文档库 最新最全的文档下载
当前位置:文档库 › 数学分析试题及答案

数学分析试题及答案

数学分析试题及答案
数学分析试题及答案

(十四) 《数学分析Ⅱ》考试题

一 填空(共15分,每题5分):

1 设=∈-=E R x x x E

sup ,|][{则 1 , =E inf 0 ;

2 设

=--='→5

)

5()(lim

,2)5(5

x f x f f x 则54;

3 设??

?>++≤=0

,)1ln(,

0,

sin )(x b x x ax x f 在==a x 处可导,则

0 1 , =b 0 。

二 计算下列极限:(共20分,每题5分)

1 n n n

1

)1

31211(lim ++++

∞→ ; 解: 由于,n n n n 1

1

)131211(1≤++++≤ 又,1lim =∞→n

n n

故 。1)131211(lim 1

=++++∞→n

n n

2 3)

(21lim

n n

n ++∞→; 解: 由stolz 定理,

3)

(21lim

n n n ++∞→33)1()(lim --=∞→n n n n )

1)1()(1(lim

-+-+

--

=∞

→n n n n n n n

n

)

1)1(2))(1(()

1(lim

--+---+=∞→n n n n n n n n n

.3

2)1)11(21

11lim

2=--

+-

+

=∞

→n

n n

n 3 a

x a x a x --→sin sin lim

解: a

x a

x a x --→sin sin lim a

x a

x a x a

x --+=→2sin 2cos

2lim

.cos 2

2sin

2

cos

lim a a x a x a x a

x =--+=→ 4 x

x x 10

)

21(lim +→。

解: x

x x 1

)21(lim +→.)21(lim 22

21

0e x x

x =??

????+=→ 三 计算导数(共15分,每题5分):

1 );(),1ln(1)(22x f x x x x f '++-+=

解: 。

1

11

11

1

1221122)(2

2

2

22

2+-=

+-

+=++++

-

+='x x x x x x x x x

x x

x f 2 解:

3 设。求)100(2

,2sin )23(y x x y -=

解: 由Leibniz 公式

)23()2(sin )23()2(sin )23()2(sin 2)98(2

1002)99(11002)100(0100)100('

'-+'-+-=x x C x x C x x C y

6)2sin(26)2sin(2100)23)(2sin(22

98982991002999922100100?+++?+-+=?ππ

πx x x x x

x x x x x 2sin 2297002cos 26002sin )23(298992100?-?--= 。]2cos 12002sin )22970812[(2298x x x x --=

四 (12分)设0>a

,}{n x 满足:

,00>x ,2,1,0),(211 =+=

+n x a

x x n

n n

;sin cos 3

3表示的函数的二阶导数求由方程???==t a y t

a x ,

tan sin cos 3cos sin 3)cos ()sin (22

33t t

t a t t a t a t a dx dy -=-=''=。t

t a t

t a t dx y d sin cos 3sec )cos (sec 223222='-=

证明:}{n x 收敛,并求。n n x ∞

→lim

解: (1) 证明:易见,),,2,1,0(,0 =>n x n a x x n

x a

n

n =≥

+1),,2,1,0( =n

从而有: ),2,1(02)(212

1 =≤-=-+=-+n x x a x x a

x x x n

n n n n n n ,

故}{n x 单调减少,且有下界。所以}{n x 收敛。 (2)求n n x ∞

→lim

: 设}{n x l =,由(1)知:0}{>≥=a x l n 。

在)(211n

n n x a

x x +=

+两边同时取极限得 1lim +∞

→=n n x l ),(21)(lim 21l

a l x a x n

n n +=+=∞

→ 解之得a l =,即a x n n =∞

→lim 。

五 (10分)求椭圆),(10022

22y x b

y a x 过其上点=+

处的切线方程。

解: 在方程12222=+b y a x 两边对x 求导数得:,0222

2='

