文档库 最新最全的文档下载
当前位置:文档库 › 随机过程--剩余寿命与年龄的极限分布

随机过程--剩余寿命与年龄的极限分布

随机过程--剩余寿命与年龄的极限分布
随机过程--剩余寿命与年龄的极限分布

随机过程poisson过程 中科大

Poisson 过程 1.考虑电子管中的电子发射问题.设单位时间内到达阳极的电子数目N 服从参数为λ的Poisson 分布,而每个电子携带的能量各自不相关且与N 独立,并均服从于区间[1,2]上的均匀分布.记单位时间内阳极接收的能量为S .求S 的期望和方差. 2.设{X (t ),t ≥0}为一个独立增量过程,且X (0)=0,分别记V (t ),R (t,s )为{X (t ),t ≥0}的方差函数和协方差函数,证明:R (t,s )=V (min {t,s }). 3.设N (t )是一强度为λ的Poisson 过程,s,t >0,试求: (a)P(N (s )=k |N (s +t )=n )=?k =1,...,n ; (b)E[N (s )N (s +t )]=? (c)Cov(N (s ),N (s +t ))=? (d)E[N (s +t )|N (s )]的期望和分布; (e)E[W k |N (t )=n ]=?E[W k ]=?(W k 为第k 个事件发生的时刻) 4.某路口蓝车,白车和黄车的到达分别为强度λ1,λ2和λ3的Poisson 过程,且相互独立.试求:(a)第一辆蓝车到达的平均时间和第一辆车到达的平均时间; (b)蓝车首先到达的概率; (c)蓝车先于黄车但落后于白车的概率; (d)在相继到达的两辆蓝车之间,恰有k 辆车到达的概率以及数学期望; (e)在t 0处观察到一辆黄车,在接下来恰有k 辆蓝车连续到达的概率以及数学期望. 5.设要做的试验的次数服从参数为λ的Poisson 分布,试验有n 个可能的结果,每次试验出现第j 个结果的概率为p j ,∑n j =1p j =1.若各次试验相互独立,并以X j 记第j 个结果发生的次数,试求E[X j ]、Var[X j ],j =1,...,n .又问X j 服从什么分布?且X 1,...,X n 是否相互独立?为什么? 6.某人甲负责订阅杂志.设前来订阅杂志的人数服从强度为6的Poisson 过程,每人分别以概率1/2,1/3,1/6订阅1季,2季,3季杂志,且各人的选择相互独立.现以N i (t )表示(0,t ]时段内订阅i 季杂志的人数,i =1,2,3. 1

随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链 5.1连续时间的马尔可夫链 考虑取非负整数值的连续时间随机过程}.0),({≥t t X 定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意 121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有 })(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++ =})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链. 由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关. 记(5.1)式条件概率一般形式为 ),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij = 其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij 以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程. 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记 i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有 },{}{t h P s h t s h P i i i >=>+> 可见,随机变量i h 具有无记忆性,因此i h 服从指数分布. 由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

第3章 平稳随机过程的谱分析

第3章 平稳随机过程的谱分析 付里叶变换是处理确定性信号的有效工具,它信号的频域内分析处理信号,常常使分析工作大为简化。 对于随机信号,是否也可以应用频域分析方法?付里叶变换是否可引入随机信号中? 3.1 随机过程的谱分析 3.1.1 回顾:确定性信号的谱分析 )(t f 是非周期实函数, )(t f 的付里叶变换存在的充要条件是: 1.)(t f 在),(∞-∞上满足狄利赫利条件; 2.)(t f 绝对可积: +∞

