文档库 最新最全的文档下载
当前位置:文档库 › 矿井主排水设计_(经典版)

矿井主排水设计_(经典版)

矿井主排水设计_(经典版)
矿井主排水设计_(经典版)

山西煤炭职业技术学院毕业设计任务书

设计题目:塔山矿主排水电气控制系统设计

设计时间:2013年5月8日至2013年6月2日

设计地点:山西煤炭职业技术学院

1、设计内容

1.矿井自动排水系统的各种参数与检测

2.大同塔山煤矿矿井排水系统设计

3. PLC自动控制矿井主排水系统的设计

4.控制系统的软件设计

5.控制系统的抗干扰措施

2、设计要求

本系统采用SIEMENS的S7-300系列PLC,并结合各种传感器(主要为水位传感器、负压传感器、压力传感器、流量传感器等),完成系统设计中要实现的控制功能。本系统采用水泵及管路的“自动轮换”工作制。又根据“避峰填谷”的原则确定开启水泵台数,以达到节省用电的目的。在就地PC端,采用易控组态监控系统监视设备的运行情况及各个运行参数,做到有故障及时发现并尽早处理。

3、提交资料

毕业论文《塔山矿主排水电气控制系统设计》;

理论图纸;

毕业论文主题内容PPT

目录

摘要.................................................................. - 1 - 第一章绪论.............................................................. - 2 -

1.1排水系统概述..................................................... - 2 -

1.1.1矿井生产过程中排水的重要性..................................... - 2 -

1.1.2矿井排水系统的组成部分..................................... - 2 -

1.2井下排水系统存在的问题........................................... - 4 -

1.3排水系统为何要实现自动控制....................................... - 4 - 第二章矿井自动排水系统的各种参数与检测.................................. - 5 -

2.1水仓水位的检测................................................... - 5 -

2.1.1液位传感器介绍............................................. - 5 -

2.1.2液位检测装置的选择......................................... - 8 -

2.2电机及水泵温度检测............................................... - 9 -

2.3水泵压力检测.................................................... - 10 -

2.4水泵流量检测.................................................... - 12 -

2.4.1流量检测仪器的安装位置.................................... - 12 -

2.4.2流量检测传感器............................................ - 13 -

2.4.3流量计的要求.............................................. - 14 -

2.5水泵负压检测.................................................... - 15 - 第三章大同塔山煤矿矿井排水系统设计.................................... - 17 -

3.1 塔山煤矿........................................................ - 17 -

3.2 塔山煤矿矿井资料................................................ - 17 -

3.3选型设计........................................................ - 17 -

3.4引水设备........................................................ - 19 -

3.5自动阀门........................................................ - 21 -

3.5.2电动球阀.................................................. - 22 -

3.6高压开关柜...................................................... - 24 - 第四章 PLC自动控制矿井主排水系统的设计................................ - 26 -

4.1控制系统总体结构................................................ - 26 -

4.2 PLC自动控制矿井主排水系统的设计................................ - 26 -

4.2.1 PLC的主要特点............................................ - 27 -

4.2.2 S7--300PLC的基本组成..................................... - 30 -

4.3西门子ET200M与PROFIBUS-DP总线................................. - 33 - 第五章控制系统的软件设计............................................... - 35 -

5.1PLC的软件设计................................................... - 35 -

5.1.1软件流程图................................................ - 35 -

5.1.2地址分配.................................................. - 37 -

5.1.3水泵的自动开启、运行、停止故障保护流程图.................. - 38 -

5.2控制系统上位机的软件设计........................................ - 41 -

5.2.1设计要求.................................................. - 42 -

5.2.2设计内容.................................................. - 42 -

5.2.3上位机与PLC的通信........................................ - 43 -

5.2.4操作终端界面.............................................. - 44 -

5.2.5监控主界面................................................ - 45 -

5.2.6报警界面.................................................. - 47 - 第六章控制系统的抗干扰措施............................................. - 49 -

6.1常见的各种干扰源................................................ - 49 -

6.2如何采取措施排除这些干扰........................................ - 49 - 第七章总结............................................................. - 50 - 致谢................................................................. - 51 - 参考文献................................................................ - 51 -

摘要

本文根据排水控制的要求,进行自动控制方面的设计。本系统采用SIEMENS 的S7-300系列PLC,并结合各种传感器(主要为水位传感器、负压传感器、压力传感器、流量传感器等),完成系统设计中要实现的自动化控制功能。本系统采用水泵及管路的“自动轮换”工作制。又根据“避峰填谷”的原则确定开启水泵台数,以达到节省用电的目的。在就地PC端,采用易控组态监控系统监视设备的运行情况及各个运行参数,做到有故障及时发现并尽早处理。S7-300通过CP340通讯模块,采用RS-232C通信标准与就地PC建立联系。

关键词:PLC、排水系统、自动控

第一章绪论

井下排水系统是煤矿生产中四大系统之一,担负着井下积水排除的重要任务。然而,目前我国的井下排水系统仍由很多依靠传统的人工操作方式。本章分析这种排水系统的组成及工作过程,指出其存在的问题,为井下主排水系统自动控制的研究提供依据。