+b y y a x

故,22y x a b y -='从而0

2200y x a b y y y x x -='==,所以椭圆),(00y x 在点处的切线方程为

)(00

220x x y x a b y y --=-,即12020=+b yy a xx

六(10分)利用Cauchy 收敛原理证明:单调有界数列必收敛。

证明:设}{n x 单调有界,不妨设}{n x 单调增加。

假定}{n x 不收敛,则由Cauchy 收敛原理,存在常数N n m >?>,,00

ε

),(n m <0ε≥-n m x x ,于是

令,1=N

存在1,11>n m ),(11n m < 011ε≥-n m x x , 再令,1n N

=存在122,n n m > ),(22n m < 022ε≥-n m x x ,

一般地令,1+=K n N

存在1,->k k k n n m ),(k k n m < 0ε≥-k k n m x x ,

这样得到}{n x 的一个子列: ,,,,,,,2211k k n m n m n m x x x x x x 满足:

0ε≥-k k n m x x 。从而有0ε≥-k k m n x x ,0ε+≥k k m n x x

),3,2( =k ,由此式递推可知:

,)1(0000121+∞→-+≥≥++≥+≥--εεεεk x x x x n n n n k k k

因而}{n x 无界,与条件矛盾,故}{n x 收敛。 七(8分)设满足:上在)0(),[)(>+∞a a x f

|||)()(|),,[,y x K y f x f a y x -≤-+∞∈? 为常数)。证明:0(≥K

1

上有界;在),[)

(+∞a x

x f 2

上一致连续。在),[)

(+∞a x

x f 证明:1. 由条件知,|||)()(|),,[a x K a f x f a x -≤-+∞∈?, 故:|)(||||)(||)()(||)(|a f a x K a f a f x f x f +-≤+-≤,

a

a f K x a f x a x K x a f x a x K x x f |)(||

)(||||)(|||||)(+≤+-=+-≤, 可见

上有界。在),[)

(+∞a x

x f 2. ),

,[,21+∞∈?a x x

21212222122121122211|

)()()()(||)()(|)()(x x x f x x f x x f x x f x x x x f x x f x x x f x x f -+-=-=- 2

112221212|

||)(||)()(|x x x x x f x x x f x f x -?+-≤

|,||)(|2||)|)(|(1||2122121x x a a f a

K x x a a f K a x x a K -????

???+=-++-≤

,]

[,0)(2a a f a K +=>?ε

δε取),

,[,21+∞∈?a x x ,||21时当δ<-x x

ε<-

2

21

1)()(x x f x x f ,故

上一致连续。在),[)(+∞a x

x f

八(10分)设n a a a ,,21为实常数,证明:

nx

a x a x a x f n cos 2cos cos )(21++

+=

内必有零点。在),0(π

证明:令,sin 2sin sin )(12211nx a x a x a x F n n +++=

),()(]0[)(x f x F x F ='上可导,,在π

,0)()0(==πF F 故由Rolle 中值定理,

,0)(),,0(='∈?ξπξF 使即,0)(=ξf

)(x f 内必有零点。在),0(π

(十五)数学分析2考试题

一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分,

共20分)

1、 函数)(x f 在 [a,b ] 上可积,那么( ) A )(x f 在[a,b ]上有界 B )(x f 在[a,b ]上连续

C )(x f 在[a,b ]上单调

D )(x f 在[a,b ]上只有一个间断点 2、函数)(x f 在 [a,b ] 上连续,则在[a,b ]上有( )

A )()(x f dx x f dx d b a =?

B )()(x f dt t f dx d x a =?

C )()(x f dt t f dx d b x -=?

D )()(x f dt t f dx

d b

x =? 3、 在[a ,+∞]上恒有)()(x g x f ≥,则( ) A ?+∞

a dx x f )(收敛?+∞a

dx x g )(也收敛 B ?+∞a

dx x g )(发散?

+∞

a

dx x f )(也发散

C

?