3.1.2 随机过程的功率谱密度 一、样本函数的平均功率 问题1:由于付里叶变换是针对确定性函数进行的,在处理随机过程)(t X 时,取 )(t X 的一个样本函数)(t x (在曲线族中取某一曲线)来进行付里叶分 析。 问题2:随机过程)(t X 的样本函数)(t x 一般不满足付里叶变换的条件,它的总能 量是无限的,需考虑平均功率。 若随机过程)(t X 的样本函数)(t x 满足 +∞<=? -∞→T T T dt t x T W 2 )(21 lim W 称为样本函数)(t x 的平均功率。 对于平稳过程,其样本函数的平均功率是有限的。 二、截取函数 对于)(t X 的一个样本函数)(t x ,在)(t x 中截取长为T 2的一段,记为)(t x T , 它满足: ???? ?≥<=T t T t t x t x T 0 ) ()( 称)(t x T 为)(t x 的截取函数。 三、截取函数的付里叶变换 0>T ,取定后,)(t x T 的付里叶变换一定存在: ??--+∞ ∞--==T T t j t j T T dt e t x dt e t x X ωωω)()()( 其付里叶逆变换为: ? +∞ ∞ -= ωωπ ωd e X t x t j T T )(21 )( 其帕塞瓦(Parseval )等式为 ? ? ? +∞ ∞ --+∞ ∞ -= =ωωπ d X dt t x dt t x T T T T 2 2 2 )(21 )()(

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

平稳随机过程的谱分析

第二章平稳随机过程的谱分析 本章要解决的问题: ●随机信号是否也可以应用频域分析方法? ●傅里叶变换能否应用于随机信号? ●相关函数与功率谱的关系 ●功率谱的应用 ●采样定理 ●白噪声的定义 2.1 随机过程的谱分析 2.1.1 预备知识 1、付氏变换: 对于一个确定性时间信号x(t),设x(t)是时间t的非周期实函数,且x(t) 满足狄利赫利条件(有限个极值,有限个断点,断点为有限值)且绝对可积,能量有限,则x(t)傅里叶变换存在。即: 满足上述三个条件的x(t)的傅里叶变换为:

其反变换为: 2、帕赛瓦等式 由上面式子可以得到: ——称为非周期性时间函数的帕塞瓦(Parseval)等式。 物理意义:若x(t)表示的是电压(或电流),则上式左边代表x(t)在时间(-∞,∞)区间的总能量(单位阻抗)。因此,等式右边的被积函数 2 ) (ωX X 表示了信号x(t)能量按频率分布的情况,故称 2 ) (ωX X 为 能量谱密度。 2.1.2、随机过程的功率谱密度 一个信号的付氏变换是否存在,需要满足三个条件,那么随机信号是否满足这三个条件从而存在付氏变换呢? 随机信号持续时间无限长,因此,对于非0的样本函数,它的能量

一般也是无限的,因此,其付氏变换不存在。 但是注意到它的平均功率是有限的,在特定的条件下,仍然可以利用博里叶变换这一工具。 为了将傅里叶变换方法应用于随机过程,必须对过程的样本函数做 某些限制,最简单的一种方法是应用截取函数。 x(t): 截取函数T 图2.1 x(t)及其截取函数 x(t)满足绝对可积条件。因此,当x(t)为有限值时,裁取函数T x(t)的傅里叶变换存在,有 T x(t)也应满足帕塞瓦等式,即:(注意积分区间和表达很明显,T 式的变化)

