文档库 最新最全的文档下载
当前位置:文档库 › 变上限定积分函数及其导数 教案

变上限定积分函数及其导数 教案

变上限定积分函数及其导数  教案
变上限定积分函数及其导数  教案

高等数学教案

变上限定积分函数及其导数

教学内容:变上限定积分函数及其导数。

知识目标:使学生掌握变上限定积分函数的定义;

使学生了解原函数存在定理的证明;

使学生会熟练运用原函数存在定理求导数。

情感目标:通过原函数存在定理体会积分和微分之间的联系。

教学重点:通过对变上限定积分的掌握和原函数存在定理的结论会求

变上限定积分函数的导数。

教学难点:原函数存在定理的证明。

教学设计:对高职生来说,原函数存在定理的证明过程是本节课的难点,所以采用提前给出储备知识减弱学生负担,同时又辅以数形结合

来形象展示。对变上限积分函数的导数采用讲练结合来强化重点。

教学方法:讲练结合+任务驱动

教学过程:

一课程导入

在前面我们通过两个实例曲边梯形的面积和变速直线运动的路程引入了定积分的概念。求定积分的过程实际上是求和式的极限一般来说,根据定义求定积分计算是很复杂的,所以,必须寻求一种简单而有效的方法。牛顿-莱布尼兹在创建微积分时,就发现定积分和不定积分有密切的联系。我们第二讲要讲的牛顿-莱布尼兹公式,从而把求定积分的问题转化为求不定积分(既原函数)的问题,为人们计算定积分提供了简便的方法。本节课所要讲的原函数存在定理,在微分

和积分之间建立了关系,牛顿和莱布尼兹利用这种关系用来计算计算定积分,得出了著名的牛顿-莱布尼兹公式。

二 储备知识

引导学生复习下面一些知识点,为后面的知识做准备。

1 原函数:若)()(x f x =Φ',则)(x Φ是)(x f 的一个原函数。

2 可导的概念:若x

x f x ??→?)(lim

0存在 ,则)(x f 可导。 3 复合函数求导:)()())(((x u u f x u f dx d '?'= 4 定积分的积分区间可加性:dx x f dx x f dx x f b

c b ???+=c a a )()()(。 5 定积分积分中值定理 :)())(()(b a a b f dx x f b a ≤≤-=?ξξ。

三 给出课堂任务目标

给出本节课的任务目标,以便让学生明白本节课的主要任务。

本堂课主要有三个任务目标 :1 掌握变上限积分函数的概念;

2 了解原函数存在定理的证明;

3 会熟练运用原函数存在定理求导数。

四 课程内容

1变上限定积分函数的概念

设)(x f 在],[b a 上连续,],[b a x ∈,则)(x f 在],[x a ,即定积分?x

a dx x f )(存在,这样很容易混淆,又定积分的值与积分变量无关,我们把积分变量换成t,即得?x

a dt f )t (。若固定积分下限a ,则对任意一个],[

b a x ∈,定积分?x a

dt f )t (都有唯一的值与x 对应,所以?x

a dt f )t (是上限变量x 的函数,称它为变上限定积分函数,

记作?=Φx

a dt f x )t ()(。 从定积分的几何意义来解释变上限积分是x 的函数。

对于变上限积分函数?x

a dt f )t (在给定的情况下可以求其导数。 2 定理(原函数存在定理)

定理1 如果函数)(x f 在],[b a 上连续,则变上限积分()x φ=()x

a t dt ?(a x

b ≤≤)

在),(b a 内可导,且其导数为()()()x a

d x f t dt f x dx φ'==?。即)(x Φ是被积函数的一个原函数。 证明:dt t f x x x x a ??+=?+Φ)()( dt t f dt t f dt t f dt t f dt t f dt t f x

x x x a x

x x x a x a x x a ??????