1.1排水系统概述

1.1.1矿井生产过程中排水的重要性

在煤矿地下开采的过程中,由于地层中含水的涌出,雨水和江河中水的渗透,水砂充填和水力采煤矿井的井下供水,将要有大量的水昼夜不停地汇集于井下。矿井涌水与采区的水文地质及当地的气象条件有关系,涌水量在不同的季节也呈现不同。在一些大水矿井,矿井涌水量可达到每秒17立方米,甚至超过每秒20立方米。另外,煤炭开采过程中,由于地层结构被破坏,岩层断裂,使采区与储水层连通,发生突水事故,涌水量会突然增加。如果不能及时地将这些积水排送到井上,井下的生产就可能受到阻碍,井下的安全就会得不到保障,严重者会造成重大事故。给人民的生命、国家的财产都带来了极大的威胁。因此,井下排水就显得尤为重要。井下自动排水系统的任务就是把流入井下煤矿巷道中的矿井积水排送至地表。根据统计,每开采1吨煤就要排出2--7吨矿井水,有时甚至要排出30--40吨矿井水。井下排水设备所配备电机的功率,小的几千瓦到几十千瓦,大的几百千瓦到上千千瓦、在我国煤炭行业中,井下排水用电量占原煤生产总耗电量的18%--41%,一般为20%左右。

因此,井下排水设备运转的可靠性(安全运转)与经济性(效率高、电耗量小),具有十分重要的意义。

1.1.2矿井排水系统的组成部分

井下排水系统一般采用离心式水泵,一些小型煤矿或浅水井临时排水系统也采用潜水泵。离心式水泵排水系统主要由离心式水泵、电动机、起动设备、仪表、管路及管路附件等组成。

①滤水器和底阀

滤水器安装在吸水管的下端,插入吸水井下面,不得低于O.5m 。其作用是防止井底沉积的煤泥和杂物吸入泵内,导致水泵被堵塞或被磨损。在滤水器内装有舌型底阀,其作用是使灌入水泵和吸水管中的引水,以及停泵后的存水不致漏掉。但是现在的排水系统中,为了提高排水效率,减小水泵腐蚀,一般不用底

煤矿排水系统设计

主排水泵选型计算设计 一、概述 本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m,副立井、回风立井井口标高均为+1195m,副立井、回风立井落底标高均为+220m,主斜井与暗主斜井斜交,暗主斜井落底标高为+206m,初期大巷最低点标高为+205m。 根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于120m3/h,最大涌水量大于600m3/h,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。按照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统。根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。 二、矿井主排水 (一)设计依据 地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h的排水量,因此在设备选型时按正常涌水量857m3/h,最大涌水量为1284m3/h计算;矿井水处理所需要增加15m扬程。 (二)排水系统方案 根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较: 方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站。该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m,年排水电费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高。 方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷→主斜井井筒敷设,将矿井涌水排至主井场地。该方案虽然排水管路较长,管路损失较大,但主井较副立井

-矿井排水设备选型设计

设计题目:矿井排水设备选型设计 综放工作面选型设计 本次设计是根据煤矿的实际情况、环境条件而制定的。好的煤矿机械设备选型设计和供电系统,对于企业来说,可以更好的利用和合理分配电力资源,促进安全生产和降低生产成本。所有的设计方案都要以《煤矿安全规程》、《煤矿井下供电设计规范》、《煤矿电工手册》等为准则。 本设计介绍了矿井排水设备选型、综放工作面供电系统;排水设备选型主要介绍确定排水系统、选择排水设备、给出指标经济核算、绘制水泵房布置图、绘制管路系统图等;紧力及选用的电机功率的计算等;综放工作面供电系统主要是介绍采煤工作面供电系统拟定、电缆选型校验、低压供电系统开关整定校验、高压系统整定校验、接地保护系统、漏电保护系统。 总之,所有的煤矿机械设备选型和供电系统都是以井下安全生产所服务为目的。设计一套完整、完善的煤矿机械设备选型设计和井下供电系统,对煤矿安全生产是必不可缺少的。 关键词:机械设备选型; 排水设备选型;选型设计;井下;综放工作面;供电。

目录 目录 (2) 绪论 (4) 第一部分矿山固定设备选型设计 (6) 矿井排水设备选型设计 (6) 1. 概述 (6) 2. 排水设备及系统的选择 (7) 2.1设计的原始资料 (7) 2.2水泵的型号及台数选择[6] (8) 2.3 管路的选择 (8) 3. 工况点的确定及校验 (10) 3.1 管路系统 (10) 3.2 校验计算 (12) 4. 电耗计算................................................................................................. 错误!未定义书签。 4.1 年排水电耗................................................................................... 错误!未定义书签。 4.2 吨水百米电耗校验....................................................................... 错误!未定义书签。 第二部分综放工作面供电设计............................................................... 错误!未定义书签。 1. 概述......................................................................................................... 错误!未定义书签。 1.1综放工作面供电系统拟定[2].......................................................... 错误!未定义书签。 1.2 综放工作面负荷统计.................................................................... 错误!未定义书签。 1.2.1材料道供电系统负荷:(660V).............................................. 错误!未定义书签。 1.2.2 溜子道供电系统负荷:(660V)............................................. 错误!未定义书签。 1.2.3 工作面1140 V 供电系统负荷:............................................ 错误!未定义书签。 2. 设备的选择、整定计算、校验[10] [11]: ............................................... 错误!未定义书签。 2.1功率因数[3]:.................................................................................. 错误!未定义书签。 2.2 各变压器容量校验:.................................................................... 错误!未定义书签。 3. 材料道供电系统:................................................................................. 错误!未定义书签。 3.1 设备选择:.................................................................................... 错误!未定义书签。 3.2 电缆的选择[5]................................................................................. 错误!未定义书签。 3.2.1干线............................................................................................ 错误!未定义书签。 3.2.2 负荷线....................................................................................... 错误!未定义书签。 3.3 电压损失检验[12]: ................................................................... 错误!未定义书签。 3.4材料道开关整定计算、校验:..................................................... 错误!未定义书签。 3.4.1 材料道配电点(3-5# KBD-200A)整定:(动力)............... 错误!未定义书签。 3.4.2 材料道分支馈电(3-4# KBD#- 400A)............................. 错误!未定义书签。 3.4.3 材料道总馈电(3-1# KBD-400A)....................................... 错误!未定义书签。 4. 溜子道供电系统:................................................................................. 错误!未定义书签。 4.1 设备选择、校验:................................................................................ 错误!未定义书签。 4.2 1# 移变(660V)供电系统:........................................................... 错误!未定义书签。 4.2.1 电缆选择、校验[1].................................................................... 错误!未定义书签。