第十二章 平稳随机过程

第十二章 平稳随机过程 §1 基本概念 定义1:已给s.p t X t X {=,}T t ∈,若1≥?n ,即T 中任意的,,,21n t t t Λ与 h t h t h t n +++,,,21Λ,n 维r.v ),,(21n t t t X X X Λ与),,(21h t h t h t n X X X +++Λ有相同 的n 维d.f 。即 ) ,,,;,,(),,() ,,(),,,;,,,(2121212121212121n n n h t h t h t n t t t n n x x x h t h t h t F x X x X x X P x X x X x X P x x x t t t F n n ΛΛΛΛΛΛ+++=≤≤≤=≤≤≤=+++ 则称s.p t X 是一个严(强,狭义)平稳过程。 当t X ?n 维d.l 时,则有 ),,;,,,(),,;,,,(21212121n n n n x x x h t h t h t f x x x t t t f ΛΛΛΛ+++= 若取n =1,则有),(),(1111x h t f x t f +=,特别,当T ∈0,可取,1t h -=则有),0(),(111x f x t f =。此时平稳过程t X 的一维d.l 与1t (时间)无关。于是 X X m dx x xf t X E μ=== ?+∞ ∞ -),0()(1 即t X 的均值是一个与时间无关的常数。 其方差 ?∞ ∞ -=-=-=.),0()(][2 22 X X X t t dx x f m x m X E X D σ也与时间t 无关的 常数。 而且T X 的二维d.l 也只依赖于.21t t -=τ即当2t h -=时,有 ).,;(),;0,(),;,(2121212121x x f x x t t f x x t t f τ∧ =-= 所以t X 与τ+t X 之间自相关为 ??∞∞-∞ ∞ -+== =+).(),;(),(21212 1ττττX t t X R dx dx x x f x x X X E t t R 它只依赖于.τ类似地τ+t t X X ,之间协方差为

随机过程分析

随机过程分析 摘要随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。如何全面的对随机信号进行系统和理论的分析是现在通信的关键,也是今后通信业能否取得巨大进步的关键。 关键字通信系统随机过程噪声 通信中很多需要进行分析的信号都是随机信号。随机变量、随机过程是随机分析的两个基本概念。实际上很多通信中需要处理或者需要分析的信号都可以看成是一个随机变量,利用在系统中每次需要传送的信源数据流,就可以看成是一个随机变量。例如,在一定时间内电话交换台收到的呼叫次数是一个随机变量。也就是说把随某个参量而变化的随机变量统称为随机函数;把以时间t为参变量的随机函数称为随机过程。随机过程包括随机信号和随进噪声。如果信号的某个或某几个参数不能预知或不能完全预知,这种信号就称为随机信号;在通信系统中不能预测的噪声就称为随机噪声。下面对随机过程进行分析。 一、随机过程的统计特性 1、数学期望:表示随机过程的n个样本函数曲线的摆动中心, 即均值

?∞ ∞-==11);()]([)(dx t x xp t X E t a 2、方差:表示随机过程在时刻t 对于均值a(t)的偏离程度。 即均方值与均值平方之差。 {}?∞ ∞ --=-=-==112222);()]([)]()([))](()([)]([)(dx t x p t a x t a t X E t X E t X E t X D t δ 3、自协方差函数和相关函数: 衡量随机过程任意两个时刻上获得的随机变量的统计相关特性时,常用协方差函数和相关函数来表示。 (1)自协方差函数定义 {} )]()()][()([);(221121t a t X t a t X E t t C x --=??∞∞-∞ ∞---=2121212211),;,()]()][([dx dx t t x x p t a x t a x 式中t1与t2是任意的两个时刻;a (t1)与a(t2)为在t1及t2得到的数学期望; 用途:用协方差来判断同一随机过程的两个变量是否相关。 (2)自相关函数 ??∞∞-∞ ∞-==2121212212121),;,()]()([),(dx dx t t x x p x x t X t X E t t R X 用途:a 用来判断广义平稳; b 用来求解随机过程的功率谱密度及平均功率。 二、平稳随机过程 1、定义(广义与狭义): 则称X(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或严平稳。