?+?+?+=-+=-=?Φ)()()()()()( 根据定积分的中值定理:存在)(x x x ?+∈,ξ使x f x ?=?Φ)()(ξ(如图)。 ,

这个定理肯定了连续函数的原函数是存在的,通常称为原函数存在定理;同时,该定理也初步揭示了积分学中的定积分与原函数之间的联系,在微分和积分之间建立了关系,我们又把它称之为微积分第一基本定理。它是下面要将的牛顿-莱布尼兹公式的基础。

3 例题与解答。(比书上多补充一种类型)

例 求下列函数的导数:

a b x y o

x x ?+)

(x Φx ξ),(ξf x =??Φ

)(lim lim

00ξf x x x →?→?=??Φx x →

→?ξ,0)()(x f x =Φ'∴。;)

(;)(???=Φ=Φ+=Φ22

100)()3(3cos )(2)12cos()(1x t x t x

dt e x tdt e x dt t x

解: (1) )12cos()(+=Φ'x x 。

(2) tdt e x t 3cos -)(x 0?=Φ, x e x x 3cos )(-=Φ'。

(3) 令2x u =,则 dt e u t ?=Φu 12)(, 4222)()(x u xe x e u u x =?='?Φ'=Φ'。 4 练习 求下列函数的导数:

请两个学生上台做演示。

5 延伸和推广(为有兴趣的学生提供) 。;)

(;)(???=Φ=Φ+=Φ-300212sin )()3()(2)12tan()(1x t x t x tdt e x dt e x dt t t x

三次函数与导数--例题与练习答案

三次函数与导数例题与练习答案 例1.(14全国大纲卷文21,满分12分)函数32()33(0)f x ax x x a =++≠. (1)讨论函数()f x 的单调性; (2)若函数()f x 在区间(1,2)是增函数,求a 的取值范围. 解:(Ⅰ)2()363f x ax x '=++,2 ()3630f x ax x '=++=的判别式△=36(1-a ). (ⅰ)当a ≥1时,△≤0,则()0f x '≥恒成立,且()0f x '=当且仅当1,1a x ==-,故此时()f x 在R 上是增函数. (ⅱ)当1a <且0a ≠,时0>?,()0f x '= 有两个根:12x x = = , 若01a <<,则12x x <, 当2(,)x x ∈-∞或1(,)x x ∈+∞时,()0f x '>,故()f x 在 21(,),(,)x x -∞+∞上是增函数;当21(,)x x x ∈时,()0f x '<,故()f x 在21(,)x x 上是减函数; 若0,故()f x 在),(21x x 上是增函数; (Ⅱ)当0>a 且0>x 时, 0363)(2 >++='x ax x f ,所以 当0a >时,()f x 在区间(1,2)是增函数. 当0a <时, ()f x 在区间(1,2)是增函数,当且仅当(1)0f '≥且(2)0f '≥,解得5 04 a - ≤<. 综上,a 的取值范围是5 [,0)(0,)4 -+∞U . 例2.(14安徽文数 20)(本小题满分13分) 设函数23()1(1)f x a x x x =++--,其中0a >。(1)讨论()f x 在其定义域上的单调性; (1) 当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值. (Ⅰ) ()f x 的定义域为(,)-∞+∞,2 ()123f x a x x '=+-- 令()0f x '=,得121211,33 x x x x --+= =< 所以12()3()()f x x x x x '=--- 当1x x <或2x x >时,()0f x '<;当12x x x <<时,()0f x '>, 故()f x 在12(,)(,)x x -∞+∞和内单调递减,在12(,)x x 内单调递增 (Ⅱ)因为0a >,所以120,0x x <> (ⅰ)当4a ≥时,21x ≥,由(Ⅰ)知,()f x 在[0,1]上单调递增, 所以()f x 在 0x =和1x =处分别取得最小值和最大值 (ⅱ)当04a <<时,21x <,由(Ⅰ)知,()f x 在[0,2x ]上单调递增,在[2x ,1] 上单调递减,因此()f x 在213 x x -+==处取得最大值 又(0)1,(1)f f a ==,所以 当01a <<时,()f x 在1x =处取得最小值; 当1a =时,()f x 在0x =和1x =处同时取得最小值; 当04a <<时,()f x 在0x =处取得最小值。 例4.(14年天津文科19,满分14分)已知函数232 ()(0),3 f x x ax a x R =->∈ (1) 求()f x 的单调区间和极值;(2)若对于任意的1(2,)x ∈+∞,都存在 2(1,)x ∈+∞,使得12()()1f x f x ?=,求a 的取值范围 解:(Ⅰ)由已知,有2 ()22(0)f x x ax a '=->

(完整版)【工程数学】复变函数复习重点

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1) 模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数); 主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

常用求导与定积分公式(完美)

一.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2 csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数 )(x f y =在对应区间 x I 内也可导,且

)(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx =g 或()()y f u x ?'''=g 二、基本积分表 (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+? (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+?

