文档库 最新最全的文档下载
当前位置:文档库 › 射频电缆的参数理论

射频电缆的参数理论

射频电缆的参数理论
射频电缆的参数理论

射频电缆的参数理论

第一节 特性阻抗

特性阻抗是选用电缆的首先要考虑的参数,它是电缆本身的参数,它取决于导体的直径以及绝缘结构的等效介电常数。

特性阻抗对于电缆的使用有很大的影响。例如在选择射频电缆作为发射天线馈线时,其特性阻抗应尽可能和天线的阻抗一致,否则会在电缆和天线的连接处造成信号反射,使得天线得到的功率减少,电缆的传输效率也会下降,更为严重的是,反射的存在会使电缆沿线出现驻波,有些地方会出现电压和电流的过载,从而造成电缆的热击穿或热损伤而影响电缆的正常运行。电缆内部反射的存在,还会造成传输信号的畸变,使传输信号出现重影,严重影响信号传输质量。

为了便于使用,射频电缆的阻抗已经标准化了。因此在选用电缆时应尽可能选用标准阻抗值。对于射频同轴电缆有以下三中标准阻抗: 50±2ohm 推荐使用于射频及微波,用于测试仪表以及同轴-波导转换器等;

75±3ohm 用于视频或者脉冲数据传输,用于大长度例如CA TV 电缆传输系统;

100±5ohm 用于低电容电缆以及其它特种电缆。

以下是同轴电缆特性阻抗计算的各种公式。

§1.1同轴电缆阻抗公式

根据传输理论,特性阻抗公式为:

Zc =)/()(C j G L j R ωω++

式中,R 、L 、G 、C 、代表该传输线的一次参数,而ω=2πf 代表信号的角频率。

对于射频同轴电缆传输高频信号,通常都有R <<ωL ,G <<ωC ,此时特性阻抗公式可以简化为:

Zc =C

L/=60?ln(D/d)/ε=138?l g(D/d)/ε(ohm)

式中,D为外导体内直径(mm)

d为内导体外直径(mm)

ε为绝缘相对介电常数

表1给出了常用绝缘材料的相对介电常数。

表1常用介质材料的特性

§1.2皱纹外导体同轴电缆阻抗公式

皱纹外导体已经获得广泛应用,阻抗尚无标准的方法计算,可以利用电容电感参考方法进行计算。

测量出L和C后可以计算阻抗:

Zc =C

L/

§1.4特性阻抗与电容的关系

同轴电缆的特性阻抗与电容有如下简单的关系,即

Zc=104/3·ε/ C

式中,C为电缆电容(pF/m)

第二节电容

电容是射频电缆的一个重要参数,同轴电缆的电容按照下式计算:

C=1000ε/(18lnD/d)=24.13ε/(lgD/d)(pF/m)

第三节衰减

衰减是射频电缆的重要参数之一,它反映了电磁能量沿电缆传输时的损耗的大小。

电缆的衰减表示电缆在行波状态下工作时传输功率或者电压的损耗的程度,即

αl=10lgP1/P2=20lgU1/U2(dB)

式中,α为电缆的衰减常数(dB/m)

l为电缆长度(m)

电缆的衰减越大,表明信号的损耗越严重,电缆的传输效率越差,如果电缆的衰减为3dB,表明信号传输此电缆后电压或电流的幅度下降30%,信号功率下降50%。

为了提高电缆的传输效率,总是希望电缆的衰减尽可能的低,但低损耗的电缆通常要贵许多,这是因为它通常制成大尺寸,并且采用结构复杂的空气或半空气绝缘,低损耗电缆还经常采用特殊结构的导体,也相应会增加成本。

因此,电缆的衰减是十分重要的指标,特别在大长度传输时更是如此。为了降低电缆的衰减,要在经济上付出相当大的代价。选用电缆并非是衰减越低越好,必须将衰减指标和其它因素例如尺寸、柔韧性同时考虑,才能选得经济合理的电缆。

§3.1衰减的计算公式

在射频下,同轴电缆衰减通常可以用下式表示:

α=αR+αG=R/2·L

L/

C/+G/2·C

式中,αR为导体电阻损耗引起的衰减分量,称为导体衰减

αG为绝缘损耗引起的衰减分量,称为介质衰减

一、导体衰减

同轴电缆内外导体均为圆柱形导体时,导体衰减如下公式:

αR =2.61×10-3εf (1/d +1/D )/lgD/d (dB/km )

式中,f 为频率(Hz )

ε为绝缘介电常数

D 为外导体内径(mm )

d 为内导体外径(mm )

注:上式是将标准软铜电阻率1.724×10-6ohm ·cm 代入计算得到的。 如果导体是双金属结构形式,在高频下,可以将它看成是由表面材料组成的单金属导体来处理。

在大功率射频电缆中,内外导体的温度会升高,因此电阻也随着升高,从而使衰减增大,因此在公式中引入衰减的温度系数:

Kt =)20(1-+t t α

式中,t α为导体温度系数,对于铜,可取t α=0.00393 1/℃ 标准软铝,可取t α=0.00407 1/℃

二、介质衰减

绝缘介质衰减可以按照下式计算:

G α=9.1×10-5f ε

tg δ (dB/km ) 对于组合绝缘,如果介质1是固体材料,介质2是空气,即有: tg e δ=tg δ+2εtg δ(1-P)/{2ε+1-2P (ε-1)}-εtg δ(2+P)/{ 2ε+1+ P (ε-1)}

式中,P 为发泡度,ε、tg δ为固体介质相应参数。

§3.2驻波对衰减的影响

电缆在实际工作状态下,其负载阻抗不一定匹配,从而在负载处发生信号功率的反射,引起失配损耗。

失配损耗α?=10lgPm/P =10lg1/(1-2

Γ)=10lg(S+1)2/(4S) 式中,P 为负载失配时吸收的功率

Pm为负载失配时可吸收的功率,此为最大吸收功率

S为电压驻波比

Г为负载的反射系数

电压驻波比条件下的失配损耗可以利用表3查得。

表3电压驻波比、回波损耗、传输损耗、反射系数、反射功率对照表

第四节

第五节阻抗不均匀和驻波

§4.1概述

在推导传输理论公式时,假定电缆是均匀的,即沿着传输方向电缆的各点的阻抗是相同的,但是在实际上是不可能的。电缆在制造过程中,其导体直径、绝缘外径、发泡度总是或多或少存在着变化的,而导体间也有可能存在偏心,绝缘介电常数在长度方向上也可能存在变化,因此在实际线路上,每一点的阻抗都不一定相等。

通常,我们称线上任意一个截面上的特性阻抗为局部特性阻抗Zx ,则电缆的Zx 是沿线变化的,即使终端匹配,其始端的输入阻抗也不一定等于其匹配阻抗值,而且这种输入阻抗值与频率、电缆长度都有关系,为了反映这种线路不均匀的情况,引入了“有效特性阻抗”概念。

根据国际电工委员会标准,电缆的有效特性阻抗定义为:

Ze = Z Z 0

式中,Z 0为电缆终端短路时的输入阻抗

Z ∞为电缆终端开路时的输入阻抗

有效特性阻抗通常用于较高的射频频率,而在较低的频率下一般采用平均特性阻抗Z m 。

平均特性阻抗是沿线所有的局部特性阻抗Zx 的算术平均值。因为在低频下,波长比较长,每个不均匀性的长度只占信号波长的很小部分,在一个半波长的长度内存在很多的不均匀点,不均匀点引起的发射在始端的迭加是算术迭加,因此,在低频下有效特性阻抗实质上是沿线分布的许多局部特性阻抗的算术平均值Z m 。在高频下,由于波长比较短,在始端出现的总的发射波不仅取决于沿线各点Zx 引起的许多内部发射波的大小,而且与它们之间的相位有关系,也就是说,在高频下线路的有效特性阻抗Ze 是许多内部不均匀性Zx 的矢量迭加的结果。有效特性阻抗与平均特性阻抗不同,它对于频率的变化是敏感的,很小的频率变化往往会引起有效特性阻抗的很大变化。

下图是终端匹配的不均匀线路的输入阻抗与频率的关系,图中曲线

(a)表示沿线只存在一个不均匀性的情况,曲线(b)则表示沿线存在周期性不均匀性的情况,曲线(c)则反映了随机分布不均匀性的情况。实际上这些曲线就是电缆的有效特性阻抗Ze与频率的关系曲线。

