规则卷曲四种类型,以氢键维持二级结构的稳定性。 (2)α-螺旋结构特点:a、单链、右手螺旋;b、氨基酸残基侧链位于螺旋的外侧;c、每一个螺旋由3.6个氨基酸残基组成,螺距0.54nm;d、每个残基的-NH和前面相隔三个残基的-CO之间形成氢键;e、氢键方向与螺距长轴平行,链内氢键是α-螺旋的主要因素。 (3)β-折叠结构特点:a、肽键平面充分伸展,折叠成锯齿状;b、氨基酸侧链交替位于锯齿状结构的上下方;c、维系依靠肽键间的氢键,氢键方向与肽链长轴垂直;d、肽键的N末端在同一侧---顺向平行,反之为反向平行。 (4)β-转角结构特点:a、肽链出现180转回折的“U”结构;b、通常由四个氨基酸残基构成,第二个氨基酸残基常为脯氨酸,由第1个氨基酸的C=O与第4个氨基酸残基的N-H形成氢键维持其稳定性。 (5)无规则卷曲:肽链中没有确定的结构。 5。蛋白质的理化性质有:两性解离;蛋白质的胶体性质;蛋白质的变性;蛋白质的紫外吸收性质;蛋白质的显色反应。 6。核小体(nucleosome):是真核生物染色质的基本组成单位,有DNA和5种组蛋白共同组成。A、B、和共同构成了核小体的核心组蛋白,长度约150bp的DNA双链在组蛋白八聚体上盘绕1.75圈形成核小体的核心颗粒,核心颗粒之间通过组蛋白和DNA连接形成的串珠状结构称核小体。 7。解链温度/融解温度(melting temperature,Tm):在DNA解链过程中,紫外吸光度的变化达到最大变化值的一半时所对应的温度称为DNA的解链温度,或称熔融温度(Tm值)。 8。DNA变性(DNA denaturation):在某些理化因素(温度、pH、离子强度)的作用下,DNA双链间互补碱基对之间的氢键断裂,使双链DNA解离为单链,从而导致DNA理化性质改变和生物学活性丧失,称为DNA的变性作用。9。试述细胞内主要的RNA类型及其主要功能。 (1)核糖体RNA(rRNA),功能:是细胞内含量最多的RNA,它与核蛋白体蛋白共同构成核糖体,为mRNA,tRNA 及多种蛋白质因子提供相互结合的位点和相互作用的空间环境,是细胞合成蛋白质的场所。 (2)信使RNA(mRNA),功能:转录核内DNA遗传信息的碱基排列顺序,并携带至细胞质,指导蛋白质合成。是蛋白质合成模板。成熟mRNA的前体是核内不均一RNA(hnRNA),经剪切和编辑就成为mRNA。 (3)转运RNA(tRNA),功能:在蛋白质合成过程中作为各种氨基酸的载体,将氨基酸转呈给mRNA。转运氨基酸。 (4)不均一核RNA(hnRNA),功能:成熟mRNA的前体。 (5)小核RNA(SnRNA),功能:参与hnRNA的剪接、转运。 (6)小核仁RNA(SnoRNA),功能:rRNA的加工和修饰。 (7)小胞质RNA(ScRNA/7Sh-RNA),功能:蛋白质内质网定位合成的信号识别体的组成成分。 10。试述Watson-Crick的DNA双螺旋结构模型的要点。 (1)DNA是一反向平行、右手螺旋的双链结构。两条链在空间上的走向呈反向平行,一条链的5’→3’方向从上向下,而另一条链的5’→3’是从下向上;脱氧核糖基和磷酸基骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相接触,A与T通过两个氢键配对,C与G通过三个氢键配对,碱基平面与中心轴相垂直。 (2)DNA是一右手螺旋结构。螺旋每旋转一周包含了10.5碱基对,每个碱基的旋转角度为36。DNA双螺旋结构的直径为2.37nm,螺距为3.54nm,每个碱基平面之间的距离为0.34nm。DNA双螺旋分子存在一个大沟和小沟。(3)DNA双螺旋结构稳定的维系横向靠两条链之间互补碱基的氢键,纵向则靠碱基平面间的碱基堆积力维持。11。酶的活性中心:酶分子的必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异地结合并将底物转化为产物,这一区域称为酶的活性中心。 12。同工酶:是指催化相同的化学反应,而酶的分子结构、理化性质乃至免疫学性质不同的一组酶。 13。何为酶的Km值?简述Km和Vm意义。