用导数研究三次函数

用导数研究三次函数 一、知识点解析 1定义: 定义1、形如y =ax3?bx2? CX ?d(a =0)的函数,称为“三次函数”。 定义2、三次函数的导函数为二次函数:f / (x) = 3ax2 2bx c(a = 0),我们把 2 2 =4b -12ac=4(b -3ac),叫做三次函数导函数的判别式。 2、三次函数图象与性质的探究: 1、单调性 2 3 2 一般地,当b -3ac二0时,三次函数y = ax bx ?cχ?d(a=0)在R上是单调函数;当b -3ac 0时,三次函数y = ax bx CX d(a 0)在R上有三个单调区间。 2、对称中心 3 2 三次函数f (x) = ax bx CX d (^?-z 0)是关于点对称,且对称中心为点 b b (—I f (—)),此点的横坐标是其导函数极值点的横坐标。 3a 3a y= f(x)图象的对称中心在导函数y=∕'O)的对称轴上,且又是两个极值点的中点, 同时也是二阶导为零的点。 3、三次方程根的问题 (1)当.?, =b2 _3ac乞0时,由于不等式「(X)恒成立,函数是单调递增的,所以原方程仅有一个实根。 ■ 0时,由于方程f(X)= 0有两个不同的实根x1, X2,不妨设 (2)当厶=b2 _3ac X i :::x2, 可知,(χ1,f(χj)为函数的极大值点,(X2, f(x2))为极小值点,且函数y = f(x)在(」:,X1)和(x2, ■--)上单调递增,在"x1,x2 I上单调递减。 此时: ①若f (x1) f (x2) 0 ,即函数y = f (x)极大值点和极小值点在X轴同侧,图象均与X轴只有一个交点,所以原方程有且只有一个实根。 ②若f (χ1) f (χ2) :::0 ,即函数y = f (x)极大值点与极小值点在X轴异侧,图象

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

考研数学利用变限积分求导计算函数极限的方法

考研数学:利用变限积分求导计算函数极限的方法 在考研数学中,利用变限积分求导来计算定积分、函数极限和证明积分等式或不等式是常考的题型,事实上,变限积分是与微积分基本定理(牛顿-莱布尼茨公式)紧密联系在一起的,其重要性不言而喻。在上一篇文章中,文都考研数学辅导老师向大家介绍了利用变限积分求导来计算定积分的技巧,下面对利用变限积分求导来计算函数极限这类题的解题方法进行分析介绍,供各位考生参考,希望对大家有所裨益。 变限积分求导的基本公式: 公式1:若()f x 连续,则 ()()x a d f t dt f x dx =?; 公式2:若()f x 连续,12(),()x x ??可导,则21 () 2211()()(())()(())()x x d f t dt f x x f x x dx ??????''=-? 利用变限积分求导计算函数极限的基本方法: 1)如果函数是含变限积分的分式,可以考虑使用变限积分求导法计算极限; 2)通常是对 00型和∞ ∞ 型不定式积分使用,并结合洛必达法则使用; 3)如果被积函数中含参数x ,应该先将参数x 分离出来,提到积分号前面去。 例1. 求极限2 2 2lim x t x x te dt x e →∞ ? 解析:这是一个 ∞ ∞ 型不定式极限,可以运用洛必达法则,而分子是一个变上限积分函数,因此可如下计算:2 2 2 2 2 20 232lim lim 22x t x x x x x x te dt x e x x e xe x e →∞ →∞ ?==+?2 2 lim 11x x x →∞=+ 例2. 0 ()()(0)0,lim ()x x x tf x t dt f x f x f t dt →-≠??若连续,求 解析:这是一个 型不定式极限,可以运用洛必达法则,但分子中的被积函数含参数x ,需要先将x 分离出来,提到积分号外面去,这可以通过积分换元法实现,具体过程如下: 1.()()()()()()()x t u x x x x x tf x t dt x u f u du x t f t dt x f t dt -=-= --= -=-?? ? ? ?