随机过程

随机过程 随机过程的定义 引言 在许多实际问题中,不仅需要对随机现象对特定时间点上的一次观察,而且需要做多次的连续不断的观察,以观察研究对像随时间推移的演变过程。 首先我们观察的对象与通常意义上的函数()f t 是不同的, 观察研究的对象本身是一个随机变量X ,这个随机变量随时间的变化过程就是一个随机过程()X t ,通俗的理解。随机变量X 的所有可能取值。另一种解释是,随机过程是随机变量的函数。 随机两字的含义包含着随机过程()X t 的在某一时刻,如i t 时刻的取值, () ()i t t i i X t X t X ===仍然为一随机变量,随机变量i X 取值的样本空间Ω,样本空间中样 本值可以是连续的,也可以是离散的。如{}12,,,n x x x ,意味着在i t 时刻,随机变量i X 的 取某一样本空间的某一元素的概率是确定的(做无穷多次实验的统计规律),在该时刻,所有样本空间元素的概率之和为1。 例如,随机相位正弦波信号。()()sin X t a wt =+Θ 其中Θ服从均匀分布,则固定一个时刻i t 时,显然可求得i t 随机变量()i X t 的分布函数与概率密度。可见其随机过程的概密度是时间参数t 与随机变量Θ的二元函数。 另一种理解是,对随机信号作一次观测相当于做一次随机实验,每次随机实验所得到的观测记录结果()i x t ,是一个确定函数,称为样本函数,所有样本函数的全体构成了随机过程。 随机过程的标准定义 定义:设(?, Σ, P) 是一概率空间,对每一个参数t ∈T , X (t,ω) 是一定义在概率空间(?, Σ, P) 上的随机变量,则称随机变量族 X T ={X (t ,ω); t ∈T}为该概率空间上的一随机过程。其中T ? R 是一实数集,称为指标集或参数集。X (t,ω)通常简写为()X t 。 随机过程{X (t ); t ∈T }可能取值的全体所构成的集合称为此随机过程的状态空间,记作 S 。

几种常用的随机过程

第十讲 几种常用的随机过程 10.1 马尔可夫过程 10.1.1马尔可夫序列 马尔可夫序列是指时间参数离散,状态连续的马尔可夫过程。 一个随机变量序列x n (n=1,2,…),若对于任意的n 有 )|(),...,,|(112 1 x x F x x x x F n n X n n n X ---= (10.1) 或 )|(),...,,|(112 1 x x f x x x x f n n X n n n X ---= (10.2) 则称x n 为马尔可夫序列。x n 的联合概率密度为 ) ()|( ) |()|(),...,,(1 1 2 2 11 2 1 x f x x f x x f x x f x x x f X X n n X n n X n X ??---= (10.3) 马尔可夫序列有如下性质: (1) 一个马尔可夫序列的子序列仍为马尔

可夫序列。 (2) ) |(),...,,|(1 21x x f x x x x f n n X k n n n n X -+++= (10.4) (3) )|(),...,|(111x X x x X n n n n E E --= (10.5) (4) 在一个马尔可夫序列中,若已知现在, 则未来与过去相互独立。即 ) |() |()|,(1 x x f x x f x x x f r s X n n X r s n X -= ,n>r>s (10.6) (5) 若条件概率密度)|(1 x x f n n X -与n 无关, 则称马尔可夫序列是齐次的。 (6) 若一个马尔可夫序列是齐次的,且所 有的随机变量X n 具有同样的概率密度,则称该马尔可夫序列为平稳的。 (7) 马尔可夫序列的转移概率满足切普曼 —柯尔莫哥洛夫方程,即 ) |()| ()|(x x f x x f x x f s r X r n X s n X ? ∞ ∞ -= , n>r>s (10.7) 10.1.2马尔可夫链 马尔可夫链是指时间参数,状态方程皆