流体机械,水泵的选型设计

流体机械课程设计 题目:矿井排水设备选型设计 1概述 2设计的原始资料 开拓方式为立井,排水高度为342m,正常涌水量为655m3/h; 最大涌水量为850m3/h;持续时间60d。矿水PH值为中性,重度为10003N/m3,水温为15℃。该矿井属于高沼气矿井,年产量为5万吨。 3排水方案的确定 在我国煤矿中,目前通常采用集中排水法。集中排水开拓量小,管路敷设简单,管理费用低,但由于上水平需要流到下水平后再排出,则增加了电耗。当矿井较深时可采用分段排水。 涌水量大和水文地质条件复杂的矿井,若发生突然涌水有可能淹没矿井。因此,当主水泵房设在最终水平时,应设防水门。 在煤矿生产中,单水平开采通常采用集中排水;两个水平同时开采时,应根据矿井的具体情况进行具体分析,综合基建投资、施工、操作和维护管理等因素,经过技术和经济比较后。确定最合理的排水系统。 从给定的条件可知,该矿井只有一个开采水平,故可选用单水平开采方案的直接排水系统,只需要在2343车场附近设立中央泵房,就可将井底所有矿水集中排至地面。

4水泵的选型与计算 根据《煤矿安全规程》的要求,主要排水设备必须有工作水泵、备用水泵和检修水泵。工作水泵的能力应能在20h 内排除矿井24h 的正常涌水量(包括充填水和其他用水)。备用水泵的能力应不小于工作水泵能力的70%,并且工作水泵和备用水泵的总能力,应能在20h 内排出矿井24h 的最大泳水量。检修水泵的能力应不小于工作水泵能力的25%。水文地质条件复杂的矿井,可根据具体情况在主水泵房内预留安装一定数量水泵的位置,或另增设水泵。 排水管路必须有工作和备用水管。工作水管的能力应能配合工作水泵在20h 内排完24h 的正常涌水量。工作和备用水管的总能力,应能配合工作和备用水泵在20h 内排出矿井24h 的最大涌水量。 水泵必须排水能力计算 正常涌水期 h m q q Q z z B /7866552.12.12024 3=?=== 最大涌水期 h m q q Q /10208502.12.12024 3max max max =?=== 式中 B Q ——工作水泵具备的总排水能力,3/m h ; max Q ——工作和备用水泵具备的总排水能力,3/m h ; z q ——矿井正常涌水量,3/m h ; max q ———— 矿井最大涌水量,3/m h 。

矿井主排水系统毕业设计

矿井主排水系统毕业设计 第一章矿井概况 一、矿井简介 该矿井属于某煤田——河流区域,最高海拔+170米左右,平原最低标高+110左右,井田内多为缓岗丘陵,堆积平原和玄武岩地相间,该河蜿蜒蛇曲,横贯井田南部为老年期河流,沿河两侧有大片沼泽湿地,河宽10~15米,坡度2.6%河深1~2米,平均流量0.77米3/秒,最小流量0.23米3/秒,最大流量(暴雨后)0.85米3/秒。除此主干流外,还有季节冲沟,本区最高洪水位标高为+125米。 矿井东南为背斜构造,地层倾角最大60度左右,中西部有不明显褶皱,倾角一般10~18度,区内断层共11层,其中除F11逆断层外,F1~F10均为正断层,断层落差最大120~150米,最小为0~17米。 二、水文地质 1、第四系孔隙含水层 该河在本区段上游以粗砂含水层为主,分选性和渗透性较好,含水丰富,其厚30米以上,最宽分布2100米,分选

性和渗透性由上游逐渐减弱,该河下游以灰色砾砂为主,分选性与渗透性均好,含水丰富,含水层厚度平均为15米最厚25米,分布宽1100米,水力性质为潜水,埋在地表0.6米以下,水位1.2米左右,砾砂层含水层与煤系地层直接接触,二者的联系是密切的。 2、侏罗系含水带 从水文地质条件和地貌来看,西部为补给区,东部为排泄区,当地下水流到大中沟时,在低洼处,形成上升泉排泄于地表,东区侏罗系含水带划分为: 1)裂隙含水带,分布在120米以上,主要由中粗沙层组成,强化风隙含水带裂隙发育,含水丰富。 2)孔隙含水带,含水带在120米以下,即位于强风化裂隙含水带以下,但二带无明显界限,孔隙含水带单位涌水量在0.04~0.064升/秒.米,地下水受到到控制,总的规律是由西向东流。 3)自垩系隔水带 岩性为灰绿色岩,全区分布厚度不一,在背斜轴部岩基附近厚305米,两冀其它部分,平均厚160米,最低处为18.6

煤矿排水系统设计精编WORD版

煤矿排水系统设计精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

主排水泵选型计算设计 一、概述 本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m,副立井、回风立井井口标高均为+1195m,副立井、回风立井落底标高均为+220m,主斜井与暗主斜井斜交,暗主斜井落底标高为+206m,初期大巷最低点标高为+205m。 根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于120m3/h,最大涌水量大于600m3/h,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。按照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统。根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。 二、矿井主排水 (一)设计依据 地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h的排水量,因此在设备选型时按正常涌水量857m3/h,最大涌水量为1284m3/h计算;矿井水处理所需要增加15m扬程。 (二)排水系统方案 根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较:

方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站。该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m,年排水电费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高。 方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷→主斜井井筒敷设,将矿井涌水排至主井场地。该方案虽然排水管路较长,管路损失较大,但主井较副立井井口低273m,排水设备工况扬程低,水泵级数少,设备投资省,电耗低。 经上述综合分析比较,设计推荐本矿井排水系统采用布置合理,综合运营费用低的方案二,即主排水泵房设置在初期大巷最低点,井下涌水由主井排出方案。 (三)矿井主排水泵房排水设备 1、设计依据 根据确定的排水系统方案,本矿井主排水泵房设置在+205m水平副立井井底车场附近的初期大巷最低点,排水管路经管子道、沿主斜井井筒敷设至地面。 地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆渗水增加水量50m3/h,因此在设备选型时按正常涌水期排水量857m3/h,最大涌水期排水量为1284m3/h计算;初期大巷最低点标高+205m,主斜井井口标高+922m,排水垂高715m,考虑矿井水处理所需要增加的15m扬程后,排水总垂高为732m,排水管路敷设长度约5800m。

某煤矿主排水设备选型设计

安徽矿业职业技术学院 毕业设计说明书 设计题目某煤矿主排水设备选型设计作者姓名叶德伍 学号 1 系部机电工程系 专业矿山机电 指导教师张丽芳老师 2013年3月28日

本次论文设计是基于煤矿流体机械选型设计,完成煤矿主排水设备水泵的型与设计。 本文根据安全和工作能力的要求,选取相应的水泵,以与对应的电动机。并且根据煤矿需要,计算年耗电量,进行基本的生产成本算。 本文主要是煤矿用排水设备的选型,通过对以上设备的合理选型与设计,使工人的工作条件得到一定的改善,实现最大的经济效益。 选型设计中,根据《煤矿安全规程》的有关规定,在保证与时排除矿井涌水的前提下,使排水总费用最小,因而选择最优方案。 根据设计任务书所提供资料,以严格遵守《矿井安全规程》所规定的有关条款为依据,以安全可靠为根本,投入少、运行费用低为原则的设计指导思想,在煤矿生产中,单水平和两个水平开采,应根据矿井的具体情况进行具体分析,综合基建投资,施工,操作和维修管理等因素,在确定最合理的排水系统。 初步选择排水方案,进行设备选型以与相关计算,确定设备工况,校验水泵的稳定工作条件、经济运行条件,排除不合理方案。对所剩方案进行经济核算,根据各设备外形尺寸与安装要求,并考虑其运行条件,最终确定泵房与管路的布置图。 关键词:矿井涌水; 水泵; 工况点; 设备布置; 修改建议: 1、目录从第1页开始 2、7.4设备购置费7.5安装工程费这两部分去掉

第一章、绪论 (1) 1.1矿水 (4) 1.2矿山排水设备的组成 (4) 第二章、矿井排水系统的确定与要求 (5) 2.1排水系统的要求 (5) 2.2矿井排水系统的确定 (5) 2.3矿井主排水系统的设计 (6) 第三章、水泵的选型与台数计算 (7) 3.1设备最小能力计算 (7) 3.2水泵扬程 (7) 3.3预选水泵的形式 (8) 3.4确定水泵的级数 (8) 3.5选定水泵的有关参数 (8) 3.6校验水泵稳定性 (9) 3.7确定水泵的台数 (9) 第四章、吸、排水管道选型计算与管道的布置 (10) 4.1管路敷设 (10) 4.2主排水管路连接 (10) 4.3管路支承梁计算 (10) 4.4管径计算 (11) 4.5确定管路壁厚 (11) 4.6计算管路特性 (12) 4.7吸、排管道的布置 (13) 4.8管道特性曲线的绘制与工况点的确定 (13) 第五章、水泵工作合理性校验 (14) 5.1校验排水时间 (14) 第六章、水泵电动机的选型计算 (15) 6.1水泵电动机的选型要求 (15) 6.2电动机结构型式的选择 (15) 第七章、主排水经济指标的计算 (16) 7.1计算水泵安装高度 (16) 7.2验算电机容量 (16) 7.3计算耗电量 (17) 第八章、水泵房、水仓的布置尺寸确定 (20) 8.1水泵房的布置与尺寸的确定 (20) 8.2水仓的布置与尺寸的确定 (22) 8.3水泵房的草绘绘制 (23) 参考文献致 (24) 致谢 (25)

矿井排水设备选型设计课程设计

龙岩学院资源工程学院 课程设计 题目:矿井排水设备选型设计 姓名:xxx 学号:xxxxx 班级:采矿工程 年级 : 2010级 指导老师 :xxxxx老师 2013-7

矿井排水选型设计 1、设计题目 某矿正常涌水量为210m3/h,最大涌水量为290m3/h,矿水为中性、密度为1050kg/m3,竖井排水,井深200m,试选择水泵型式,确定台数,确定排水系统,选择管径、管材,验算排水时间,判别工作稳定性。 2、矿井排水系统确定 矿井主要根据第一水平情况进行设计,采用集中排水系统,对其它水平只作适当地数目。 矿井排水系统见图3-1。 图3-1 矿井排水系统简图 排水系统:主排水设备设置在第一水平,第二水平的涌水量由辅助排水设备排至上一水平的水仓中。然后由主排水设备排至地面。 3、排水设备选型计算 1水泵型号及台数 ⑴水泵最小排水量的确定 正常涌水量时:

Q B ′= 2420 Q =1.2Q m 3/h 式中: Q B ′——水泵最小排水量,m 3/h ; Q ——矿井正常涌水量,m 3/h ; 由此: Q B ′=1.2×210 =252 m 3/h 最大涌水量时: Q Br ′=2420 r Q =1.2 Q Br ′ m 3/h 式中: Q r ——矿井最大涌水量,m 3/h ; 由此: Q Br ′=1.2×290 =348 m 3/h ⑵水泵扬程的计算 'P X B g H H H η+= 式中: P H ——排水高度,取井筒垂深,m ; X H ——吸水高度,取5m ; g η——管道效果,竖井取0.89-0.9; 所以: '40050.9 B H += =450m ⑶水泵形式及台数的确定 根据水泵扬程和矿井正常涌水量,从产品样本中选择额定值接近所需值的水泵,水泵型号选250D60×7型,额定流量330 m 3/h ,扬程420m ,转速1480rpm ,吸程6.2m ,效率73%,配带电动机型号JKZ -1250型,容量850KW ,外形2620×1200×1210,自重3500kg 。 水泵台数的选择:根据《安全规程》规定:必须由工作、备用和检修的水泵。工作水泵的能力,应能在20h 内排出矿井24h 的正常涌水量。备用水泵的能力应不小于工作水泵能力的70%。工作和备用水泵的总能力,应能在20h 内排出矿井24h 的最大涌水量。

煤矿排水系统设计

主排水泵选型计算设计 、概述 本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m, 副立井、回风立井井口标咼均为+1195n,副立井、回风立井落底标咼均为+220m主斜井与暗主斜井斜交,暗主斜井落底标高为+206m初期大巷最低点标高为+205m 根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于 120nVh,最大涌水量大于600nVh,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。按 照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统。根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。 二、矿井主排水 (一)设计依据 地质报告提供矿井正常涌水量807nVh,最大涌水量为1234nVh,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h 的排水量,因此在设备选型时按正常涌水量857m3/h ,最大涌水量为1284nVh计算;矿井水处理所需要增加15m扬程。 (二)排水系统方案 根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较: 方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站。该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m年排水电 费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高。 方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷一主斜井井筒敷设,将矿井 涌水排至主井场地。该方案虽然排水管路较长,管路损失较大,但主井较副立井 井口低273m排水设备工况扬程低,水泵级数少,设备投资省,电耗低 经上述综合分析比较,设计推荐本矿井排水系统采用布置合理,综合运营费用低的方案

矿井排水设备选型设计课程设计

矿井排水设备选型设计课程设计

龙岩学院资源工程学院 课程设计 题目:矿井排水设备选型设计 姓名:xxx 学号:xxxxx 班级:采矿工程 年级: 2010级 指导老师:xxxxx老师 2013-7

矿井排水选型设计 1、设计题目 某矿正常涌水量为210m3/h,最大涌水量为290m3/h,矿水为中性、密度为1050kg/m3,竖井排水,井深200m,试选择水泵型式,确定台数,确定排水系统,选择管径、管材,验算排水时间,判别工作稳定性。 2、矿井排水系统确定 矿井主要根据第一水平情况进行设计,采用集中排水系统,对其它水平只作适当地数目。 矿井排水系统见图3-1。 图3-1 矿井排水系统简图 排水系统:主排水设备设置在第一水平,第二水平的涌水量由辅助排水设备排至上一水平的水仓中。然后由主排水设备排至地面。 3、排水设备选型计算 1水泵型号及台数 ⑴水泵最小排水量的确定 正常涌水量时:

Q B ′= 2420 Q =1.2Q m 3/h 式中: Q B ′——水泵最小排水量,m 3/h ; Q ——矿井正常涌水量,m 3/h ; 由此: Q B ′=1.2×210 =252 m 3/h 最大涌水量时: Q Br ′=2420 r Q =1.2 Q Br ′ m 3/h 式中: Q r ——矿井最大涌水量,m 3/h ; 由此: Q Br ′=1.2×290 =348 m 3/h ⑵水泵扬程的计算 'P X B g H H H η+= 式中: P H ——排水高度,取井筒垂深,m ; X H ——吸水高度,取5m ; g η——管道效果,竖井取0.89-0.9; 所以: '40050.9 B H += =450m ⑶水泵形式及台数的确定 根据水泵扬程和矿井正常涌水量,从产品样本中选择额定值接近所需值的水泵,水泵型号选250D60×7型,额定流量330 m 3/h ,扬程420m ,转速1480rpm ,吸程6.2m ,效率73%,配带电动机型号JKZ -1250型,容量850KW ,外形2620×1200×1210,自重3500kg 。 水泵台数的选择:根据《安全规程》规定:必须由工作、备用和检修的水泵。工作水泵的能力,应能在20h 内排出矿井24h 的正常涌水量。备用水泵的能力应不小于工作水泵能力的70%。工作和备用水泵的总能力,应能在20h 内排出

煤矿井下排水自动控制系统

煤矿井下排水自动控制系统 设 计 方 案

一、总则 本方案就是针对煤矿井下主排水系统远程数值化集中控制技术要求,并充分考虑其先进性、安全性、可靠性、经济性及安装、使用与维护的方便而设计。 (一)设计依据 (1)设计方案根据使用方提出技术要求作出。 (二)设计原则 (1)控制系统由地面控制中心,监控分站与工业电视监视组成。 (2)解决就地控制存在的事故隐患,减少各设备之间相互脱节、无法充分发挥效率的缺点。实现就地无人操作,仅设巡检人员。 (3)本系统采用分布式控制,结构合理,信息共享,实现提高指挥效率与生产率,达到减人提效的目的。 (4)实现主排水系统中各种保护与水仓水位的控制信号及工业电视监视信号全部由已有矿井千兆以太网为平台进行数据命令传输。 (5)充分满足现场运行与检修要求。 (6)保证整个系统运行可靠、故障率低、维护方便与修改灵活。 (7)系统具有灵活与可靠的控制功能,简单实用,易于掌握,视频效果明显。 (8)系统具有自诊断功能,报警时可以发出声、光报警 (9)系统结构合理,便于系统的扩展。 (10)使用组态软件编程与模拟动态人机界面具有网络中断主排水系统自动停止功能确保设备安全运转。 (三)达到的技术水平与实现的目标 (1)实现就地与分区集中控制、可视化与语音通话三位一体的自动化控制系统体系。 (2)立足于高起点、高技术与高质量,将计算机控制系统与工业电视相