常用的求导和定积分公式(完美)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 一.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211 )(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21 (arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =, )(x v v =都可导,则

(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'='??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的 反函数)(x f y =在对应区间x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数 )]([x f y ?=的导数为 dy dy du dx du dx = 或()()y f u x ?'''= 二、基本积分表 (1)kdx kx C =+? (k 是常数)

考研高数重要知识点讲解:变限积分求导

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 考研高数重要知识点讲解:变限积分求 导 在考研复习的初期,打好基础是学好数学的关键。下面,考研高数重要知识点讲解之变限积分求导,希望能帮助到大家。 数学虽然属于理科科目,但是仍然有许多重要的知识点需要记忆和运用。特别为广大考生归纳一下高等数学的部分知识点。这次我们介绍的是变限积分求导。 变限积分求导是考研试卷中每年必考的内容,该知识点可以和高等数学中所有内容都可以结合起来考查综合题,重点是考查变限积分函数求导,其基本原理是如下三个公式: 在这三个公式中,被积函数中不含有参数x,而考试的时候经常被积函数中间含有参数x,处理的时候有两种情况,第一种情况是参数x和积分变量t是可以分离;第二种情况参数x 和积分变量t是没法分离的,用定积分的换元法来处理。

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员!

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 凯程考研: 凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业; 服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。 对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢

考研——积分上限的函数(变上限积分、变限积分)知识点全面总结

考研——积分上限的函数(变上限积分)知识点 ()()x a F x f t dt =? 形如上式的积分,叫做变限积分。 注意点: 1、在求导时,是关于x 求导,用课本上的求导公式直接计算。 2、在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。 (即在积分内的x 作为常数,可以提到积分之外。) 关于积分上限函数的理论 定理1如果)(x f 在],[b a 上连续,则)(x f 在(a ,b )上可积,而)(x f 可积,则?=x a dt t f x F )()(在],[b a 上连续。 定理2如果)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在(a ,b )上可积。 定理3如果)(x f 在],[b a 上连续,则?=x a dt t f x F )()(在],[ b a 上可导,而且有 ).(])([)(x f dt t f dx d x F x a == '? ========================================== 注:(Ⅰ)从以上定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数)(x f 经过求导后,其导函数)(x f '甚至不一定是连续的。 (Ⅱ)定理(3)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(3)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

第07讲(三次函数的导数问题)(原卷版)

第07讲(三次函数的导数问题) 【目标导航】 运用三次函数的图像研究零点问题, 三次函数的单调性问题, 三次函数的极值与最值问题。 【例题导读】 例1、若13 x 3-x 2+ax -a =0只有一个实数根,求实数a 的取值范围. 例2、 已知函数f (x )=13x 3-k +12x 2,g (x )=13 -kx ,若函数f (x )与g (x )的图象有三个不同的交点,求实数k 的取值范围. 例3、设函数f (x )=13x 3-a 2x 2+1,其中a >0,若过点(0,2)可作曲线y =f (x )的三条不同切线,求实数a 的取值范围. 例4、已知函数f (x )=14 x 3-x 2+x . (1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x ; (3)设F (x )=|f (x )-(x +a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 例5、已知函数f(x)=?????-x 3+x 2,x<0,e x -ax ,x≥0,其中常数a ∈R . (1) 当a =2时,求函数f (x )的单调区间; (2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,求实数a 的取值范围;

例6、已知函数32()1f x x ax bx a b =+++∈,,R . (1)若20a b +=, ① 当0a >时,求函数()f x 的极值(用a 表示); ② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由; 例7、已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:33b a >; (3)若(),'()f x f x 这两个函数的所有极值之和不小于72 -,求a 的取值范围. 例8、已知函数f(x)=2x 3-3(a +1)x 2+6ax ,a ∈R . (1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值; (2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (3) 若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.