+∞

a

dx x f )(和?+∞

a

dx x g )(同敛散 D 无法判断

4、级数

∑∞

=1

n n

a

收敛是( )对p =1,2…,0)(lim 21=++++++∞

→p n n n n a a a

A 充分条件

B 必要条件

C 充分必要条件

D 无关条件 5、若级数

∑∞

=+1

1

1

n n α

收敛,则必有( )

A 0≤α

B 0≥α

C 0<α

D 0>α 6、)()(1

x a

x f n n

∑∞

==

在[a ,b ]一致收敛,且a n (x )可导(n =1,2…),那么( )

A f (x )在[a ,b ]可导,且∑∞

==

1

'

'

)()(n n

x a

x f

B f (x )在[a ,b ]可导,但)('

x f 不一定等于

∑∞

=1

'

)(n n

x a

C

∑∞

=1'

)(n n

x a

点点收敛,但不一定一致收敛

D

∑∞

=1

'

)(n n

x a

不一定点点收敛

7、下列命题正确的是( ) A

)(1x a

n n

∑∞

=在[a ,b ]绝对收敛必一致收敛

B

)(1x a

n n

∑∞

=在[a ,b ] 一致收敛必绝对收敛

C

)(1

x a

n n

∑∞

=在[a ,b ] 条件收敛必收敛

D 若0|)(|lim =∞→x a n n ,则

)(1

x a

n n

∑∞

=在[a ,b ]必绝对收敛

8、

∑∞

=--1

)11()1(n n n

x n 的收敛域为( ) A (-1,1) B (-1,1] C [-1,1] D [-1,1)

9、下列命题正确的是( )

A 重极限存在,累次极限也存在并相等

B 累次极限存在,重极限也存在但不一定相等

C 重极限不存在,累次极限也不存在

D 重极限存在,累次极限也可能不存在

10、函数f (x,y )在(x 0,,y 0)可偏导,则( )

A f (x,y )在(x 0,,y 0)可微

B f (x,y )在(x 0,,y 0)连续

C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在

D 以上全不对 二、计算题:(每小题6分,共30分)

1、)0(21lim 1>++++∞→p n

n p p

p p n 2、计算由曲线2

x y =和2

y x =围成的面积 3、求极限

)1

sin 1

1(

lim 222

2)

0,0(),(x y y x y x y x +-+++→

4、 已知),(y

x x f z =,求

y

z

x z ????, 5、 计算

n

n n n x n ∑∞

=--1

1

2

)1(的收敛半径和收敛域 三、讨论判断题(每小题10分,共30分)

1、讨论

dx x x q

p p

?

++--0

1|

1|的敛散性 2、 判断

∑∞

=--+122)11(

n n n 的敛散性

3、 判断∑∞

=+-1

2

1sin )1(n n n nx

的一致收敛性 四、证明题(每小题10分,共20分)

1、设f (x )是以T 为周期的函数,且在[0,T ]上可积,证明

??

=+T

T

a a

dx x f dx x f 0

)()(

2、设级数∑∞

=10

n n n x α收敛,则当0αα>时,级数∑∞=1

n n

n x α也收敛

参考答案

一、1、A 2、B3、D4、A5、D6、D7、C8、A9、D10、D 二、1、由于p

x 在[0,1]可积,由定积分的定义知(2分)

=++++∞→121lim p p p p n n

n 11)21(1lim 10+==++?∞→p dx x n n n n n p

p p p p p p n (4分)

2、 、两曲线的交点为(0,0),(1,1)(2分)

所求的面积为:

3

1)(1

2

=-?dx x x (4分) 3、解:由于x

1

sin 有界,01sin lim )0,0(),(=→x y y x (2分)

)1

sin 1

1(lim 222

2)0,0(),(x y y x y x y x +-+++→=)11)(11()11)((lim

22222222)0,0(),(+++-++++++→y x y x y x y x y x (3分)=

1

1

1lim

22)

0,0(),(+++→y x y x =2(1分)

4、解:

x

z

??=y f f 121+(3分)y z ??=22y x f -(3分)

5、解:21

2)

1(lim 1

=--∞

→n n

n n n ,r =2(3分) 由于x =-2,x =2时,级数均不收敛,所以收敛域为(-2,2)(3分)

三、1、解、因为被积函数可能在x =0和x =1处无界,所以将其分为

dx x x q

p p ?