结合,实现以“集中控制为主,现场监控为辅”的控制模式,保证主排水系统系统的连续性与可靠性。 (3)系统技术达到国内领先水平。提高开机率与管理水平,减少操作人员与工人的劳动强度,为今后矿井生产综合自动化打下良好基础。(4)实现调度中心对主排水系统的长距离控制、多点位信息传输与集中监测监控。具有在线监测、分析及完善的保护与报警功能。 (5)实现在控制中心对现场所有控制分站远程编程。 (6)利用各种保护传感器,实现主排水系统及相关设施的集中控制与保护。 (7)通俗易懂的区域传统操作台,现场技术人员可在最短的时间内掌握操作方法。 (8)与工业电视相结合,有机的完成可视化管理的先进理念。 二、系统结构 针对矿现场煤流运输生产系统的特点,按照以“区域集中监控为主,现场多点监测为辅”的原则,提出以下设计方案。 (一)控制设备 根据现场实际分布情况,采用的集控系统结构原理图,如图1所示。利用光纤、电缆组成混合现场总线,实现对现主排水系统及工业电视。 监测监控系统主要由地面监控中心,传输线路,控制分站与水泵电机开关、水位传感器、开停传感器、甲烷传感器、烟雾传感器电压传感器、电流传感器、温度传感器、门禁传感器信号等构成(可根据实际要求扩展)。 (二)控制系统组成 主排水系统地面集中控制系统结构如图2所示。主要由四部分组成:

排水泵选型计算

一、井下排水 根据矿井开拓方式,本矿设计排水系统为一级排水,投产时在+2375m水平标高井底车场设1套井底主、副水仓及排水设施,矿井涌水由井底主、副水仓直接排至+2500m地面消防水池。 (一)、矿井不同时期井下正常、最大涌水量 根据《陇南市武都区龙沟补充勘查地质报告》预测计算,矿井最大涌水量4.5m3/h ,正常值涌水量3m3/h。涌水 PH≤5,管路敷设斜架倾角约 25°,排水垂高129m(地面消防水池+2500m,水泵标高+2375m,再加上井底车场至水仓最低水位距离 4m)。 (二)、设计依据 =3m3/h; (1)矿井正常涌水量:Q B =4.5m3/h; (2)矿井最大涌水量:Q max (3)排高:129m。 (三)、选型计算 1、所需水泵最小流量 Q1= 24Q B/20 = 24×3/20 =3.6(m3/h) 2、所需水泵最大流量 Q2= 24Q max/20 = 24×4.5/20 =5.4(m3/h) 3、排水总高度 h= 排水高度+吸水高度=125+4=129(m) 4、水泵所需扬程的估算。 HB=Hc/ηg(取0. 77∽0. 74) =129 /0.77∽0.74 =168∽175m 5、管路阻力计算 管路阻力按下式计算:

(m) 式中: Hat—排水管路扬程损失m; Hst—吸水管路扬程损失m; λ—水与管壁摩擦的阻力系数,查表D=108mm钢管0.038: —管路计算长度,等于实际长度加上底阀、异形管、逆止阀、闸阀及其它L i 部分补充损失的等值长度m,计算长度取值500m; D —管道公称直径m;取0.1m; g —水流速度,按经济流速取2.0m。 V d 将各参数代入公式,经计算=38m。管路淤积后增加的阻力系数取1.7,增加的阻力为65m。 6、水泵扬程 淤积前:H=129+38=167m; 淤积后:H=129+65=194m; (四)、排水泵选择 选择MD12-50×5型矿用多级离心泵,其流量为12m3/h,扬程为250m;配用防爆电机功率30kW、进出口50mm、效率46.5%。 (五)、排水泵的工作、备用、检修台数 选择MD12-50×5型矿用多级离心泵3台,其中1台工作、1台备用、1台检修。 (六)、排水能力、电机功率和吸上真空高度校验 按管路淤积后工况参数校验排水能力,按管路淤积前工况参数校验电机功

矿井主排水系统设计

矿井主排水系统设计

第一章矿井概况 一、矿井简介 该矿井属于某煤田一一河流区域,最高海拔+170米左右, 平原最低标高+110左右,井田内多为缓岗丘陵,堆积平原和玄武岩地相间,该河蜿蜒蛇曲,横贯井田南部为老年期河流,沿河两侧有大片沼泽湿地,河宽10~ 15米,坡度2.6%河深1~ 2米,平均流量0.77米3/秒,最小流量0.23米3/秒,最大流量(暴雨后)0.85米3/秒。除此主干流外,还有季节冲沟,本区最高洪水位标高为+125米。 矿井东南为背斜构造,地层倾角最大60度左右,中西部有不明显褶皱,倾角一般10?18度,区内断层共11层,其中除F11逆断层外,F1?F10均为正断层,断层落差最大120?150米,最小为0?17米。 二、水文地质 1、第四系孔隙含水层 该河在本区段上游以粗砂含水层为主,分选性和渗透性较好,含水丰富,其厚30米以上,最宽分布2100米,分选性和渗透性由上游