(完整版)华南理工大学食品生物化学-试题2

食品生物化学试题二 一、选择题 1.下列哪一项不是蛋白质的性质之一: A .处于等电状态时溶解度最小 B .加入少量中性盐溶解度增加 C .变性蛋白质的溶解度增加 D .有紫外吸收特性 2 ?双链DNA的Tm较高是由于下列哪组核苷酸含量较高所致: A .A+G B .C+T C .A+T D .G+C E .A+C 3 ?竞争性可逆抑制剂抑制程度与下列那种因素无关: A ?作用时间 B ?抑制剂浓度 C ?底物浓度 D ?酶与抑制剂的亲和力的大小 E ?酶与底物的亲和力的大小 4 ?肌肉组织中肌肉收缩所需要的大部分能量以哪种形式贮存: A ? ADP B ?磷酸烯醇式丙酮酸 C ? ATP D ?磷酸肌酸 5 ?糖的有氧氧化的最终产物是: A ? CO2+H2O+ATP B ?乳酸 C ?丙酮酸 D ?乙酰CoA 6 ?下列哪些辅因子参与脂肪酸的B氧化: A ? ACP B ? FMN C ?生物素 D ? NAD+ 7 ?组氨酸经过下列哪种作用生成组胺的: A ?还原作用 B ?羟化作用 C ?转氨基作用 D ?脱羧基作用 8 ?下列关于真核细胞DNA复制的叙述哪一项是错误的: A.是半保留式复制 B ?有多个复制叉 C ?有几种不同的DNA聚合酶 D ?复制前组蛋白从双链DNA脱岀 E ?真核DNA聚合酶不表现核酸酶活性 9. 色氨酸操纵子调节基因产物是: A ?活性阻遏蛋白 B ?失活阻遏蛋白 C ? CAMP受体蛋白 D ?无基因产物 10 .关于密码子的下列描述,其中错误的是:

二、填空题 1 .蛋白质多肽链中的肽键是通过一个氨基酸的 的。 2 .一般的食物在冻结后解冻往往 ____________________ ,其主要原因是 3 .常见的食品单糖中吸湿性最强的是 ____________ 。 4 .花青素多以 ____________ 的形式存在于生物体中,其基本结构为 ___________________ 。 5 .从味觉的生理角度分类味觉可分为 ______ 、 _____ 、 _____ 、 _____ 。 6 .请写出食品常用的 3 种防腐剂: ____________ 、 ______ 、 _________ 。 三、判断 ( )1 .蛋白质是生物大分子,但并不都具有四级结构。 ()2 ?原核生物和真核生物的染色体均为 DNA 与组蛋白的复合体。 ( )3 .当底物处于饱和水平时,酶促反应的速度与酶浓度成正比。 ()4 ?磷酸肌酸、磷酸精氨酸等是高能磷酸化合物的贮存形式,可随时转化为 ATP 供机体利 用。 ()5 ? ATP 是果糖磷酸激酶的变构抑制剂。 ()6 ?脂肪酸从头合成中, 将糖代谢生成的乙酰 CoA 从线粒体内转移到胞液中的化合物是苹 果酸。 ( )7 .磷酸吡哆醛只作为转氨酶的辅酶。 ()8 ?逆转录酶催化 RNA 旨导的DNA 合成不需要 RNA 引物。 ( )9 .酶合成的诱导和阻遏作用都是负调控。 ( )10 .密码子与反密码子都是由 AGCU 4种碱基构成的。 四、名词解释 1 .分子杂交( molecular hybridization ) 2 .酶的比活力( enzymatic compare energy ) A .每个密码子由三个碱基组成 .每一密码子代表一种氨基酸 C .每种氨基酸只有一个密码子 D .有些密码子不代表任何氨基酸 _____ 基和另一氨基酸的 ______ 基连接而形成

生物化学期末考试试题及答案范文

《生物化学》期末考试题 A 一、判断题(15个小题,每题1分,共15分)( ) 2、糖类化合物都具有还原性( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。( ) 5、ATP含有3个高能磷酸键。( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。( ) 9、血糖基本来源靠食物提供。( ) 10、脂肪酸氧化称β-氧化。( ) 11、肝细胞中合成尿素的部位是线粒体。( ) 12、构成RNA的碱基有A、U、G、T。( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将激素信号传递发挥其生物() 二、单选题(每小题1分,共20分) 1、下列哪个化合物是糖单位间以α-1,4糖苷键相连:( ) A、麦芽糖 B、蔗糖 C、乳糖 D、纤维素 E、香菇多糖 2、下列何物是体内贮能的主要形式( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、脂酰甘油 3、蛋白质的基本结构单位是下列哪个:( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是:( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA 6、物质脱下的氢经NADH呼吸链氧化为水时,每消耗1/2分子氧可生产ATP分子数量( ) A、1B、2C、3 D、4.E、5 7、糖原分子中由一个葡萄糖经糖酵解氧化分解可净生成多少分子ATP?( ) A、1 B、2 C、3 D、4 E、5 8、下列哪个过程主要在线粒体进行( ) A、脂肪酸合成 B、胆固醇合成 C、磷脂合成 D、甘油分解 E、脂肪酸β-氧化 9、酮体生成的限速酶是( )

生物化学复习重点

第二章 蛋白质 1、凯氏定氮法:蛋白质含量=总含氮量-无机含氮量)×6.25 例如:100%的蛋白质中含N 量为16%,则含N 量8%的蛋白质含量为50% 100% /xg=16% /1g x=6.25g 2、根据R 基的化学结构,可将氨基酸分为脂肪族氨基酸、芳香族氨基酸、杂环氨基酸和杂环亚氨基酸。 按照R 基的极性,可分为非极性R 基氨基酸、不带电荷的极性R 基氨基酸、极性带负电荷(1)一般物理性质 无色晶体,熔点极高(200℃以上),不同味道;水中溶解度差别较大(极性和非极性),不溶于有机溶剂。氨基酸是两性电解质。 氨基酸等电点的确定: 酸碱确定,根据pK 值(该基团在此pH 一半解离)计算: 等电点等于两性离子两侧pK 值的算术平均数。