++--0

1|1|=dx x x p q p ?-+-101|1|1+dx x x q p p

?∞++--11|1|(2分)

考虑奇点x =0应要求p-1<1;奇点x =1应要求p+q<1;(4分)当+∞→x 时,由于

1

211~)1(1-++--q p q p p x x x ,知2p+q -1>1时积分收敛(2分)

所以反常积分满足p <2且2(1-p)

2、解:由于n n n n n 1~1

12

11222

2

-++=

--+(6分),又∑∞

=11n n 发散(2分)

所以原级数发散(2分)

3、解:2

21

1sin )1(n n nx n ≤+-(6分),由weierstrass 判别法原级数一致收敛性(4分)

四、证明题(每小题10分,共20分)

1、证明:

?

???

++++=T

a T

T

a

T

a a

dx x f dx x f dx x f dx x f )()()()(0

(1)(4分)

???

=+++=+a

a

T

a T

dt t f T t d T t f t T x dx x f 0

)()()()((2)(4分)

将式(2)代入(1)得证(2分)

2、证明:∑∑∞=-∞

==11)1)((00

n n n n n n

x n x αααα(4分)01

αα-n 单调下降有界(3分)由Abel 定理

知原级数收敛(3分)

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

数学分析大二第一学期试卷(A)

一、填 空 题 1.将函数展开为麦克劳林级数,则=-+x x 11ln ______________________ 。 2.x x x f sin )(= 在( - π,π )上展开的傅里叶级数为________ ______ 。 3.已知方程 z e z y x =++可以确定隐函数,那么 =???y x z 2________________________ __。 二、单项选择题 1、幂级数∑∞ =-112n n x n 的收敛域与和函数分别是___________ 。 A 、 [ - 1 , 1 ] ,2)1(1x x -+; B 、( - 1, 1 ) ,3 )1(1x x -+; C 、(- 1 , 1 ) ,)1(1x x -+; D 、[ - 1 , 1 ] ,4) 1(1x x -+。 2、 22)(y x x f +=在( 0 , 0 )满足 ________ 。 A 、连续且偏导数存在; B 、不连续但偏导数存在; C 、连续但偏导数不存在; D 、不连续且偏导数不存在。 4、函数222z y x u -+=在点A(b,0,0)及B(0,b,0)两点的梯度方向夹 角 。 A 、2π; B 、3 π; C 、4 π; D 、6π。 三、计算题 1、设),(y x z z =是由隐函数0),(=++ x z y y z x F 确定,求表达式y z y x z x ??+??,并要求简化之

3、设函数),(v u x x =满足方程组???==0 )),(,(0)),(,(v x g y G u y f x F ,其中g f G F ,,,均为连续可微函 数,且x y g f G F G F 2211≠,记1F 为F 对第一个变量的偏导数,其他类推,求v x u x ????,。