逐渐减弱,该河下游以灰色砾砂为主,分选性与渗透性均好,含水丰富,含水层厚度平均为15米最厚25米,分布宽1100米,水力性质为潜水,埋在地表0.6米以下,水位1.2米左右,砾砂层含水层与煤系地层直接接触,二者的联系是密切的。 2、侏罗系含水带 从水文地质条件和地貌来看,西部为补给区,东部为排泄区,当地下水流到大中沟时,在低洼处,形成上升泉排泄于地表,东区侏罗系含水带划分为: 1)裂隙含水带,分布在120米以上,主要由中粗沙层组成,强化风隙含水带裂隙发育,含水丰富。 2)孔隙含水带,含水带在120米以下,即位于强风化裂隙含水带以下,但二带无明显界限,孔隙含水带单位涌水量 在0.04?0.064升/秒.米,地下水受到到控制,总的规律是由西向东流。 3)自垩系隔水带 岩性为灰绿色岩,全区分布厚度不一,在背斜轴部岩基

矿井主排水系统设计

矿井主排水系统设计 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第一章矿井概况 一、矿井简介 该矿井属于某煤田——河流区域,最高海拔+170米左右,平原最低标高+110左右,井田内多为缓岗丘陵,堆积平原和玄武岩地相间,该河蜿蜒蛇曲,横贯井田南部为老年期河流,沿河两侧有大片沼泽湿地,河宽10~15米,坡度%河深1~2米,平均流量米3/秒,最小流量米3/秒,最大流量(暴雨后)米3/秒。除此主干流外,还有季节冲沟,本区最高洪水位标高为+125米。 矿井东南为背斜构造,地层倾角最大60度左右,中西部有不明显褶皱,倾角一般10~18度,区内断层共11层,其中除F11逆断层外,F1~F10均为正断层,断层落差最大120~150米,最小为0~17米。 二、水文地质 1、第四系孔隙含水层 该河在本区段上游以粗砂含水层为主,分选性和渗透性较好,含水丰富,其厚30米以上,最宽分布2100米,分选性和渗透性由上游逐渐减弱,该河下游以灰色砾砂为主,分选性与渗透性均好,含水丰富,含水层厚度平均为15米最厚25米,分布宽1100米,水力性质为潜水,埋在地表米以下,水位米左右,砾砂层含水层与煤系地层直接接触,二者的联系是密切的。 2、侏罗系含水带

从水文地质条件和地貌来看,西部为补给区,东部为排泄区,当地下水流到大中沟时,在低洼处,形成上升泉排泄于地表,东区侏罗系含水带划分为: 1)裂隙含水带,分布在120米以上,主要由中粗沙层组成,强化风隙含水带裂隙发育,含水丰富。 2)孔隙含水带,含水带在120米以下,即位于强风化裂隙含水带以下,但二带无明显界限,孔隙含水带单位涌水量在~0.064升/秒.米,地下水受到到控制,总的规律是由西向东流。 3)自垩系隔水带 岩性为灰绿色岩,全区分布厚度不一,在背斜轴部岩基附近厚305米,两冀其它部分,平均厚160米,最低处为米,单位涌水量为升/秒.米,所以视为隔水层。 3、矿床充水 1)地表水对矿床充水,该河由西向东横贯全区,它的注入是矿井充水的主要补给合源。 2)地质构造对矿床充水的影响,主干断层F10伴生几条高度正断层,是沟通第四系含水层的煤系地层,含水层的良好通道,容易对矿井造成突然涌水和增大涌水量。 3)大气降水,大气降水是地下水主要来源,砾砂含水层和玄武岩覆盖层裂隙发育是大气降水渗入补给的良好通道。 4)煤系地层顶部80米以上岩石含水性强,区内百分之百的涌水部位多数岩性是中性粗砂岩,开采时要防止突然涌水。 第二章矿井主排水设备选择计算

矿井主排水系统管理

矿井主排水系统管理 1 设备选型、到货验收及保管 (一)设计选型必须符合国家和行业有关规定及技术政策。选购的设备必须有鉴定证书和生产许可证。 (二)设计选型后必须由分管领导组织有关部门进行设计审查后,组织实施。 (三)设备到货后有关部门必须按设备装箱单进行验收。查验设备、辅机、随机配件及技术资料。验收发现缺件、破损、严重锈蚀、资料不全等问题,由采购部门负责解决。 (四)设备技术资料: 1、使用说明书。 2、产品出厂合格证、煤矿矿用产品安全标志。 3、设备总装图、基础图。 4、易损零部件图。 5、电气控制原理图、安装接线图。 6、控制设备、主电机试验报告。 (五)查验合格的设备应及时安装调试,投入使用。暂时不使用的设备必须入库妥善保管,定期维护保养,防止日晒、雨淋、锈蚀、损坏和丢失,并做好防火防盗工作,设备严禁拆套使用。 2 设备及管路的安装、验收 一、设备及管路安装 1、设备及管路安装前必须对矿建项目依据设计要求进行严格的验收,水泵、电动机、三阀、底盘的配套尺寸和结构符合设计要求,以保证安装质量。 2、工程计划开工前,必须制定安全施工技术措施、安装程序和方法,明确工程质量要求。 (1)施工组织:明确施工项目负责人、技术负责人、质量检查员、安全检查员及之间的责任和关系。 (2)安装主要依据:由设计部门和厂家提供的设备装配图、安装图、基础图、平面布置图、原理图等图纸。