(完整版)应用随机过程期末复习资料

第一章 随机过程的基本概念 一、随机过程的定义 例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ···,记为{X n ,n=1,2, ···},则X n 是随机变量,而{X n ,n=1,2, ···}是随机过程。 例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。令X n 表示第n 次统计所得的值,则X n 是随机变量。为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ···}的统计规律性。 例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。 例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t 时刻的队长,用Y(t)表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T}和{Y(t), t ∈T}都是随机过程。 定义:设给定参数集合T ,若对每个t ∈T, X(t)是概率空间),,(P ?Ω上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集。 E X t →Ω:)(ω,E 称为状态空间,即X(t)的所有可能状态构成的集合。 例1:E 为{0,1} 例2:E 为[0, 10] 例3:E 为},2,2,1,1,0{Λ-- 例4:E 都为), 0[∞+ 注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。 (2)参数集T 通常代表时间,当T 取R, R +, [a,b]时,称{X(t), t ∈T}为连续参数的随机过程;当T 取Z, Z +时,称{X(t), t ∈T}为离散参数的随机过程。 (3)例1为离散状态离散参数的随机过程,例2为连续状态离散参数的随机过程,例3为离散状态连续参数的随机过程,例4为连续状态连续参数的随机过程。 二、有限维分布与Kolmogorov 定理 随机过程的一维分布:})({),(x t X P x t F ≤= 随 机 过 程 的 二 维 分 布 : T t t x t X x t X P x x F t t ∈≤≤=21221121,,},)(,)({),(21 M

随机过程课后习题

习题一 1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。求X 的特征函数、EX 及DX 。其中01,1p q p <<=-是已知参数。 2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为 (2)求其期望和方差; (3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。 3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。 (1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。 4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。 5.试证函数 为一特征函数,并求它所对应的随机变量的分布。 6.试证函数 为一特征函数,并求它所对应的随机变量的分布。 7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概 率密度函数。 8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。求X+Y 的分布。 9.已知随机向量(X, Y )的概率密度函数为 试求其特征函数。 10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩 阵为B σ?kl 44=(),求(X ,X ,X ,X E 1234)。 11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和 213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。 12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求: (1)随机向量(X 1, X 2, X 3)的特征函数; 1,0() 0,0()p p bx b x e x p x p x --?>? Γ??≤? =0,0 b p >>1 n k k X =∑ (1)()(1) jt jnt jt e e f t n e -=-21 ()1f t t =+1 1n i i X X n ==∑22 1[1()],1,1 (,)40,xy x y x y p x y ?+--<

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

泊松过程

第二讲 泊松过程 1.随机过程和有限维分布族 现实世界中的随机过程例子: 液体中,花粉的不规则运动:布朗运动;股市的股票价格; 到某个时刻的电话呼叫次数; 到某个时刻服务器到达的数据流数量,等。 特征:都涉及无限多个随机变量,且依赖于时间。 定义(随机过程) 设有指标集T ,对T t ∈都有随机变量)(t X 与之对应,则称随机变量族 }),({T t t X ∈为随机过程。 注 一个随机过程是就是一个二元函数E T t X →?Ωω:),(。固定ω,即考虑某个事件相 应的随机变量的值,得到函数R T t X →:),(ω称为样本函数或轨道或一个实现。映射的值域空间E 称为状态空间。 例 随机游动(离散时间,离散状态) 质点在直线上每隔单位时间位置就发生变化,分别以概率p 或概率p -1向正或负向移动一个单位。如果以n S 记时刻n 质点所处的位置,那么就得到随机过程{,0}n S n ≥。这里指标集},1,0{ =T ,状态空间},1,0,1,{ -=E 。 如果记n X 为时刻n ,质点的移动,那么{,1}n X n ≥也是随机过程。 两个过程的区别:{}n S 不独立;{}n X 独立; 两个过程的关系:01 n n k k S S X ==+ ∑ 习题 计算n ES 和n DS (设00S =)。 提示 利用∑== n k k n X S 1 ,其中k X 是时刻k 的移动方式。 习题 设从原点出发,则()/2()/2()/2 ,2()0, 21n k n k n k n n C q p n k i P S k n k i +-+?+===?+=-?。 例 服务器到达的数据流(连续时间,离散状态) 在],0[t 内,到达服务器的数据包个数记为)(t N ,那么}0),({≥t t N 也是个随机过程, 其指标集}{+ ∈=R t T ,状态空间},1,0{ =E 。