欧阳光中数学分析答案

欧阳光中数学分析答案 【篇一:数学分析目录】 合1.1集合1.2数集及其确界第二章数列极限2.1数列极限 2.2数列极限(续)2.3单调数列的极限2.4子列第三章映射和实函数 3.1映射3.2一元实函数3.3函数的几何特性第四章函数极限和连续性4.1函数极限4.2函数极限的性质4.3无穷小量、无穷大量和有界量第五章连续函数和单调函数5.1区间上的连续函数5.2区间上连续函数的基本性质5.3单调函数的性质第六章导数和微分6.1导数概念6.2求导法则6.3高阶导数和其他求导法则6.4微分第七章微分学基本定理及使用7.1微分中值定理7.2taylor展开式及使用7.3lhospital法则及使用第八章导数的使用8.1判别函数的单调性8.2寻求极值和最值8.3函数的凸性8.4函数作图8.5向量值函数第九章积分9.1不定积分9.2不定积分的换元法和分部积分法9.3定积分9.4可积函数类r[a,b] 9.5定积分性质9.6广义积分9.7定积分和广义积分的计算9.8若干初等可积函数类第十章定积分的使用10.1平面图形的面积10.2曲线的弧长10.3旋转体的体积和侧面积10.4物理使用10.5近似求积第十一章极限论及实数理论的补充11.1cauchy收敛准则及迭代法11.2上极限和下极限11.3实数系基本定理第十二章级数的一般理论12.1级数的敛散性12.2绝对收敛的判别法12.3收敛级数的性质12.4abel-dirichlet判别法12.5无穷乘积第十三章广义积分的敛散性13.1广又积分的绝对收敛性判别法13.2广义积分的abel-dirichlet判别法第十四章函数项级数及幂级数14.1一致收敛性14.2一致收敛性的判别14.3一致收敛级数的性质14.4幂级数14.5函数的幂级数展开第十五章fourier级数15.1fourier级数15.2fourier级数的收敛性15.3fourier级数的

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

运城学院数学分析期末试题2-14

运城学院应用数学系 2011—2012学年第二学期期末考试 数学分析2试题(A ) 适用范围:数学与应用数学专业1101\1102班 命题人:常敏慧、王文娟 审核人: 一、判断题(每题2分,共20分) 1、实轴上的任一有界点集至少有一个聚点. ( ) 2、开区间集合1,11,2,1n n ????=?? ?+???? 构成了开区间()0,1的一个无限开覆盖. ( ) 3、初等函数的原函数仍是初等函数. ( ) 4、积分和与达布和都与分割有关. ( ) 5、黎曼函数在[]0,1上可积. ( ) 6、若f 在[],a b 上可积,则f 在[],a b 上可积. ( ) 7、瑕积分 ()b a f x dx ?收敛,则()2b a f x dx ?也收敛. ( ) 8、设n u ∑为收敛的正项级数,则lim 0n n u →∞=. ( ) 9、若函数项级数()n u x ∑在[],a b 上内闭一致收敛,且每一项()n u x 都连续,则()()b b n n a a u x dx u x dx =∑∑?? . ( ) 10、幂级数101n n n a x n ∞+=+∑与幂级数11 n n n na x ∞-=∑有相同的收敛半径. ( ) 二、填空题(每题2分,共20分) 1、设闭区间列[]{},n n a b 满足(i) ,(ii)()lim 0n n n b a →∞-=, 则称[]{} ,n n a b 为闭区间套.

2、()()21f x dx f x '=??+??? . 3、()20ln 1x d t dt dx +=? . 4、光滑曲线:C ()()[],,,x x t y y t t αβ==∈的弧长为 . 5、直线上任一点的曲率为 . 6、无穷积分 1sin p x dx x +∞?当 时条件收敛. 7、级数11p n n ∞=∑当 收敛. 8、幂级数()()1321n n n n x n ∞=+-+∑的收敛半径R = . 9、设函数项级数()n u x ∑定义在数集D 上,n M ∑为收敛的正项级数,若对一切x D ∈,有 ,则称函数项级数()n u x ∑在D 上一致收敛. 10、设幂级数n n x a ∑在0=x 某邻域上的和函数为()x f ,则n a 与()()0n f 之间的关系 是 . 三、求解下列各题(每题5分,共30分) 1、243dx x x ++? . 2、4tan xdx ?. 3 、1 2dx x . 4、112lim p p p p n n n +→∞++ (p 为正整数). 5、讨论无穷积分111x dx x α-+∞ +?的收敛性.