(3)质量标准和技术要求:依据《煤矿安装工程质量检验评定标准》 MT5010-95和随机技术文件,编制水泵及管路安装、防腐质量标准和要求。 (4)设备安装:水泵及管路安装需编制安装程序表及施工方法、安装进度表、安装网络图。 (5)设备的试验、调试和试运行:根据质量标准和技术要求,编制水泵和电气控制设备的试验调试方法,管路耐压试验方法及系统试运行试验方案。 二、安装验收的图纸及资料 1、设备出厂说明书、合格证、装箱单。 2、装配图和易损件图。 3、设计施工图和基础图。 4、安装竣工图和竣工报告。 5、调试记录及试验报告。 6、安装工程质量检验评定表。 (三)竣工验收 1、工程安装完毕后,由施工单位按有关标准进行自检验收,合格后向主管部门提出申请,主管部门组织质监、设计、设备管理、施工和使用单位等,对该工程进行交接验收。 2、检验工程技术档案、竣工图、隐蔽工程记录、调试报告和设备清单等资料。 3、工程安装质量通过查阅资料和抽检,进行安装质量评定,对存在问题提出处理意见,填写工程竣工移交报告、移交验收鉴定书、质量认证意见。 4、组织施工和使用单位编制运行实施计划和操作规程,检查运行情况。 3 4 技术资料管理 健全技术档案,做到一台一档。 一、主排水泵系统资料 1、排水系统图和技术特征卡片(排水系统图:逆止阀位置、闸阀位置、型

排水设备选型计算

目录 目录 摘要 第一章绪论及设计原始资料与任务 第二章离心泵结构和特点 2.1 概述............................................................. 2.2 离心泵的工作原理、分类、型号及结构............................... 2.3 离心泵的气蚀..................................................... 2.4 离心泵的分类..................................................... 第三章排水设备选型计算 3.1 确定排水系统..................................................... 3.1.1预选的泵的型号和台数........................................... 3.1.2确定水泵的台数和级数........................................... 3.2管路及管路布置................................................... 3.2.1管路系统....................................................... 3.2.2计算管路特性................................................... 3.2.3 校验计算....................................................... 第四章确定水仓、水泵房尺寸及其附属设备 4.1 确定水仓尺寸..................................................... 4.2 泵房分配井闸直径的确定........................................... 4.3 水泵基础尺寸的确定............................................... 4.4 计算主泵房主要尺寸............................................... 第五章其余方案的选型计算及方案比较 5.1确定水泵台数..................................................... 5.2 管路及管路布置................................................... 5.3计算耗电量....................................................... 致谢 参考文献

主排水系统智能化控制系统

正龙煤业城郊煤矿主排水泵房智能化控制系统 技术协议 甲方:河南省正龙煤业有限公司城郊煤矿 乙方:徐州上若科技有限公司 根据矿井自动化控制系统的发展需要,对城郊煤矿副井底主排水泵房进行智能化控制系统改造,经甲、乙双方充分技术探讨、方案协商,达成如下技术协议: 一、遵守的主要现行标准及规范 《煤矿安全规程》2009版 MT/T 1004-2006 《煤矿安全生产监控系统通用技术条件》 MT/T 1006-2006 《矿用信号转换器》 MT/T 1008-2006 《煤矿安全生产监控系统软件通用技术条件》 MT/T 1002-2006 《煤矿在用主排水系统节能监测方法和判定规则》 MT 381-2007 《煤矿用温度传感器通用技术条件》 AQ 1029-2007 《煤矿安全监控系统及检测仪器使用管理规范》 AQ 1043-2007 《矿用产品安全标志标示》 二、现场设备情况 (1)水泵 MD580-70×8型,10台,流量580m3/h,扬程560m。 (2)电机 Y500-4型,10台,功率1250kW,额定电压6kV,额定电流143.1A,转速1480转/分。 (3)排水阀门 Z941H-64型 DN250 Pg64,手动操作。 (4)排水管路 Φ426×14 3趟。 (5)抽真空方式

射流方式,射流泵DSP-3型,射流阀DN25-64型,吸水阀DN20-64型。 (6)开关柜型号:KYGC-Z型,10台(保护器为DL型) (7)水仓 共3个,通过配水阀与吸水井相通。 三、系统技术要求 1.系统总体要求 城郊煤矿副井底主排水泵房智能化控制系统采用工业以太网、现场总线技术和可编程控制技术,对主排水系统进行在线监测和水泵自动化操作控制,实现水泵的各项运行参数在线实时监测、统计和显示,通过智能专家系统使水泵始终处于高效率的安全运行状态,通过故障参数进行分析、预警,防止事故发生。同时,可根据操作员指令或预定控制程序,自动完成水泵的定时启动、定水位启动、自动切换启动、智能经济运行等操作,自动控制分时运行、削峰填谷,实现水泵的高效经济运行和现场无人值守运行功能。系统既可现场就地操作控制,也可远程操作控制,当控制系统出现故障(即所有水泵均不能自动运行)时,可切换至手动方式(由水泵司机人工操作)启动水泵,确保主排水系统正常启动运行。乙方提供给甲方的矿井主排水智能化控制系统,必须达到以下技术要求和功能: 1、具有优先控制功能:系统根据检测的水泵历史工况数据使流量最大,吨/百米电耗最低的水泵优先启动。 2、正常情况下,根据小井水位(或水仓水位)系统能自动控制水泵启动、停运台数。当水仓水位高于警戒值(还没有达到安全极限值)需要启动两台水泵或两台以上水泵时,系统则应根据历史检测的水泵工况数据,优先依次启动流量大、吨/百米电耗低、压力(扬程)和流量与第一台在用水泵工况相接近的水泵。当水位低于临界水位需要停运一台或二台及以上的正在运行的水泵时,则应根据历史检测数据,优先依次停运流量较小、吨/百米电耗较高、压力(扬程)和流量相对较低的水泵。当水位排至最低水位时,所有水泵应自动停止运行。 非正常排水(排水抗灾或有淹井危险)时,应具有依次启动主排水泵房所有水泵的自动监测监控功能。 3、水位监测监控传感器采用超声波传感器,安装在与水仓相连的吸水小井内,且根据水位监测的实际情况,具有自动控制水泵依次启动运行或依次停运的

相关文档
相关文档 最新文档