(2)化学性质 ①与水合茚三酮的反应:Pro产生黄色物质,其它为蓝紫色。在570nm(蓝紫色)或440nm (黄色)定量测定(几μg)。 ②与甲醛的反应:氨基酸的甲醛滴定法 ③与2,4-二硝基氟苯(DNFB)的反应:形成黄色的DNP-氨基酸,用来鉴定多肽或蛋白质的N 端氨基酸,又称Sanger法。或使用5-二甲氨基萘磺酰氯(DNS-Cl,又称丹磺酰氯)也可测定蛋白质N端氨基酸。 ④与异硫氰酸苯酯(PITC)的反应:多肽链N端氨基酸的α-氨基也可与PITC反应,生成PTC-蛋白质,用来测定N端的氨基酸。 4、肽的结构 线性肽链,书写时规定N端放在左边,C端放在右边,用连字符将氨基酸的三字符号从N 端到C端连接起来,如Ser-Gly-Tyr-Ala-Leu。命名时从N端开始,连续读出氨基酸残基的名称,除C端氨基酸外,其他氨基酸残基的名称均将“酸”改为“酰”,如丝氨酰甘氨酰酪氨酰丙氨酰亮氨酸。若只知道氨基酸的组成而不清楚氨基酸序列时,可将氨基酸组成写在括号中,并以逗号隔开,如(Ala,Cys2,Gly),表明此肽有一个Ala、两个Cys和一个Gly 组成,但氨基酸序列不清楚。 由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一个平面,称作肽平面或酰胺平面。 5、、蛋白质的结构 (一)蛋白质的一级结构(化学结构) 一级结构中包含的共价键主要指肽键和二硫键。 (二)蛋白质的二级结构 (1)α-螺旋(如毛发) 结构要点:螺旋的每圈有3.6个氨基酸,螺旋间距离为0.54nm,每个残基沿轴旋转100°。(2)β-折叠结构(如蚕丝) (3)β-转角 (4)β-凸起 (5)无规卷曲 (三)蛋白质的三级结构(如肌红蛋白) (四)蛋白质的司机结构(如血红蛋白) 6、蛋白质分子中氨基酸序列的测定 氨基酸组成的分析: ?酸水解:破坏Trp,使Gln变成Glu, Asn变成Asp ?碱水解:Trp保持完整,其余氨基酸均受到破坏。 N-末端残基的鉴定:

生物化学考试重点

一、糖类化学 1、糖的概念与分类 糖是多羟基的醛或酮及其缩聚物和某些衍生物。 单糖是最简单的糖,不能再被水解为更小的单位。 寡糖是由2~10个分子单糖缩合而成,水解后产生单糖。 低聚糖通常是指20以下的单糖缩合的聚合物 多糖是由多个单糖分子缩合而成。 多糖中由相同的单糖基组成的称同多糖,不相同的单糖基组成的称杂多糖。 按其分子中有无支链,则有直链、支链多糖之分 按其功能不同,可分为结构多糖、贮存多糖、抗原多糖等 按其分布来说,则又有胞外多糖、胞多糖、胞壁多糖之别 如果糖类化合物含有非糖物质部分,则称糖缀合物或复合糖类,例如糖肽、糖脂、糖蛋白等。 2、单糖的构型、结构、构象 1)构型是指一个分子由于其中各原子特有的固定的空间排列,而使该分子所具有的特定的立体化学形式。当某一物质由一种构型转变为另一种构型时,要求共价键的断裂和重新形成。★2)单糖的D-、L-型:以距羰基最远的不对称碳原子为准,羟基在左面的为L构型,羟基在右面为D构型。 3)环状结构——葡萄糖的某些性质不能用链式结构来解释: 葡萄糖不似醛发生NaHSO3和Schiff试剂的加成反应;葡萄糖不能和醛一样与两分子醇形成缩醛,只能与一分子醇反应;葡萄糖溶液有变旋现象。 4)一般规定半缩醛碳原子上的羟基(称为半缩醛羟基)与决定单糖构型的碳原子上的羟基在同一侧的称为α-葡萄糖,不在同一侧的称为β-葡萄糖。 5) 构象指一个分子中,不改变共价键结构,仅靠单键的旋转或扭曲而改变分子中基团在空间的排布位置,而产生不同的排列方式。 3、寡糖 寡糖是少数单糖(2-10个)缩合的聚合物。 低聚糖通常是指20以下的单糖缩合的聚合物。 4、多糖 多糖是由多个单糖基以糖苷键相连而形成的高聚物。 多糖完全水解时,糖苷键裂断而成单糖。 4.1 淀粉 1)直链淀粉:葡萄糖分子以α(1-4)糖苷键缩合而成的多糖链。可溶于热水、250~300个糖分子、遇碘呈紫蓝色 2)支链淀粉:由多个较短的1、4-苷键直链结合而成,不可溶于热水、可溶于冷水、>6000个糖分子、遇碘呈紫红色 3)淀粉的降解:在酸或淀粉酶作用下被降解,终产物为葡萄糖: 淀粉→红色糊精→无色糊精→麦芽糖→葡萄糖 4.2 糖原:α-D-葡萄糖多聚物 1)结构:同支链淀粉;区别在于分支频率及分子量为其二倍。 2)分布:主要存在于动物肝、肌肉中。 3)特点:遇碘呈红色。 4)功能:同淀粉,亦称动物淀粉。其合成与分解取决于血糖水平 4.3 纤维素--植物细胞壁结构多糖 1)结构:由D-葡萄糖以β(1-4)糖苷键连接起来的无分支线形聚合物。