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷) 一. 填空题(每小题2分, 共10分) 1. 设?????<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________. 2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________. 3. 已知),(cos 4422x o bx ax e x x ++=- 则_,__________=a .______________=b 4. 微分方程1cos 2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________. 二. (9分) 求极限 21 0)sin (cos lim x x x x x +→. 三. (9分) 求不定积分?+dx e x x x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值. 五. (8分) 判断2 12arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dx y d dx dy . 七. (10分) 求下列反常积分. (1);)1(1 22?--∞+x x dx (2) .1)2(1 0?--x x dx 八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受 到的水压力. (要求画出带有坐标系的图形) 九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解. 十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f x a +=+?)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线 )(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,6 7π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(1 21 =?xdx x f 证明在)2,0(内存在ξ 使 .1)(='ξf

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

数学分析(1)期末试题A

山东师范大学2007-2008学年第一学期期末考试试题 (时间:120分钟 共100分) 课程编号: 4081101 课程名称:数学分析 适用年级: 2007 学制: 四 适用专业:数学与信息试题类别: A (A/B/C) 2分,共20分) 1. 数列{}n a 收敛的充要条件是数列{}n a 有界. ( ) 2. 若0N ?>, 当n N >时有n n n a b c ≤≤, 且lim lim n n n n a c →∞ →∞ ≠, 则lim n n b →∞ 不存在. ( ) 3. 若0 lim ()lim ()x x x x f x g x →→>, 则存在 00(;)U x δ使当00(;)x U x δ∈时,有()()f x g x >. ( ) 4. ()f x 为0x x →时的无穷大量的充分必要条件是当00(;)x U x δ∈时,()f x 为无界函数. ( ) 5. 0x =为函数 sin x x 的第一类间断点. ( ) 6. 函数()f x 在[,]a b 上的最值点必为极值点. ( ) 7. 函数21,0,()0, 0x e x f x x -?? ≠=??=?在0x =处可导. ( ) 8. 若|()|f x 在[,]a b 上连续, 则()f x 在[,]a b 上连续. ( ) 9. 设f 为区间I 上严格凸函数. 若0x I ∈为f 的极小值点,则0x 为f 在I 上唯一的极小值点. ( ) 10. 任一实系数奇次方程至少有两个实根. ( )

二、 填空题(本题共8小题,每空2分,共20分) 1. 0 lim x x x + →=_________________. 2. 设2 ,sin 2x u e v x ==,则v d u ?? = ??? __________________. 3. 设f 为可导函数,(())x y f f e =, 则 y '=_______________. 4. 已知3(1)f x x +=, 则 ()f x ''=_______________. 5. 设 ()sin ln f x x x =, 则()f π'=_______________ . 6. 设21,0, (),0; x x f x ax b x ?+≥=?+

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

(完整word版)华南农业大学2009数学分析1(A卷)期末考试试卷

华南农业大学期末考试试卷( A 卷 ) 2009学年第1学期 考试科目:数学分析I 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、 填空题 (每题4分,共24分) 1. 用N ε-语言叙述数列极限的柯西准则: . 2. 用εδ-语言叙述()0lim x x f x A →=: . 3. (归结原则)设()f x 在00(U x ;)δ内有定义,()0lim x x f x →存在的充要条件是: . 4. 设0x →时,函数1(1)1x x --+与x α是同阶无穷小量,则α= . 5. 曲线221x t y t t ?=-??=-??在1t =处的切线方程为: . 6. 设函数,0sin ()3,02(1),0x ax be x x f x x a b x x ?+?? 在0x =处连续,则a =_____,b =____.

二、 计算题. (共52分) 1. 求下列极限(每题6分,共24分) (1) 7020 90(36)(85)lim (51) x x x x →+∞+--. (2) 01lim []x x x →. (3) 30tan sin lim ln(1)x x x x →-+. (4) 2132lim ()31x x x x -→+∞+- .

2. 求下列导数(每小题6分,共18分) (1)32(arctan )y x =. (2)设cos x y e x =, 求(4)y . (3)求由参数方程()()()x f t y tf t f t '=??'=-? (设()f t ''存在且不为零)所确定的函数()y f x =的二阶导数22d y dx .