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布 X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x) p k f (t)dt 分布函数 k x X 的概率分布用概率密度 f (x) F(x) 分布函数 连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,) 其联合分布函数 1 2 n 1 1 2 离散型 联合分布列 连续型联合概率密度 3.随机变量 的数字特征 数学期望:离散型随机变量 X EX x p k k X EX xf (x)dx 连续型随机变量 2 DX E(X EX) 2 EX (EX) 2 方差: 反映随机变量取值 的离散程度 协方差(两个随机变量 X ,Y ): B E[( X EX)(Y EY)] E(XY) EX EY XY B XY 相关系数(两个随机变量 X,Y ): 0,则称 X ,Y 不相关。 若 XY DX DY 独立 不相关 itX g(t) E(e ) itx e p k 连续 g(t) k e itx f (x)dx 4.特征函数 离散 g(t) 重要性质: g(0) 1, g(t) 1 g( t) g(t) , , g (0) i EX k k k 5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布 P( X 1) p,P( X 0) q EX p DX pq P(X k) C p q n k k k EX np DX n p q n k 泊松分布 P( X k) e k! EX DX 均匀分布略 ( x a)2 1 2 N(a, ) f (x) 2 2 2 EX a 正态分布 e DX 2

中国科学大学随机过程(孙应飞)复习题及答案

(1) 设}0),({≥t t X 是一个实的零均值二阶矩过程,其相关函数为 t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,求方差函数)]()([T t X t X D +-。 解:由定义,有: )(2)0()0()}()({2)0()0()]} ()()][()({[2)] ([)]([)]()([=-+=+-+=+-+--++=+-T B B B T t X t X E B B T t EX T t X t EX t X E T t X D t X D T t X t X D (2) 试证明:如果}0),({≥t t X 是一独立增量过程,且0)0(=X ,那么它必是一个马 尔可夫过程。 证明:我们要证明: n t t t <<<≤?Λ210,有 } )()({})(,,)(,)()({11112211----=≤=====≤n n n n n n n x t X x t X P x t X x t X x t X x t X P Λ 形式上我们有: } )()(,,)(,)({} )()(,,)(,)(,)({} )(,,)(,)({} )(,,)(,)(,)({})(,,)(,)()({1122221111222211112211112211112211--------------========≤= ======≤=====≤n n n n n n n n n n n n n n n n n n n n x t X x t X x t X x t X P x t X x t X x t X x t X x t X P x t X x t X x t X P x t X x t X x t X x t X P x t X x t X x t X x t X P ΛΛΛΛΛ 因此,我们只要能证明在已知11)(--=n n x t X 条件下,)(n t X 与2 ,,2,1,)(-=n j t X j Λ相互独立即可。 由独立增量过程的定义可知,当2,,2,1,1-=<<<-n j t t t a n n j Λ时,增量)0()(X t X j -与 )()(1--n n t X t X 相互独立,由于在条件11)(--=n n x t X 和0)0(=X 下,即有)(j t X 与1)(--n n x t X 相互独立。由此可知,在11)(--=n n x t X 条件下,)(n t X 与2,,2,1,)(-=n j t X j Λ相互独立,结果成立。 (3) 设随机过程}0,{≥t W t 为零初值(00=W )的、有平稳增量和独立增量的过程, 且对每个0>t ,),(~2 t N W t σμ,问过程}0,{≥t W t 是否为正态过程,为什么? 解:任取n t t t <<<≤?Λ210,则有: n k W W W k i t t t i i k ,,2,1][1 1Λ=-=∑=-