(完整版)食品生物化学名词解释和简答题答案

四、名词解释 1.两性离子(dipolarion) 2.米氏常数(Km值) 3.生物氧化(biological oxidation) 4.糖异生(glycogenolysis) 5.必需脂肪酸(essential fatty acid) 五、问答 1.简述蛋白质变性作用的机制。 2.DNA分子二级结构有哪些特点? 5.简述tRNA在蛋白质的生物合成中是如何起作用的? 四、名词解释 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.米氏常数(Km值):用Km值表示,是酶的一个重要参数。Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。 3.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。 4.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。 5.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。 五、问答 1. 答: 维持蛋白质空间构象稳定的作用力是次级键,此外,二硫键也起一定的作用。当某些因素破坏了这些作用力时,蛋白质的空间构象即遭到破坏,引起变性。 2.答: 按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行。两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系。维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小。

生物化学期末考试试卷与答案

安溪卫校药学专业生物化学期末考试卷选择题 班级 _____________姓名 _____________座号 _________ 一、单项选择题(每小题 1 分,共30 分) 1、蛋白质中氮的含量约占 A 、 6.25% B 、10.5%C、 16% D 、19%E、 25% 2、变性蛋白质分子结构未改变的是 A 、一级结构B、二级结构C、三级结构 D 、四级结构E、空间结构 3、中年男性病人,酗酒呕吐,急腹症,检查左上腹压痛,疑为急性胰腺炎,应测血中的酶是 A 、碱性磷酸酶 B 、乳酸脱氢酶C、谷丙转氨酶D、胆碱酯酶E、淀粉酶 4、酶与一般催化剂相比所具有的特点是 A 、能加速化学反应速度 C、具有高度的专一性 E、对正、逆反应都有催化作用B、能缩短反应达到平衡所需的时间D、反应前后质和量无改 5、酶原之所以没有活性是因为 A 、酶蛋白肽链合成不完全C、酶原是普通的蛋白质E、是已 经变性的蛋白质B、活性中心未形成或未暴露D、缺乏辅酶或辅基 6、影响酶促反应速度的因素 A 、酶浓度B、底物浓度C、温度D、溶液pH E、以上都是 7、肝糖原能直接分解葡萄糖,是因为肝中含有 A 、磷酸化酶 B 、葡萄糖 -6-磷酸酶C、糖原合成酶D、葡萄糖激酶E、己糖激酶 8、下列不是生命活动所需的能量形式是 A 、机械能B、热能C、 ATP D、电能E、化学能 9、防止动脉硬化的脂蛋白是 A、CM B 、VLDL C、 LDL D、 HDL E、 IDL 10、以下不是血脂的是 A 、必需脂肪酸 B 、磷脂C、脂肪D、游离脂肪酸E、胆固醇 11、一分子软脂酸在体内彻底氧化净生成多少分子ATP A、38 B、 131 C、 129 D、146 E、 36 12、没有真正脱掉氨基的脱氨基方式是 A 、氧化脱氨基B、转氨基C、联合脱氨基D、嘌呤核苷酸循环E、以上都是 13、构成 DNA 分子的戊糖是 A 、葡萄糖B、果糖C、乳糖 D 、脱氧核糖E、核糖 14、糖的有氧氧化的主要生理意义是: A 、机体在缺氧情况下获得能量以供急需的有效方式 B 、是糖在体内的贮存形式 C、糖氧化供能的主要途径 D 、为合成磷酸提供磷酸核糖 E、与药物、毒物和某些激素的生物转化有关 15、体内氨的主要运输、贮存形式是 A 、尿素B、谷氨酰胺C、谷氨酸 D 、胺E、嘌呤、嘧啶 16、DNA作为遗传物质基础,下列叙述正确的是 A 、 DNA 分子含有体现遗传特征的密码 B 、子代 DNA 不经遗传密码即可复制而成