导数与定积分

洞口三中2008年下学期高二数学(理科)训练测试试题 姓名________ 学号_____ 测试内容:选修2-2:导数、定积分以及其简单应用 一、选择题: 1、曲线 3y x =在点)8,2(处的切线方程为( ) A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 2.设2 1sin x y x -=,则'y =( ) A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin )1(sin 22--- 3.由抛物线x y 22 =与直线4-=x y 所围成的图形的面积是( ). A .18 B .38/3 C .16/3 D .16 4.函数y=2x 3-3x 2 -12x+5在[0,3]上的最大值与最小值分别是( ) A 、5 、-15 B 、5 、 4 C 、-4、 -15 D 、5 、 -16 5.设y=x-lnx ,则此函数在区间(0,1)内为( ) A .单调递增 B 、有增有减 C 、单调递减 D 、不确定 6、设()ln f x x x =,若0'()2f x =,则0x =( B ) A. 2e B. e C. ln 2 2 D. ln 2 7、由直线21=x ,x=2,曲线x y 1 =及x 轴所围图形的面 积是( ) A. 415 B. 417 C. 2ln 21 D. 2ln 2 8、若21()ln(2)2 f x x b x =-++∞在(-1,+)上是减函数, 则b 的取值范围是( ) A. [1,)-+∞ B. (1,)-+∞ C. (,1]-∞- D. (,1)-∞- 9、设a ∈R ,若函数3ax y e x =+,x ∈R 有大于零的极值点,则( ) A .3a >- B .3a <- C .a>-1/3 D .a<-1/3 10、已知函数(),()y f x y g x ==的导函数的图象如下图,那么(),()y f x y g x ==图 象可能是 二、填空题

变上限定积分函数及其导数教案

高等数学教案 变上限定积分函数及其导数 教学内容:变上限定积分函数及其导数。 知识目标:使学生掌握变上限定积分函数的定义; 使学生了解原函数存在定理的证明; 使学生会熟练运用原函数存在定理求导数。 情感目标:通过原函数存在定理体会积分和微分之间的联系。 教学重点:通过对变上限定积分的掌握和原函数存在定理的结论会求 变上限定积分函数的导数。 教学难点:原函数存在定理的证明。 教学设计:对高职生来说,原函数存在定理的证明过程是本节课的难点,所以采用提前给出储备知识减弱学生负担,同时又辅以数形结合 来形象展示。对变上限积分函数的导数采用讲练结合来强化重点。 教学方法:讲练结合+任务驱动 教学过程: 一课程导入 在前面我们通过两个实例曲边梯形的面积和变速直线运动的路程引入了定积分的概念。求定积分的过程实际上是求和式的极限一般来说,根据定义求定积分计算是很复杂的,所以,必须寻求一种简单而有效的方法。牛顿-莱布尼兹在创建微积分时,就发现定积分和不定积分有密切的联系。我们第二讲要讲的牛顿-莱布尼兹公式,从而把求定积分的问题转化为求不定积分(既原函数)的问题,为人们计算定积分提供了简便的方法。本节课所要讲的原函数存在定理,在微分

和积分之间建立了关系,牛顿和莱布尼兹利用这种关系用来计算计算定积分,得出了著名的牛顿-莱布尼兹公式。 二 储备知识 引导学生复习下面一些知识点,为后面的知识做准备。 1 原函数:若)()(x f x =Φ',则)(x Φ是)(x f 的一个原函数。 2 可导的概念:若x x f x ??→?)(lim 0存在 ,则)(x f 可导。 3 复合函数求导:)()())(((x u u f x u f dx d '?'= 4 定积分的积分区间可加性:dx x f dx x f dx x f b c b ???+=c a a )()()(。 5 定积分积分中值定理 :)())(()(b a a b f dx x f b a ≤≤-=?ξξ。 三 给出课堂任务目标 给出本节课的任务目标,以便让学生明白本节课的主要任务。 本堂课主要有三个任务目标 :1 掌握变上限积分函数的概念; 2 了解原函数存在定理的证明; 3 会熟练运用原函数存在定理求导数。 四 课程内容 1变上限定积分函数的概念 设)(x f 在],[b a 上连续,],[b a x ∈,则)(x f 在],[x a ,即定积分?x a dx x f )(存在,这样很容易混淆,又定积分的值与积分变量无关,我们把积分变量换成t,即得?x a dt f )t (。若固定积分下限a ,则对任意一个],[ b a x ∈,定积分?x a dt f )t (都有唯一的值与x 对应,所以?x a dt f )t (是上限变量x 的函数,称它为变上限定积分函数, 记作?=Φx a dt f x )t ()(。 从定积分的几何意义来解释变上限积分是x 的函数。