这种随频率变化的输入阻抗是十分有害的。线路的输入阻抗随频率的波动会引起线路输入功率也随之波动,还会引起线路的衰减特性随频率之波动。内部不均匀性除了会引起输入阻抗的变化外,还存在着二次发射的恶劣影响。所谓二次发射是指入射波沿线前进遇到一个不均匀点反射回去之后,又遇到一个不均匀点再次反射而重新传输到终点。这种两次反射信号与主信号在时间上存在一个延迟距离,会引起信号的畸变。因此,内部不均匀性对电缆的传输性能影响很大,通常要求越小越好。阻抗内部不均匀性的大小标志着电缆产品杂制造工艺的好坏,要在宽频带内电缆保持良好的阻抗均匀性,必须在制造工艺上狠下功夫,因此,设备的稳定性能对于电缆尤其重要。

图1. 内部不均匀性的典型曲线

(a)沿线只存在一个不均匀性

(b)沿线存在着周期性的阻抗不均匀性

(c)随机分布的不均匀性

§4.2阻抗偏差、驻波和回波损耗

内部阻抗不均匀性的大小可以用有效特性阻抗Ze与额定阻抗值的偏差来表示,阻抗偏差越大,则反映内部不均匀性越厉害。

作为射频电缆的内部不均匀性的指标,国际电工委员会曾经规定,在2300~3300MHz的频段范围内,均匀地选取20个测试频率,彻得的有效阻抗与额定阻抗的偏差的均方根值应不大于额定阻抗值的3%。

更常用的是采用电缆的输入驻波比作为内部不均匀的指标。

驻波比S和阻抗偏差ΔZ之间很容易由下式换算:

S={1+Γ}/{1-Γ}={2Zc+ΔZ}/{2Zc-ΔZ}

式中Γ代表输入端反射系数。

Γ=ΔZ /{Zc +(Zc +ΔZ)}≈ΔZ /2Zc

ΔZ表示有效特性阻抗Ze与额定阻抗Zc的偏差。

电缆内部不均匀性指标还可以使用下式定义的回波损耗:

回波损耗SRL=-20lgΓ分贝

回波损耗越大,代表反射系数越小,也就是驻波比S越小,电缆内部均匀性越好。驻波比、反射系数和回波损耗之间的关系见表3。

§4.3周期性的阻抗不均匀性

同轴电缆制造时,由于制造工艺的缺陷,例如绝缘挤出不均匀、牵引轮的偏心、周期性的受力等因素,会使成品电缆沿长度方向上出线局部特性阻抗的周期性变化,当电缆长度很大时,会由于信号的内部反射在始端产生同相位迭加,从而出现反射系数的很大峰值而影响电缆的正常使用。

周期性阻抗不均匀性有很严重的影响,小的不均匀性会由于内部谐振而导致很大的反射系数峰值,这种峰值出线的频率与周期长度直接有关,可以按照下式确定:

f =150 /{ h}

式中h——周期长度(m);

ε——电缆的等效介电常数

例如:

重心不均匀的放线盘具直径为8英寸时,会对聚乙烯绝缘挤塑工艺引入周期变化的节距为h=8×25.4×3.14×0.001=0.638m,并使成品电缆的回波损耗曲线在208MHz频率下出现谐振峰值。

§4.3周期性的阻抗不均匀性

如果电缆上存在随机分布的许多不均匀性,则这种情况要比周期性不均匀好的得多。随机分布不会如周期性分布那样在某一个频率下出现尖锐的峰值,其输入阻抗的频率特性是显示出噪音般的随机性(如图1.的曲线c)。由于随机分布是由于制造工艺所决定的,其分布规律无法用理论方法决定。电压驻波比与电缆长度关系如下图2。

从图上可以看出来,实测数据与按随机分布计算出来的结果接近,从而表明电缆工艺尚好,即没有什么显著的周期性不均匀,因此,即使电缆使用长度很大,也不会出现电压驻波比的显著恶化。

第六节工作电压

当同轴电缆受到一定的电压时,内导体表面具有最大的电场强度,这是电缆的最薄弱区域。

内导体表面场强和工作电压有如下关系:

V=0.5×E d ln(D/d)

如果用电场强度E用(kV/cm),d用mm表示,则可以求出:

V=0.115×E d lg(D/d)kV(峰值)

或者U=0.008×E d lg(D/d)kV(有效值)

对于电缆结构,最大允许工作强度E可以按照表4选取,表中数据是根据实验得出的,并考虑了安全因素,因此适用于所有射频电缆。

表4射频电缆允许的最大工作场强(kV/cm)

是由于绞线情况下聚乙烯介质与导线之间有更加紧密的接触,从而使介质和导体间存在的空气间隙减少而引起的。

根据有关文献介绍,电缆的射频工作电压可以根据电晕电压实际测量值来确定。电缆在工作时,其工作电压应该比介质材料的击穿电压小很多,因为介质与导体之间或介质内部存在空气间隙,在比介质材料的击穿电压低得多的电压下,这种空气间隙就会发生电晕放电,这种放电是十分有害的,它会使绝缘介质逐步损坏,从而使得电缆寿命降低。电缆的工作电压应该比电晕电压低,即可以如下选取:

射频工作电压(峰值)=工频电晕电压(峰值)×0.35

式中的0.35是考虑了安全因素2以及射频耐压强度比工频耐压强度降低30%而得出的。

工频电晕电压可以通过实验来确定,并且应该取电晕熄灭电压(即

先加上电压使得电晕发生,然后逐步降低电压,直到电晕熄灭为止时的电压)。

电缆在匹配状态下,其承受的电压与输入功率有如下关系:

V =C PZ 2(峰值)

如果电缆在失配状态下,并且有振幅调制时,则治安同样功率下会产生更高的电压,即

V =C PZ 2(1+m )S (峰值)

式中P ――信号的载波功率

m ――调制度

S ――电压驻波比

如果电缆承受的是脉冲调制,则峰值电压可以直接从电缆所传输的峰值功率按照上式计算。

第七节 相移

当同轴电缆受到一定的电压时,内导体表面具有最大的电场强度,这是电缆的最薄弱区域。

§6.1射频电缆的相移常数公式

在射频条件下,同轴电缆的相移常数可用如下简化公式来计算: LC ωβ=

επ)(3

20MHz f = (弧度/千米)

ε)(1200MHz f = (度/千米)

式中f (MHz )为以MHz 为单位的使用频率

ε为电缆的等效介电常数

应该注意到,电缆的相移常数是与电缆的结构尺寸无关的参数,它仅仅取决于电缆的使用中的介质,随着频率的升高而正比增大。 §6.2温度引起的相移变化

相控阵雷达、射电望远镜、卫星跟踪站等特殊用途的同轴电缆,要求其相移不随温度、压力等环境因素的影响,这种要求相位稳定的电缆为稳相电缆。

在环境因素中最主要的是温度变化,由于环境温度的变化会引起电缆长度的变化以及介质材料的介电常数的变化,从而引起电缆相位的变化。同轴电缆每升高1℃所引起的相位变化通常称为相位变化率,这是稳相电缆的重要指标。

电缆的相位变化率取决于电缆的结构与介质的材料的变化。一般说来,聚乙烯绝缘电缆具有较大的相位变化率,它通常可以达到-(200~480)×10-6/℃,泡沫聚乙烯绝缘电缆在-25~+65℃范围内具有+18.1×10-6/℃数量级。

温度引起的相位变化取决于电缆的机械长度的热胀冷缩引起的变化,一般为正值,也取决于介质介电常数的变化,一般是负值。因此,如果通过电缆结构的良好设计,使两者一致,即可以获得高度稳定相位的电缆结构。

§6.3电缆弯曲、扭转、冲击引起的相移变化

电缆根据使用场合的不同,不仅要求电缆的相位不随温度的变化,而且要求电缆的相位不随弯曲、扭曲、冲击、振动等机械应力的长期而变化。反复的弯曲、扭转等机械应力会导致电缆内导体和外导体的机械硬化作用,使电缆的长度发生变化,从而引起相位的变化,外导体结构以及电缆各部分之间在弯曲等机械应力作用下发生尺寸变化或者位移会导致电缆的相位变化,因此高机械稳相的射频电缆必须采用特殊的设计和结构形式,其内导体、绝缘、外导体结构应在弯曲时保持稳定,而且相互之间结合紧密,从而保持电缆的结构稳定性以达到相位不随弯曲、冲击、扭转等机械应力的变化的目的。