应用随机过程实验2-泊松过程

应用随机过程实验2 —泊松过程 一.准备知识 1.泊松过程 2.非齐次泊松过程 3. 复合泊松过程 二.作业 1. 设()1X t 和()2X t 分别是参数为1λ和2λ的相互独立的泊松过程, (1)模拟()1X t 和()2X t ,并画图; (2)生成随机过程()()()12Y t =X +X t t ,并画图; (3)计算(){}Y t ,t 0≥ 的平均到达率与+1λ2λ的相对误差。 2. 设到达某商店的顾客组成强度为λ的泊松过程,每个顾客购买商品的概率为p ,且与其他顾客是否购买商品无关,假设每位购买商品的顾客的花费i X 独立同分布,且服从正态分布2X (,)i N μσ:,1,2,3,i =L ,令()Y t 是t 时刻购买商品的顾客数,()Z t 是t 时刻商品的营业额,0t ≥ , (1)试模拟随机过程(){},0Y t t ≥,并画图,计算随机过程(){},0Y t t ≥ 的均值函数与pt λ的相对误差; (2)试模拟随机过程(){},0Z t t ≥,并画图,计算随机过程(){}t ,t 0Z ≥ 的均值函数与pt λμ的相对误差。

3. 某路公共汽车从早晨5时到晚上9时有车发出,乘客流量如下:5时按平均乘客为200人/小时计算;5时至8时乘客平均到达率线性增加,8时到达率为1400人/小时;8时至18时保持平均到达率不变;18时到21时到达率线性下降,到21时为200人/小时,假定乘客数在不重叠的区间内是相互独立的,令()X t 是t 时刻到达公共汽车的总人数, (1)计算早晨5时到晚上9时的乘客到达率,并画图; (2)模拟从早晨5时到晚上9时的乘客到达过程(){}X t ,t 0≥。

2.9 严平稳随机过程

随机信号分析

目录 CONTENTS CONTENTS 严平稳随机过程平稳随机过程的基本概念

-2.5-2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 ()()x m t E X t =????随机过程的数学期望()1x m t ()4x m t () 5x m t 如果数学期望与时间无关,将简化分析和计算! ()x x m t m =

-2.5-2 -1.5-1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 随机过程的自相关函数????=?R t t E X t X t X ,1212)()()(R t t X ,23) (?=τt t 320R t t X ,56)(?=τt t 650如果自相关函数与观察起始时刻无关,只和观察的两个随机变量的时间差有关? ==?ττR t t R t t X X ,,1221)()(有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

严平稳随机过程 随机过程X t ,若它的n 维概率密度(或n 维分布函数) 不随时间起点选择的不同而改变 就是说,对任何n 和ε,随机过程X t 的n 维概率密度满足: +++=εεεf x x x t t f x x x t t X n n X n n ,,,;,,,t ,,,;,,,t 12121212)()(f x x x t t n n ,,,;,,,t 1212) (则称X t 为严(格)平稳过程,或称X t 为狭义平稳过程。 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

随机过程期末复习题

随机过程期末复习题库(2015) 一、填空题 1.对于具有常数均值的二阶矩过程,为宽平稳过程当且仅当二元函 数只与有关, 而与和无关。 2.对于具有常数均值的二阶矩过程,为宽平稳过程当且仅当二元函 数只与有关, 而与和无关。 3.设随机变量服从泊松分布,且,则 2 . 4.已知随机变量的二阶矩存在,且的矩母函数为,则. 5.已知随机变量的二阶矩存在,且的特征函数为,则 . 6.设是平稳序列,其协方差函数为,请给出的均值具有遍 历性的一个充分条件:. 7.设是平稳过程,其协方差函数为,请给出的均值具有遍历性 的一个充分条件:. 8.已知平稳过程的均值,协方差函数为,则该过程的自相关函数 . 9.设为两个随机事件,,则 0.6 . 10.设为二随机变量,,则 2 . 11.已知随机变量的矩母函数为,则服从的分布是参数为的 泊松分布. 12.是二维正态分布,即,. 13.设随机变量的数学期望均存在,则. 14.为随机事件,随机变量的数学期望存在,则 . 15.在强度为的泊松过程中,相继事件发生的间隔时间是相互独立的随机变量,且服从均 值为的同一指数分布. 16.设是强度为的泊松过程,表示第个事件发生的时刻,则的分布函 数为. 17.设是强度为的泊松过程,表示第个事件发生的时刻,则. 18.设是强度为的泊松过程,表示第个事件发生的时刻,则