用导数研究三次函数

用导数研究三次函数 一、知识点解析 1、定义: 定义1、形如3 2 (0)y ax bx cx d a =+++≠的函数,称为“三次函数”。 定义2、三次函数的导函数为二次函数:)0(23)(2 /≠++=a c bx ax x f ,我们把 )3412422ac b ac b -=-=?(,叫做三次函数导函数的判别式。 2、三次函数图象与性质的探究: 1、单调性 一般地,当032 ≤-ac b 时,三次函数)0(2 3≠+++=a d cx bx ax y 在R 上是单调函数;当032 >-ac b 时,三次函数)0(2 3≠+++=a d cx bx ax y 在R 上有三个单调区间。 2、对称中心 三次函数)0()(2 3 ≠+++=a d cx bx ax x f 是关于点对称,且对称中心为点 ))3(,3(a b f a b -- ,此点的横坐标是其导函数极值点的横坐标。 y =f(x)图象的对称中心在导函数y = 的对称轴上,且又是两个极值点的中点, 同时也是二阶导为零的点。 3、三次方程根的问题 (1)当032≤-=?ac b 时,由于不等式0)(≥'x f 恒成立,函数是单调递增的,所以原方程仅有一个实根。 (2)当△=032>-ac b 时,由于方程0)(='x f 有两个不同的实根21,x x ,不妨设21x x <, 可知,))(,(11x f x 为函数的极大值点,))(,(22x f x 为极小值点,且函数)(x f y =在) ,(1x -∞和),(2+∞x 上单调递增,在[]21,x x 上单调递减。

此时: ①若0)()(21>?x f x f ,即函数)(x f y =极大值点和极小值点在x 轴同侧,图象均与x 轴只有一个交点,所以原方程有且只有一个实根。 ②若0)()(21时,三次函数()y f x =在(),-∞+∞上的极值点要么有两个。 当0?≤时,三次函数()y f x =在(),-∞+∞上不存在极值点。 5、最值问题。 函数 若,且 ,则:()()()(){}max 0,,f x f m f x f n =; 。 6、过三次函数上一点的切线问题 设点P 为三次函数)0()(2 3≠+++=a d cx bx ax x f 图象上任一点,则过点P 一定有 直线与)(x f y =的图象相切。若点P 为三次函数图象的对称中心,则过点P 有且只有一条切线;若点P 不是三次函数图象的对称中心,则过点P 有两条不同的切线。 7、过三次函数外一点的切线问题 设点 ) ,(00y x P 为三次函数)0()(2 3≠+++=a d cx bx ax x f 图象外,则过点P 一定有 直线与)(x f y =图象相切。可能有一条、两条或三条。(具体情况分析不作要求)

导数与三次函数(教案)

导数与三次函数(教案) 教学目标 (1)知识目标:以三次函数为载体,掌握用导数研究函数的单调性、极值、最值等问题的方法。 (2)能力目标:深化数形结合、转化与化归、分类讨论、从特殊到一般等数学思想在解有关问题中的运用,培养学生探究问题的能力和综合分析、解决问题的能力。 (3)情感目标:以数形联系的观点看数学问题,体会由特殊到一般的方法探究数学问题的过程。鼓励学生大胆猜想,敢于质疑,严密论证。 教学重点:导数应用。 教学难点:三次函数的单调性、极值点个数的探求。 教学模式:以问题为主线,运用探究式与变式教学相结合的教学模式。 教学过程 一 回顾复习 引出本课课题 叙述利用导数求可导函数单调区间的步骤。 二 再现陈题 掌握导数应用 例1 已知函数3()3f x x x =-,R x ∈ (1)求函数()f x 的单调区间; (2)求()f x 在[0,3]上的最值; (3)过点A (2,2)作曲线y=f(x)的切线,求切线方程。 特别警示:求切线方程首先要判断该点是否在曲线上 点评1 导数的主要应用:可导函数的单调性、极值、在闭区间上的最值,以及利用导数的几何意义研究切线问题。 变式一 若关于x 的不等式()f x a ≥在0≤x ≤3上恒成立,求实数a 的取值范围; 变式二 关于x 的方程f(x)=a 恰有3个不等的实根,求实数a 的取值范围.(图象法) 画3 ()3f x x x =-草图的方法:利用函数有关性质 (1)确定极值点对应的点(简称关键点) (2)结合单调性 点评 2 数形结合,以形助数来解决问题。 二 改变命题 探求字母系数 例 2 若函数32 ()331f x kx x x =+++(0k ≠)在R 上是增函数,求实数k 的取值范围。 分析 '()f x =2 363kx x ++,0k ≠,'()f x ∴图象是一条过(0,3)的抛物线, 由于f(x)在R 上是增函数,则 1)300k >?? ?在R 上恒成立,f(x)在R 上是增函数; 2)300 k >???=?,即1k =,323()331(1)f x x x x x =+++=+,显然f(x)在R 上是增函数;