浙江工业大学生物化学期末复习知识重点

1.糖异生和糖酵解的生理学意义: 糖酵解和糖异生的代谢协调控制,在满足机体对能量的需求和维持血糖恒定方面具有重要的生理意义。 2.简述蛋白质二级结构定义及主要类别。 定义:指多肽主链有一定周期性的,由氢键维持的局部空间结构。 主要类别:α-螺旋,β-折叠,β-转角,β-凸起,无规卷曲 3.简述腺苷酸的合成途径. IMP在腺苷琥珀酸合成酶与腺苷琥珀酸裂解酶的连续作用下,消耗1分子GTP,以天冬氨酸的氨基取代C-6的氧而生成AMP。 4.何为必需脂肪酸和非必需脂肪酸?哺乳动物体内所需的必需脂肪酸有哪些? 必需脂肪酸:自身不能合成必须由膳食提供的脂肪酸常见脂肪酸有亚油酸、亚麻酸非必须脂肪酸:自身能够合成机单不饱和脂肪酸 5.简述酶作为生物催化剂与一般化学催化剂的共性及其个性? 共性:能显著的提高化学反应速率,是化学反应很快达到平衡 个性:酶对反应的平衡常数没有影响,而且酶具有高效性和专一性 6.简述TCA循环的在代谢途径中的重要意义。 1、TCA循环不仅是给生物体的能量,而且它还是糖类、脂质、蛋白质三大物质转化的枢纽 2、三羧酸循环所产生的各种重要的中间产物,对其他化合物的生物合成具有重要意义。 3、三羧酸循环课供应多种化合物的碳骨架,以供细胞合成之用。 7.何为必需氨基酸和非必需氨基酸?哺乳动物体内所需的必需氨基酸有哪些? 必需氨基酸:自身不能合成,必须由膳食提供的氨基酸。(苏氨酸、赖氨酸、甲硫氨酸、色氨酸、苯丙氨酸、缬氨酸、亮氨酸、异亮氨酸) 8.简述蛋白质一级、二级、三级和四级结构。 一级:指多肽链中的氨基酸序列,氨基酸序列的多样性决定了蛋白质空间结构和功能的多样性。 二级:指多肽主链有一定周期性的,由氢键维持的局部空间结构。 三级:球状蛋白的多肽链在二级结构、超二级结构和结构域等结构层次的基础上,组装而成的完整的结构单元。 四级:指分子中亚基的种类、数量以及相互关系。 9.脂肪酸氧化和合成途径的主要差别? β-氧化:细胞内定位(发生在线粒体)、脂酰基载体(辅酶A)、电子受体/供体(FAD、NAD+)、羟脂酰辅酶A构型(L型)、生成和提供C2单位的形式(乙酰辅酶A)、酰基转运的形式(脂酰肉碱) 脂肪酸的合成:细胞内定位(发生在细胞溶胶中)、脂酰基载体(酰基载体蛋白(ACP))、电子受体/供体(NADPH)、羟脂酰辅酶A构型(D型)、生成和提供C2单位的形式(丙二酸单酰辅酶A)、酰基转运的形式(柠檬酸) 10.酮体是如何产生和氧化的?为什么肝中产生酮体要在肝外组织才能被利用? 生成:脂肪酸β-氧化所生成的乙酰辅酶A在肝中氧化不完全,二分子乙酰辅酶A可以缩合成乙酰乙酰辅酶A:乙酰辅酶A再与一分子乙酰辅酶A缩合成β-羟-β-甲戊二酸单酰辅酶A(HMG-CoA),后者分裂成乙酰乙酸;乙酰乙酸在肝线粒体中可还原生成β-羟丁酸,乙酰乙酸还可以脱羧生成丙酮。 氧化:乙酰乙酸和β-羟丁酸进入血液循环后送至肝外组织,β-羟丁酸首先氧化成乙酰乙酸,然后乙酰乙酸在β-酮脂酰辅酶A转移酶或乙酰乙酸硫激酶的作用下,生成乙酰乙酸内缺乏β-酮脂酰辅酶A转移酶和乙酰乙酸硫激酶,所以肝中产生酮体要在肝外组织才能被

生物化学重点总结 期末考试试题

组成蛋白质的氨基酸都是α-氨基酸。 细胞;几乎一切生活着的组织的结构和功能单位。 第一章生物化学与细胞 1、原核细胞与真核细胞的概念及区别 a原核细胞没有清楚界定的细胞核,而真核细胞有一双层膜将核与细胞其他部分分开。 b原核细胞仅有一层(细胞)膜,真核细胞内有一完善的膜系统。 c真核细胞含有膜包被的细胞器,原核细胞没有。 d真核细胞通常比原核细胞大 f原核生物是单细胞有机体,真核生物可能是单细胞,也可能是多细胞。 第二章到第四章氨基酸、多肽和蛋白质 1、α-氨基酸概念 α-氨基酸分子中的α-碳(分子中的第二个碳)结合着一个氨基和一个酸性的羧基,,α-碳还结合着一个H原子和一个侧链基团。 2、确定氨基酸的构型L-型D-型规则 a-COO-画在顶端,垂直画一个氨基酸,然后与立体化学参照化合物甘油醛比较,a-氨基位于a-C左边的是L-异构体,位于右边的为D-异构体,氨基酸的一对镜像异构体分别为L-型D-型异构体。 3、酸碱性氨基酸的名称及总体特点 4、含有的巯基的氨基酸 (含S基团的氨基酸)半胱氨酸(α-氨基-β-巯基丙酸)侧链上含有一个(-SH)巯基,又称巯基丙氨酸。-SH是一个高反应性集团。因为S原子时可极化原子,巯基能与O和N形成弱的氢键。 5、氨基酸在酸碱中的两性电离,等电点 所有氨基酸都处于电离状态。 在任意ph下,[共轭碱]/ [共轭酸]([A-]/ [HA] )可用Henderson-hasselbalch方程式ph=pk+lg([A-]/ [HA] ) 等电点:氨基酸的正负电荷相互抵消,对外表现净电荷为零时的pH值。 6、氨基酸的几个特征化学反应及用途 由a-氨基参加的反应 (1)与亚硝酸反应用途:Van Slyke法定量测定氨基酸的基本反应。 (2)与甲醛发生羟甲基化反应用途:可以用来直接测定氨基酸的浓度。 (3)和2,4—二硝基氟苯的反应用途:用于蛋白质中氨基酸的鉴定。 (4)和丹磺酰氯的反应用途:用于蛋白质中氨基酸的鉴定。 (5)和苯异硫氰酸酯的反应用途:用于蛋白质中氨基酸的鉴定。 由a-氨基和羧基共同参加的反应 (1)与茚三酮反应用途:常用于氨基酸的定性或定量分析。 (2)成肽反应 7、肽键:一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一份子水形成的酰胺键。肽:两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 8、肽平面的定义 肽平面又称肽单位,使肽链主链上的重复结构。是由参与肽键形成的氮原子、碳原子和它们的四个取代成分:羰基氧原子、酰胺氢原子和两个相邻的α-碳原子组成的一个平面单位。 9、蛋白质二级结构概念及三种二级结构的特点