第八节最高使用频率

射频电缆的使用频率正在向更高频率发展。现在射频电缆最高可以传输65GHz 的频率,这代表电缆质量日益改善的结果。

一般说来,射频电缆可以使用的频率范围受到对电缆的低衰减、低驻波比要求的限制。如果通过结构以及工艺的改进,排除上述两大因素的限制,则电缆最终还要受到高次比出现的截止频率的限制。

§7.1电缆的截止频率

电缆在正常情况下是传输横电磁波(TEM 波),如果电缆的横向尺寸与工作频率下的波长可以相比拟时,其中还会出现高次波的传输从而大大消耗了能量而不能使用。通常把高次波出现的频率称为同轴电缆的截止频率。

同轴电缆中最早出现的高次波是TE 11波,因此,同轴电缆截止频率是指TE 11波出现的频率,即: ())

(1091.125d D d D c f c +?=+=επεπ (MHz ) 式中c 为光速,c =3×108m/s ;

ε为电缆的等效介电常数;

D 、d 分别为电缆的内外导体直径,单位mm

因此,随着电缆直径的增大,截止频率不断下降。如果使用频率给定,则电缆的直径增大就受到限制。例如,50ohm 的电缆,假设其为半空气绝缘,介电常数为1.1,如果电缆要使用到3000MHz ,则电缆的介质外径最大值为128.5/3=42.8mm 。电缆的外径增大受限制,则其衰减值的降低,同样也受到限制。

§7.2介质结构对于最高使用频率的限制

如果电缆的介质是不均匀的(例如绝缘垫片绝缘),则这种绝缘结构存在一定的周期不均匀性。

受绝缘不均匀性影响的最高使用频率按照下式计算:

ε

εh h c f c 5105.12?== (MHz ) 式中,h 为绝缘周期不均匀的周期长度(mm )

§7.3衰减指标对于最高使用频率的限制

同轴电缆的衰减要求同样也会限制电缆的最高使用频率。衰减指标对于使用频率的限制,与其具体产品结构有关,而且与该指标的大小有关。具体的使用频率的上限的确定要视实际情况而定,不能一概而论。

第九节 延迟时间

射频信号在电缆中传输时,其单问长度上的延迟时间可以按照下式计算:

(s/m ) (ns/m ) 从上式可以看出,同轴电缆的延迟时间与电缆的尺寸无关,仅仅取决于电缆的等效介电常数。

εε33310118=?==

=V LC T

电力电缆主要电气参数计算及计算实例

电力电缆主要电气参数计算及计算实例 Document number:PBGCG-0857-BTDO-0089-PTT1998

1.设计电压 及附件的设计必须满足额定电压、雷电冲击电压、操作冲击电压和系统最高电压的要求。其定义如下: 额定电压 额定电压是电缆及附件设计和电性试验用的基准电压,用U0/U表示。 U0——电缆及附件设计的导体和绝缘屏蔽之间的额定工频电压有效值,单位为kV; U——电缆及附件设计的各相导体间的额定工频电 压有效值,单位为kV。 雷电冲击电压 UP——电缆及附件设计所需承受的雷电冲击电压的峰值,既基本绝缘水平BIL,单位为kV。 操作冲击电压 US——电缆及附件设计所需承受的操作冲击电压的峰值,单位为kV。 系统最高电压 Um——是在正常运行条件下任何时候和电网上任何点最高相间电压的有效值。它不包括由于故障条件和大负荷的突然切断而造成的电压暂时的变化,单位为kV。 定额电压参数见下表(点击放大)