上海财经大学 数学分析 测试题 (大一)

《数学分析》考试题 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c , ( ) A. {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C. {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ????>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、''f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?)()(lim 02020 ; B. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; C. '000)()(lim ???? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则 ( ) A. ∈?ξ(b a ,),使0)('=ξf ; B. ∈?ξ(b a ,),使0)('≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)('x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有 ( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ; C. ?+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析期末考试题1、2(第二份有答案)

一、 判断题(每小题2分,共20分) 1.开域是非空连通开集,闭域是非空连通闭集. ( ) 2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( ) 3.连续函数的全增量等于偏增量之和. ( ) 4. xy y x f =),(在原点不可微. ( ) 5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( ) 6. dy y x xy y ) 1(sin 2 1 +? +∞ 在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( ) 9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度 T 不能用}{max 1i n i σ?≤≤来代替. ( ) 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy +=,则其全微分=dz . 2.设 3 2),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度= )(0P grad . 3.设L 为沿抛物线 22x y =,从)0,0(O 到)2,1(B 的一段,则?=+L ydx xdy . 4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于 . 5.曲面2732 22=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限 xy y x y x )(lim 22) 0,0(),(+→. 2. 设),(y x z z =是由方程z e z y x =++所确定的隐函数,求xy z . 3.设 ]1,0[]1,0[?=A ,求??++=A y x ydxdy I 2 322)1( . 4.计算抛物线) 0()(2 >=+a ax y x 与x 轴所围的面积.

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析期末考试题

数学分析期末考试题 一、叙述题:(每小题5分,共10分) 1、 叙述反常积分 a dx x f b a ,)(? 为奇点收敛的cauchy 收敛原理 2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)21 2111( lim n n n n +++++∞ →Λ 2、求摆线]2,0[)cos 1() sin (π∈? ??-=-=t t a y t t a x 与x 轴围成的面积 3、求?∞+∞-++dx x x cpv 211) ( 4、求幂级数∑∞ =-12 )1(n n n x 的收敛半径和收敛域 5、),(y x xy f u =, 求y x u ???2 三、讨论与验证题:(每小题10分,共30分) 1、y x y x y x f +-=2 ),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为 什么? 2、讨论反常积分 ? ∞ +0 arctan dx x x p 的敛散性。 3、讨论∑∞ =-+1 33))1(2(n n n n n 的敛散性。 四、证明题:(每小题10分,共20分) 1、 设f (x )在[a ,b ]连续,0)(≥x f 但不恒为0,证明0)(>? b a dx x f 2、 设函数u 和v 可微,证明grad (uv )=ugradv +vgradu

参考答案 一、1、,0.0>?>?δε使得δδδ<<?>?δε使得 D x x x x ∈<-?2,121,δ,成立ε<-)()(21x f x f 二、1、由于 x +11 在[0,1]可积,由定积分的定义知(2分) )21 2111( lim n n n n +++++∞ →Λ=2ln 11)11211111( 1lim 10=+=+++++?∞→dx x n n n n n n Λ(6分) 2、 、所求的面积为:220 23)cos 1(a dx x a ππ =-? (8分) 3、 解:π=++=++??-+∞→∞ +∞-A A A dx x x dx x x cpv 2 211lim 11) ( (3分) 4、解:11 lim 2=∞ →n n x ,r=1(4分) 由于x =0,x =2时,级数均收敛,所以收敛域为[0,2](4分) 5、解: y u ??=221y x f x f -(3分)3 22112212y x f xy f y f f y x u -++=???(5分) 三、1、解、 0lim lim lim ,1lim lim lim 2 02000200==+-==+-→→→→→→y y y x y x x x y x y x y x y x y x (5分)由于沿kx y =趋于(0,0)极限为k +11 所以重极限不存在(5分) 2、解:???∞+∞++=1100arctan arctan arctan dx x x dx x x dx x x p p p (2分),对?10arctan dx x x p ,由于 )0(1arctan 1+→→-x x x x p p 故p <2时?10arctan dx x x p 收敛(4分);?∞+1arctan dx x x p ,由于)(2arctan +∞→→x x x x p p π (4分)故p >1?∞+1arctan dx x x p 收敛,综上所述1