(完整版)华南理工大学食品生物化学-试题5

食品生物化学试题五 一、填空题 1. 嘧啶核苷酸的合成是从开始,首先合成出具有嘧啶环结构的化合物是。 2. α-淀粉酶和 -淀粉酶只能水解淀粉的键,所以不能够使支链淀粉彻底水解。 3. 蛋白质的一级结构指的是;在二级结构中,蛋白质的主要折叠方式是,和。 4. 酶活性中心内的必须基团是和。 5. 一般把酶催化一定化学反应的能力称为,通常以在一定条件下酶所催化化学反应的 来表示。 6. 一碳单位的载体主要是,在脂肪酸生物合成中,酰基的载体为。 7. 人体对氨基酸代谢的主要场所是器官,在此氮的主要代谢产物是。 8. 在蛋白质生物合成中的作用是将氨基酸按链上的密码所决定的氨基酸顺序转移入蛋白质合成的场所——。 9. 人血液中含量最丰富的糖是,肝脏中含量最丰富的糖是,肌肉中含量最丰富的糖是。 10. 转氨酶都以为辅基,它与酶蛋白以牢固的形式结合。 11. 葡萄糖在体内主要的分解代谢途径有,和。 12. 尿素生成的过程称为,主要在肝细胞的和中进行。 13. 生物素是多种羧化酶的辅酶,在和反应中起重要作用。

14. 脂肪是动物和许多植物的主要能量贮存形式,由与3分子脂化而成的。 15. 脂肪酸分解过程中,长键脂酰CoA进入线粒体需由携带,限速酶是;脂肪酸合成过程中,线粒体的乙酰CoA出线粒体需与结合成。 16. 动物的代谢调节可以在、和等3个水平上进行。 二、选择题 1. 下列氨基酸中哪一种是必需氨基酸:() A.天冬氨酸 B.丙氨酸 C.甘氨酸 D.蛋氨酸 2. 下列糖中,除()外都具有还原性。 A. 麦芽糖 B. 蔗糖 C. 阿拉伯糖 D. 木糖 3. 人类和灵长类嘌呤代谢的终产物是() A.尿酸 B.尿囊素 C.尿囊酸 D.尿素 4. 下列关于氨基酸和蛋白质的说法正确的是:() A.天然的氨基酸有20种。 B.构成蛋白质结构单元的氨基酸均为L-a-氨基酸。C.桑格(Sanger)反应中所使用的试剂是异硫氰酸苯酯。 D.天然的氨基酸均具有旋光性。 5. 在蛋白质合成过程中,氨基酸活化的专一性取决于:() A. 密码子 B. mRNA C. 核糖体 D. 氨酰-tRNA合成酶 6、呼吸链的各细胞色素在电子传递中的排列顺序是()。 A. c1→b→c→aa3→O2 B. c→c1→b→aa3→O2 C. c1→c→b→aa3→O2 D. b→c1→c→aa3→O2 7. 氨基酸脱下的氨基通常以哪种化合物的形式暂存和运输:() A.尿素 B.氨甲酰磷酸 C.谷氨酰胺 D.天冬酰胺 8. 三大营养物质分解代谢的最后通路是()。 A. 糖的有氧氧化 B. 氧化磷酸化 C. 三羧酸循环 D. β-氧化 9. 在脂肪酸的合成中,每次碳链的延长都需要()直接参加。

2014生物化学期末考试试题

《生物化学》期末考试题 A 1、蛋白质溶液稳定的主要因素是蛋白质分子表面形成水化膜,并在偏离等电点时带有相同电荷 2、糖类化合物都具有还原性 ( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。 ( ) 5、ATP含有3个高能磷酸键。 ( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。 ( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。 ( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。 ( ) 9、血糖基本来源靠食物提供。 ( ) 10、脂肪酸氧化称β-氧化。 ( ) 11、肝细胞中合成尿素的部位是线粒体。 ( ) 12、构成RNA的碱基有A、U、G、T。 ( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。 ( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。 ( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将激素信号传递发挥其生物() 1、下列哪个化合物是糖单位间以α-1,4糖苷键相连: ( ) A、麦芽 B、蔗糖 C、乳糖 D、纤维素 E、香菇多糖 2、下列何物是体内贮能的主要形式 ( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、脂酰甘油