330kV操作冲击电压的峰值为950kV;500kV操作冲击电压的峰值为1175kV。 2.导体电阻 导体直流电阻 单位长度电缆的导直流电阻用下式计算: 式中: R'——单位长度电缆导体在θ℃温度下的直流电阻; A——导体截面积,如导体右n根相同直径d的导线扭合而成,A=nπd2/4; ρ20——导体在温度为20℃时的电阻率,对于标准软铜ρ20=Ω˙mm2/m:对于标准硬铝:ρ20=Ω˙mm2/m; 1 α——导体电阻的温度系数(1/℃);对于标准软铜:=℃-1;对于标准硬铝:=℃-1; k1——单根导线加工过程引起金属电阻率的增加所引入的系数。一般为(线径越小,系数越大);具体可见《电线电缆手册》表3-2-2; k2——用多根导线绞合而成的线芯,使单根导线长度增加所引入的系数。对于实心线芯,=1;对于固定敷设电缆紧压多根导线绞合线芯结构,=(200mm2以下)~(240mm2以上) k3——紧压线芯因紧压过程使导线发硬、电阻率增加所引入的系数(约);

运放关键参数及选型原则

运放参数解释及常用运放选型 集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。本文以NE5532为例,分别对各指标作简单解释。下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。 极限参数 主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下: 直流指标 运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。NE5532的直流指标如下:

输入失调电压Vos 输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV 之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT 输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流Ios 输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。 Input bias current(偏置电流)是运放输入端的固有特性,是使输出电压为零(或规定值)时,流入两输入端电流的平均值。偏置电流bias current就是第一级放大器输入晶体管的基极直流电流。这个电流保证放大器工作在线性范围, 为放大器提供直流工作点。 输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

同轴电缆的电气参数计算

同轴电缆的电气参数计算同轴电 缆的一个回路是同轴对,它是对 地不对称的.在金属圆管(称为外 导体)内配置另一圆形导体(称为 内导体),用绝缘介质使两者相互 绝缘并保持轴心重合,这样所构 成的线对称同轴对。同轴电缆可 用于开通多路栽波通信或传输电 视节 目,也可用同轴电缆传输高数码的数据信息(如 UL2919屏幕线) 1.一次传输参数: 同轴电缆的一次传输参数主要随电流的频率及电缆结构尺寸D/d变化而变化. (1).有效电阻,随频率的增大而增大?而与

内外导体直径比没直接的关系? (2).电感随频率的增大而减小,随内外导体直径比增大而增大. (3).电容与频率无关,随直径比的增大而减小. (4).电导与频率基本上成正比,随直径的增大而减小. 具体计算公式如下 1.1.有效电阻: 同轴电缆的有效电阻包括内导体的有效电阻及外导体的有效电阻,当内外导体都是铜导体时,总的有效电阻为: d d D 1.2有效电感: 同轴回路的电感由内?外导体的内电感和内外导体之间的外电感组成,当内外导体都是铜时回路的电感为: 2? 132 1 1 *

L=①恤(孑)十卡主〒+万沪L(T宮萤醛 1.3同轴电缆电容: 同于同轴电缆无外部电场,所以同轴对的工作电容就等于同轴对内外导体间的部分电容,电容计算可按圆柱形电容器的电容公式来计算:

Dw外导体结构的修正系数(理想外导体Dw=O 非理想外导体Dw编织外导体中的单线直径) K1-内导体结构的修正系数, D1-同轴线外导体内径(mm) 1.4绝缘电导: 同轴对的绝缘导体G由两部分组成:一是由绝缘介质极化作用引起的交流电导G?,另一个部分是由于绝缘不完善而引起的直流电导G0: G=GO+G? f 一r" 4 ”aji I n m ii .i.? a 2.二次传输参数: 二次传输参数是用以表征传输线的特性参数,它包括特性阻抗ZC,衰减常数a ,及相移常数. 2.1.同轴电缆特性阻抗:

标准化的理论 方法与实践试题与答案

2017年公需课计划 标准化的理论、方法与实践 1、标准化是人类社会发展的必然产物。共同的语言、文字、历法、生产工具是人类社会发展和进步最基本和初级的需求,这些都是最早出现的具有()特征的事物,而且多是以实物的形态呈现的。 A:标准化 2、惠特尼是实行()生产的创始者。 B:标准化 3、1906年英国颁布了()BS27。此后,螺纹、各种零件和材料等也先后实现了标准化,成百倍地提高了劳动生产率。 D:国家公差标准 4、()管理体系建立是以“泰罗制”和“福特制”为标志的。 C:现代标准化 5、由于工业化和交通运输业的进一步发展,迫切需要解决同样的零部件在更大的范围内实现统一和互换问题,要解决这些问题,需要建立一个协调性组织来统一这些零部件的标准,从而推动世界上第一个()——英国工程标准委员会于1901年诞生,它标志着标准化从此步入了一个新的发展阶段。此后不久,约有25个国家相继成立了国家标准化组织。 A:国家标准化组织 6、1928年又创立了国际标准协会国际联合会(ISA),1946年10月14日在ISA的基础上成立(),代表联合国负责国际间标准化工作的协调统一工作。 A:国际标准化组织(ISO) 7、标准是()。 D:为了在一定的范围之内获得最佳秩序,经过协商一致制定且由公认机构批准,共同使用和重复使用的一种规范性文件 8、标准化是()。 B:为了在一定范围内获得最佳秩序,对潜在问题或现实问题制定重复使用和共同使用的条款的活动 9、简化原理是()。 A:在一定范围内缩减标准化对象的类型和数目 10、统一化原理是()。 D:把同类事物两种或两种以上的表现形态归并为一种或限定在一个范围的标准化形式11、通用化原理是()。 C:在互相独立的系统中,最大限度地扩大具有功能互换和尺寸互换的功能单元使用范围的一种标准化形式 12、系列化原理是() B:根据同一类产品的发展规律和使用要求,将其性能参数按一定数列作合理安排和规划,并对其形式和结构进行规划或统一,从而有目的地指导同类产品发展的一种标准化形式13、组合化原理是()。 A:按照标准化原则,设计并制造出一系列通用性很强且能多次重复应用的单元,根据需要拼合成不同用途的产品的一种标准化形式 14、模块化原理是()。 C:在对一定范围内的不同产品进行功能分析和分解的基础上,划分并设计、生产出一系列通用模块或标准模块,然后,从这些模块中选取相应的模块并补充新设计的专用模块和零部件一起进行相应的组合,以构成满足各种不同需要的产品的一种标准化形式 15、采标是()。 D:将国际标准或国际先进标准的内容,经过分析研究,不同程度地转化为我国标准并贯彻实施 16、采标的原则是()。 B:凡已有国际标准,应当以其为基础制定我国标准。凡尚无国际标准或国际标准不能适应需要,应当积极采用国外先进标准 17、质量功能展开法是() C:是把顾客或市场的要求转化为设计要求、零部件特性、工艺要求、生产要求的多层次演绎分析方法和质量工程工具,用来指导产品的设计和质量保证 18、正交试验设计法是()。 A:是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,是一种高效率、快速、经济的实验设计方法 19、三次设计法是()。D:包括系统设计(第一次设计)、参数设计(第二次设计)和容差设计(第三次设计)。它是一种优化设计,主要用于质量管理前期的技术开发、产品开发、工艺开发,从而可提高产品设计质量,降低成本,缩短设计开发周期 20、数据统计标准体系主要有()个方面的标准。 C:6 21、标准体系表是()。B:一定范围内的标准体系内的标准按其内在的联系排列起来的图表 22、标准体系表的编制原则是()。C:目标明确、全面成套、层次适当、划分清楚