三次函数与导数专题 10

导数与三次函数问题 [真题1] (优质试题年安徽卷)设a<b,函数2 ()() y x a x b =--的图像可能是() [命题探究] 考题的命制,直接给出函数图像,然后设计了四个选项,意在通过对问题的判断, 直接考查三次函数的性质:单调区间和极值问题。这里,函数的化简、图像的观察等等,不仅需要 扎实的基本功,而且还需要熟练的解题技巧。 [知识链接] 1.三次函数32 ()(0) f x ax bx cx d a =+++≠ a>0 a<0 ?>0 ?≤0 ?>0 ?≤0 图 象 32 ()(0) f x ax bx cx d a =+++≠ '() f x=2 32 ax bx c ++, x x1 x2 x0 x x1 x2 x x0 x

记?=224124(3)b ac b ac -=- 1,x 2是方程'()f x 1

数是二次函数,这类问题的难点是研究其中的参数的取值范围.破解难点的方法是对三次函数求导后,化归成二次函数,通过二次函数要的分布求解,或利用数形结合思想画出函数的极大值、极小值后进行对比分析,求出参数的取值范围。解三次函数的问题,可借助导数工具进行研究,推进了二次函数性质的深化与二次函数方法的研究。 《规范解答》 [考题再现](06福建文21)已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区 间[]1,4-上的最大值是12。 (I )求()f x 的解析式;(II )是否存在自然数,m 使得方程37()0f x x +=在区间(,1)m m +内有 且只有两个不等的实数根?若存在,求出m 的取值范围;若不

(完整版)专题三导数与三次函数

专题三 导数与三次函数 三次函数()32f x ax bx cx d =+++(a 、b 、c 、d R ∈且0a ≠)是中学数学利用导数研究函数的单调性、极值(最值)的一个重要载体,是应用二次函数图象和性质的好素材,既可以整合函数图象和性质、不等式、方程、导数等相关知识,完善知识结构,又能体会其中蕴涵的数学思想方法。近几年的全国各省市高考试卷以导数为工具,有重点地考查了有关三次函数的单调性、极值、在闭区间上的最值、对参数的取值范围的探究等函数性质,凸显“在知识网络交汇点上”命题的理念。 例1、已知函数()33f x x x =- ⑴求函数()f x 的单调区间及极值;⑵求()f x 在[]0,3上的最值。 解:令()2123301,1f x x x x '=-=?==- x 、()f x '、()f x 的变化情况如下表 ∴()f x 的单调递增区间是(),1-∞-和()1,+∞ ()f x 的单调递减区间是()1,1- 当1x =-时,()f x 有极大值()()()3 11312f -=--?-= 当1x =时,()f x 有极小值()311312f =-?=- ⑵()00f =,()3333318f =-?= ∵()f x 在[]0,3上只有一个极值点()12f =- ∴()f x 在[]0,3上的最小值为-2,最大值为18 变式一、已知函数()3233f x x x x =++,其他不变