数学分析1-期末考试试卷(B卷)

数学分析1 期末考试试卷(B 卷) 一、填空题(本题共5个小题,每小题4分,满分20分) 1、设011 1,1n n x x x +== +, 则 lim n n x →∞ = 。 2、(归结原则)设0()(;)o f x U x δ在内有定义,0 lim ()x x f x →存在的充要条件是: 3、设)1ln(2x x y ++=,则=dy 。 4、当x = 时,函数()2x f x x =取得极小值。 5、已知)(x f 的一个原函数是 cos x x ,则()xf x dx '=? 。 二、单项选择题(本题共5个小题,每小题4分,满分20分) 1、设()232x x f x =+-,则当0x →时( )。 (A )()f x x 与是等价无穷小。 (B )()f x x 与是同阶但非等价无穷小。 (C )()f x x 为的高阶无穷小量。 (D )()f x x 为的低阶无穷小量。 2、设函数()f x x a =在点处可导,则函数()f x 在x a =处不可导的充分条件是( )。 (A )()0()0.f a f a '==且 (B )()0()0.f a f a '>>且

(C )()0()0.f a f a '=≠且 (D )()0()0.f a f a '<<且 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f , 则)(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 的导数在x a =处连续,又() lim 1x a f x x a →'=--,则( ) 。 (A )x a =是)(x f 的极小值。 (B )x a =是)(x f 的极大值。 (C )(,())a f a 是曲线()y f x =的拐点。 (D )x a =不是)(x f 的极 值点, (,())a f a 也不是曲线()y f x =的拐点。 5、下述命题正确的是( ) (A )设)(x f 和()g x 在0x 处不连续,则()()f x g x 在0x 处也不连续; (B )设()g x 在0x 处连续,0()0f x =,则0 lim ()()0x x f x g x →=; (C )设存在0δ>,使当00(,)x x x δ∈-时, ()() f x g x <,并设 lim (),x x f x a - →= lim (),x x g x b - →=,则必有a b <; (D )设 lim (),lim ()x x x x f x a g x b - - →→==,a b <,则存在0δ>,使当 00(,)x x x δ∈-时,()()f x g x <。

数学分析(2)期末试题集(单项选择题)

一、黎曼积分 1. 设函数()?? ? ??+≤+=?-x dt t f x F x x x x x f 12.0,4cos ,0,1π,则( D ). (A) ()x F 为()x f 的一个原函数. (B) ()x F 在()+∞∞-,上可微,但不是()x f 的原函数. (C)()x F 在()+∞∞-,上不连续 (D) ()x F 在()+∞∞-,上连续,但不是()x f 的原函数. (注: 因为0=x 是()x f 的第一类跳跃间断点,因而()x f 不可能在包括0=x 点在内的区间上有原函数,因此(A)不正确.当()x f 有第一类间断点()b a x ,0∈,但()x f 在[]0,x a 与 ()b x ,0内连续时,函数()()()b a x dt t f x F x ,, 1∈=?-在区间()b a ,内连续,因此(C)也不正确, 而导函数不可能有第一类间断点,故(B)不正确,因而正确选项为(D)). 3. 设函数()?????=≠+=,0,0,0,1sin 21cos 222x x x x x x x f ()?????=≠=.0, 0, 0,1cos 22 x x x x x F 则在()+∞∞-,内( A ). (A) ()x f 不连续且不可微, ()x F 可微,且()x F 为()x f 的一个原函数. (B) ()x f 不连续,不存在原函数,因而()x F 不是()x f 的原函数. (C) ()x f 与()x F 均为可微函数,且()x F 为()x f 的一个原函数. (D) ()x f 连续且()()x f x F ='.

相关文档
相关文档 最新文档