3、蛋白质的基本结构单位是下列哪个: ( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是 ( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是: ( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA 6、物质脱下的氢经NADH呼吸链氧化为水时,每消耗1/2分子氧可生产ATP分子数量( ) A、1B、2 C、3 D、4. E、5 7、糖原分子中由一个葡萄糖经糖酵解氧化分解可净生成多少分子ATP? ( ) A、1 B、2 C、3 D、4 E、5 8、下列哪个过程主要在线粒体进行 ( ) A、脂肪酸合成 B、胆固醇合成 C、磷脂合成 D、甘油分解 E、脂肪酸β-氧化 9、酮体生成的限速酶是 ( ) A、HMG-CoA还原酶 B、HMG-CoA裂解酶 C、HMG-CoA合成酶 D、磷解酶 E、β-羟丁酸脱氢酶 10、有关G-蛋白的概念错误的是 ( ) A、能结合GDP和GTP B、由α、β、γ三亚基组成 C、亚基聚合时具有活性 D、可被激素受体复合物激活 E、有潜在的GTP活性 11、鸟氨酸循环中,合成尿素的第二个氮原子来自 ( ) A、氨基甲酰磷酸 B、NH3 C、天冬氨酸 D、天冬酰胺 E、谷氨酰胺 12、下列哪步反应障碍可致苯丙酮酸尿症 ( )

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

食品生物化学试题1

食品生物化学: 研究食品的组成、结构、性能和加工、贮运过程中的化学变化以及食品成分在人体内代谢的科学。 糖类(carbohydrates)物质: 是含多羟醛或多羟酮类化合物及其缩聚物和某些衍生物的总称。 构象: 指一个分子中,不改变共价键结构,仅靠单键的旋转或扭曲而改变分子中基团在空间的排布位置,而产生不同的排列方式。 变旋现象: 在溶液中,糖的链状结构和环状结构(α、β)之间可以相互转变,最后达到一个动态平衡,称为变旋现象。 常见二糖及连接键: 蔗糖(α-葡萄糖—(1,2)-β果糖苷键);麦芽糖(葡萄糖-α—1,4-葡萄糖苷键);乳糖(葡萄糖-β—1,4半乳糖苷键);纤维二糖(β-葡萄糖-(1,4)-β—葡萄糖苷键) 脂类: 是生物细胞和组织中不溶于水,而易溶于乙醚、氯仿、苯等非极性溶剂中,主要由碳氢结构成分构成的一大类生物分子。脂类主要包括脂肪(甘油三酯,占95%左右)和一些类脂质(如磷脂、甾醇、固醇、糖脂等) 顺式脂肪酸与反式脂肪酸: 顺式脂肪酸:氢原子都位于同一侧,链的形状曲折,看起来象U型 反式脂肪酸:氢原子位于两侧,看起来象线形 皂化作用与皂化值: 皂化作用:当将酰基甘油与酸或碱共煮或脂酶作用时,都可发生水解,当用碱水解时称为皂化作用。 皂化值:完全皂化1g甘油三酯所需KOH的mg数为皂化值。 酸败及酸值: 油脂在空气中暴露过久即产生难闻的臭味,这种现象称为酸败。 中和1g油脂中游离脂肪酸所消耗KOH的mg数称为酸值,可表示酸败的程度。 卤化作用及碘值: 油脂中不饱和键可与卤素发生加成反应,生成卤代脂肪酸,这一作用称为卤化作用。 100g油脂所能吸收的碘的克数称为碘值。 乙酰化与乙酰化值: 油脂中含羟基的脂肪酸可与醋酸酐或其它酰化剂作用形成相应的酯,称为乙酰化。 1g乙酰化的油脂分解出的乙酸用KOH中和时所需KOH的mg数即为乙酰化值。 核酸: 以核苷酸为基本组成单位的生物大分子,携带和传递遗传信息。DNA脱氧核糖核酸RNA核糖核酸 核酸的组成单位是核苷酸。核苷酸有碱基,戊糖,磷酸组成。 核苷: 是一种糖苷,由戊糖和碱基缩合而成。糖与碱基之间以“C—N”糖苷键相连接。X-射线分析证明,核苷中碱基近似地垂直于糖的平面。 DNA与RNA

生物化学期末考试试题及答案

《生物化学》期末考试题 A 一、判断题(15个小题,每题1分,共15分) ( ) 1、蛋白质溶液稳定的主要因素是蛋白质分子表面形成水化膜,并在偏离等电点时带有相同电荷 2、糖类化合物都具有还原性 ( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。 ( ) 5、ATP含有3个高能磷酸键。 ( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。 ( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。 ( )

9、血糖基本来源靠食物提供。 ( ) 10、脂肪酸氧化称β-氧化。 ( ) 11、肝细胞中合成尿素的部位是线粒体。 ( ) 12、构成RNA的碱基有A、U、G、T。 ( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。 ( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。 ( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将 二、单选题(每小题1分,共20分)

1、下列哪个化合物是糖单位间以α-1,4糖苷键相连:() A、麦芽糖 B、蔗糖 C、乳糖 D、纤维素 E、 香菇多糖 2、下列何物是体内贮能的主要形式 ( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、 脂酰甘油 3、蛋白质的基本结构单位是下列哪个: ( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是 ( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是: ( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA

生物化学期末重点总结

第二章 1、蛋白质构成:碳、氢、氧、氮,氮含量16% 2、蛋白质基本组成单位:氨基酸 3、氨基酸分类:中性非极性~(甘氨酸Gly,G)、中性极性~、酸性~(天门冬氨酸Asp,D、谷氨 酸Glu,E)、碱性~(赖氨酸Lys,K、精氨酸Arg,R、组氨酸His,H) 4、色氨酸、酪氨酸(280nm波长)、苯丙氨酸(260nm波长)三种芳香族氨基酸吸收紫外光 5、大多数蛋白质中均含有色氨酸和酪氨酸,故测定280nm波长的光吸收强度,课作为溶液中蛋白 质含量的快速测定方法 6、茚三酮反应:蓝紫色化合物,反应直接生成黄色产物 7、肽键:通过一个氨基酸分子的—NH2与另一分子氨基酸的—COOH脱去一分子水形成—CO— NH— 8、二级结构基本类型:α—螺旋、β—折叠、β—转角、无规则卷曲 9、三级结构:每一条多肽链内所有原子的空间排布 10、一个具有功能的蛋白质必须具有三级结构 11、稳定三级结构的重要因素:氢键、盐键、疏水键、范德华力等非共价键以及二硫键 12、四级结构:亚基以非共价键聚合成一定空间结构的聚合体 13、亚基:有些蛋白质是由两条或两条以上具有独立三级结构的多肽链组成,每条多肽链称~ 14、单独的亚基一般没有生物学功能,只有构成完整的四级结构才具有生物学功能 15、等电点:调节溶液pH值,使某一蛋白质分子所带的正负电荷相等,此时溶液的pH值即为~ 16、变性作用:某些理化因素可以破坏蛋白质分子中的副键,使其构像发生变化,引起蛋白质的理 化性质和生物学功能的改变(可逆性变性、不可逆性变性) 17、变性蛋白质是生物学活性丧失,在水中溶解度降低,粘度增加,更易被蛋白酶消化水解 18、变性物理因素:加热、高压、紫外线、X线和超声波 化学因素:强酸、强碱、重金属离子、胍和尿素 19、沉淀:用物理或化学方法破坏蛋白质溶液的两个稳定因素,即可将蛋白质从溶液中析出 20、沉淀:盐析:破坏蛋白质分子的水化膜,中和其所带电荷,仍保持其原有生物活性,不会是蛋 白质变性 有机溶剂沉淀:不会变性 重金属盐类沉淀:破坏蛋白质分子的盐键,与巯基结合,发生变性 生物碱试剂沉淀: 21、双缩脲反应:在碱性溶液中,含两个以上肽键的化合物都能与稀硫酸铜溶液反应呈紫色(氨基 酸、二肽不可以) 第三章 22、核苷:一分子碱基与一分子戊糖脱水以N—C糖苷键连成的化合物 23、核苷酸=核苷+磷酸 24、RNA分子含有四种单核苷酸:AMP、GMP、CMP、UMP 25、核苷酸作用:合成核酸、参与物质代谢、能量代谢和多种生命活动的调控 26、核苷酸存在于辅酶A、黄素腺嘌呤二核苷酸(F AD)、辅酶I(NAD+)和辅酶II(NADP+) 27、A TP是能量代谢的关键 28、UTP、CTP、GTP分别参与糖元、磷脂、蛋白质的合成 29、环一磷酸腺苷(Camp)和环一磷酸鸟苷(cGMP)在信号转导过程中发挥重要作用 30、DNA具有方向性,碱基序列按照规定从5’向3’书写(3’,5’-磷酸二酯键) 31、三维双螺旋结构内容:⑴DNA分子由两条反向平行的多核苷酸链围绕同一中心轴盘旋而成 ⑵亲水的脱氧核糖基与磷酸基位于外侧,疏水的碱基位于内侧 ⑶两条多核苷酸链以碱基之间形成的氢键相互连结 ⑷互补碱基之间横向的氢键和疏水碱基平面之间形成的纵向碱基堆积 力,维系这双螺旋结构的稳定 32、B-DNA、A-DNA右手螺旋结构,Z-NDA左手螺旋结构

生物化学考试重点笔记(完整版)

第一章蛋白质的结构与功能 第一节蛋白质的分子组成 一、组成蛋白质的元素 1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、 钴、钼,个别蛋白质还含有碘。 2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。 3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量, 就可以根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量 ( g % )= 每克样品含氮克数× 6.25×100 二、氨基酸——组成蛋白质的基本单位 (一)氨基酸的分类 1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸( Ala)缬氨酸(Val)亮 氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try) 蛋氨酸(Met) 2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨 酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr ) 3、带负电荷氨基酸(酸性氨基酸)(2): 天冬氨酸(Asp ) 谷氨酸(Glu) 4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg) 组氨酸( His) (二)氨基酸的理化性质 1. 两性解离及等电点 等电点 :在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等, 成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 2. 紫外吸收 (1)色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。 (2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸 收值是分析溶液中蛋白质含量的快速简便的方法。 3. 茚三酮反应 氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。 由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法 三、肽 (一)肽 1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的 化学键。

相关文档
相关文档 最新文档