解:()()2 2363310f x x x x '=++=+≥ ∴()f x 在(),-∞+∞单调递增,()f x 没有极值 ()f x 在[]0,3上的最小值为()00f =,最大值为()363f = 变式二、已知函数()323f x x x x =++;其他不变 解:()2323f x x x '=++ △22433200=-??=-< ∴()0f x '=没有实数根 ∴()0f x '>在R 上恒成立 ∴()f x 在(),-∞+∞上单调递增,()f x 没有极值 ()f x 在[]0,3上的最小值为()00f =,最大值为()345f = 变式三、已知函数1y t =,323y x x =-,实数t 为何值时,函数1y 与2y 的图象的 交点有一个、二个、三个? 解:由例1画出函数2y 的大致图象如图,观察图象,可得 当2t >或2t <-时,函数1y 与2y 只有一个交点。 当2t =-或2t =时,函数1y 与2y 有二个交点。 当22t -<<时,函数1y 与2y 变式四、a 为何值时,函数3 ()3f x x x a =-+有一个零点?两个零点?三个零点? 解:令()2 123301,1f x x x x '=-=?==- x 、()f x '、()f x 的变化情况如下表

3变限积分函数的性质及其应用

404 §3 变限积分函数的性质及其应用 由于定积分概念是利用极限工具给出的,所以利用定积分的定义计算定积分是十分困难的,有时甚至是不可能的。为了让定积分概念能得到实际应用,必须寻找简便有效的计算定积分的方法,那么我们必须探求定积分更加深刻的性质。本节将介绍两个重要的定理,通过沟通定积分与不定积分的关系,给出了一个解决定积分计算问题的有效途径。 3.1 变限积分 定积分有一个十分特殊而重要的性质,它对进一步考察微分和积分的关系起十分关键的作用。但需要先介绍一个概念: 注 由于 ?? -=x b b x dt t f dt t f )()(,因此,只要讨论变上限函数即可。 证 利用连续函数的定义及定积分的性质即可证得。 对[a ,b ]上的任一点x ,只要[],x x a b +?∈,按照Φ的定义有 ()()x x x a a x x x fdt f dt +??Φ=Φ+?-Φ=- ? ? 。 又函数 ) (x f 在[a , b ]上可积,则 ) (x f 在[a , b ]上有界,即存在正数M ,对 一切[],x a b ∈有()f x M ≤。又当0x ?≥时有 x x x x x x x x x f d t f d t M d t M x +?+?+??Φ=≤≤=?? ? ? 。

405 又不难验证,当0x ?<时,上述不等式M x ?Φ≤?仍然成立。从而有 lim 0x ?→?Φ=。这就证得Φ在[],a b 上的连续性。 3.2 微积分学基本定理 1 变限积分的可微性 ——微积分学基本定理 当函数得可积性问题获得解决后,接着是要找到一种计算定积分得有效方法。下面将通过揭示定积分与不定积分之间的内在联系来完成这一任务。下面的两个定理,由于所起的重要作用而被称为微积分学基本原理。 证 ],[b a x ∈?,任取0≠?x ,且],[b a x x ∈?+,则 ? ? - = Φ-?+Φ=?Φ?+x a x x a t d t f t d t f x x x )()()()( ? ? ? ? ?+?+= - + = x x x x a x x x x a t d t f t d t f t d t f t d t f )()()()(, 由积分中值定理知,存在ξ 介于x 与x +?x 之间,使得 x f ?=?Φ)(ξ, 由于x x →?→?ξ0,再由导数定义及) (x f 的连续性知 )()(l i m )(l i m l i m )(00x f f f x x x x x ===??Φ =Φ'→→?→?ξξξ。 注 (1) 当],[b a C f ∈时, ? = Φx a dt t f x )()(可导且在点∈x ] , [b a 的导数 恰为被积函数在上限的值。 亦即 )(x Φ是)(x f 的一个原函数。即连续函数必有原函数,因此定理1又称原函数存在定理。 (2) 变上限函数与分段函数有点类似,是一个难点,从而也是一个考试的热点,它常与极限、求导、最值等知识结合出现形成综合性的题目,应与重视。我们将这里拓宽一下。 若)(x ?可导,则)(x ?与变上限函数)(x Φ构成了复合函数?) ()(x a t d t f ?,由复 合函数求导法则知

相关文档
相关文档 最新文档