. 解由定理3.2.3,在已知的条件下,事件发生的个时刻的条件联合分布函数与个在区间上相互独立同均匀分布的随机变量的顺序统计量的联合分布函数相同.故对,有 从而, 19.是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔.则. 解题思路:注意到与独立,且同服从参数为的指数分布即得. 20.设,是速率为的泊松过程. 则对于, . 21.设,是速率为的泊松过程. 对于, . 解对于,有 增量与独立 22.是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔.则对,. 解题思路:注意到与独立,且同服从参数为的指数分布即得. 23.设是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔,则. 24.设是强度为的泊松过程,表示第个事件发生的时刻,则 . 25.设是强度为的泊松过程,表示第个事件发生的时刻,则服从参 数为和的分布. 26.非齐次泊松过程,其强度函数为,则 . 解对于,有

随机过程第三章 泊松过程

第三章 泊松过程 3.1 泊松过程 定义3.1 计数过程:随机过程{}(),0N t t ≥称为一个计数过程,若()N t 表示从0到时 刻t 为止某一事件A 发生的总数,它是一个状态取非负整数、时间连续的随机过程。计数过程满足以下条件: (1)()0N t ≥,且取值非负整数; (2)若s t <,则()()N s N t <; (3)对于s t <,()()N t N s -表示时间区间(,]s t 内事件A 发生的次数。 如果在不相交的时间区间中发生的事件个数是独立的,则称计数过程有独立增量过程。如时刻t 已发生的事件A 的次数即()N t ,必须独立于时刻t 和t s +之间所发生的事件数即 (()())N t s N t +-。 如果在任一时间区间内发生的事件A 的次数的分布只依赖于时间区间的长度,则称计数过程为平稳增量过程。即对一切12t t <及0s >,在区间12(,]t s t s ++中事件A 的发生次数即21(()())N t s N t s +-+与区间12(,]t t 中事件A 的发生次数即21(()())N t N t -具有相同的分布,则过程有平稳增量。 泊松过程是计数过程的最重要类型之一,其定义如下。 定义3.2 泊松过程:计数过程{}(),0N t t ≥称为参数为λ(0λ>)的泊松过程,如果满 足: (1)()0N t =; (2)过程有独立增量; (3)在任一长度为t 的区间中事件的个数服从均值为t λ的泊松分布。即对一切s ,0t ≥, {}()(),0,1,2,! n t t P N t s N s n e n n λλ-+-=== 从条件(3)可知泊松过程有平稳增量且[()]E N t t λ=,于是可认为λ是单位时间内发生事件A 的平均次数,一般称λ是泊松过程的强度或速率。 为确定一个任意的计数过程是泊松过程,必须证明它满足上述三个条件。其中,条件

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述 首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当 12,,n t h t h t h T +++∈…,时,n 维随机变量 (X(1t ),X(2t ),…,X(t n )) 和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。 在实际工作中,确定随机过程的均值函数和相关函数是很重要的。而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。 但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。 定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即 〈X (t )〉=1lim ()2T T T X t dt T -→∞? 存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。 定义 设X (t )是一均方连续平稳随机过程,且对于固定的τ,()X t X t τ(+)也是连续平稳随机过程,〈()X t X t τ(+)〉 代表()X t X t τ(+)沿整个时间轴的平均值,即 ()X t X t τ(+)=1lim (+)()2T T T X t X t dt T τ-→∞? 若〈()X t X t τ(+)〉存在,称〈()X t X t τ(+)〉为X (τ)的时间相关函数。又

相关文档