项目反应理论

项目反应理论 随着心理学的发展,心理测量无论是在理论上,还是在方法上都逐步地提高。目前,心理测量有三大理论派别:经典测量理论(Classical Test Theory ,简称CTT),项目反应理论(Item Response Theory ,简称IRT)和概化理论(Generalizability Theory , 简称GT)。项目反应理论是一种先进的测量理论,它是针对经典测量理论的不足而提出来的,其理 论基础是潜在特质理论。项目反应理论的基本思路是确定考生的心理特质值和他们对于项目的反应之间的关系,这种关系的数学形式就是“项目反应模型”。下面主要对项目反应的理论假设和数学模型做一下简要概述。 项目反应理论的基本假设 任何一种数学模型都有一定的前提,任何一种测量都有一定的假设,在项目 反应理论中也有三条最基本的假设:潜在特质空间的单维性假设、测验项目间的局 部独立性假设、项目特征曲线假设。有的学者还增加了“知道一一答对”假设和非速度限制假设。在此仅说明前面三条最基本的假设。 1、潜在特质空间的单维性假设 潜在特质空间是指由心理学中的潜在特质组成的抽象空间。如果考生在测验项目上的 反应是有K种潜在特质所决定的,那么这些潜在特征就定义了一个K维潜在空间,考生 的各个潜在特质分数综合起来,就决定了该考生在该潜在空间的位置。如果影响考生测验分数的所有重要的心理特质都被确定了,那么该潜在空间就称为完全潜在空间。 目前比较成熟的大多数项目反应模型都假设完全潜在空间是单维的,即只有一种潜在 特质决定了考生对项目的反应,也就是说组成某个测验的所有项目都是测量的同一个心理变量,例如知识、能力、态度或人格。当然,这一假设往往不可能得到严格的满足,因为总有其他因素会影响到考生在测验上的反应,这些因素包括认知的、人格的和施测时的客观条件,以及考生的动机水平、焦虑程度、反应速度和考试技巧等。因此在项目反应理论中,只要所预测量的心理特质是影响考生对项目作出反应的主要因素,那么就认为这组测验数据是满足单维假设的。 2、测验项目间的局部独立性假设 所谓局部独立性假设是指某个考生对于某个项目的正确概率不会受到他对于该测验中其他项目反应的影响,也就是说只有考生的特质水平和项目的特性会影响到考生对该项目的反应。在实际的教育 和心理测量问题中,如果前一个项目的内容为后一个项目的 正确反应提供暗示或其它有效的信息,局部独立性的假设就会遭到破坏,例如所谓的链 状试题就会出现这种情况。局部独立性是建立在统计的意义上的,用统计学的语言,局

同轴电缆的电气参数计算

同轴电缆的一个回路是同轴对,它是对地不对称的.在金属圆管(称为外导体)配置另一圆形导体(称为导体),用绝缘介质使两者相互绝缘并保持轴心重合,这样所构成的线对称同轴对。同轴电缆可用于开通多路栽波通信或传输电视节目,也可用同轴电缆传输高数码的数据信息(如UL2919屏幕线) 1.一次传输参数: 同轴电缆的一次传输参数主要随电流的频率及电缆结构尺寸D/d变化而变化. (1).有效电阻,随频率的增大而增大.而与外导体直径比没直接的关系. (2).电感随频率的增大而减小,随外导体直径比增大而增大. (3).电容与频率无关,随直径比的增大而减小. (4).电导与频率基本上成正比,随直径的增大而减小. 具体计算公式如下: 1.1.有效电阻: 同轴电缆的有效电阻包括导体的有效电阻及外导体的有效电阻,当外导体都是铜导体时,总的有效电阻为: 1.2有效电感: 同轴回路的电感由.外导体的电感和外导体之间的外电感组成,当外导体都是铜时,回路的电感为: 1.3同轴电缆电容﹕ 同于同轴电缆无外部电场,所以同轴对的工作电容就等于同轴对外导体间的部分电容,电容计算可按圆柱形电容器的电容公式来计算:

Dw-外导体结构的修正系数(理想外导体Dw=0,非理想外导体Dw=编织外导体中的单线直径) K1-导体结构的修正系数, D1-同轴线外导体径(mm) 1.4绝缘电导: 同轴对的绝缘导体G由两部分组成: 一是由绝缘介质极化作用引起的交流电导G~,另一个部分是由于绝缘不完善而引起的直流电导G0: G=G0+G~ 2.二次传输参数: 二次传输参数是用以表征传输线的特性参数,它包括特性阻抗ZC,衰减常数α,及相移常数. 2.1.同轴电缆特性阻抗﹕ 2.1.1.对于斜包,铝箔纵包可近似看作是理想外导体,计算如下:

项目反应理论

项目反应理论 随着心理学的发展, 心理测量无论是在理论上, 还是在方法上都逐步地提高。目前, 心理测量有三大理论派别: 经典测量理论(Classical Test Theory , 简称CTT) , 项目反应理论( Item Response Theory , 简称IRT) 和概化理论( Generalizability Theory , 简称GT)。 项目反应理论是一种先进的测量理论,它是针对经典测量理论的不足而提出来的, 其理论基础是潜在特质理论。项目反应理论的基本思路是确定考生的心理特质值和他们对于项目的反应之间的关系, 这种关系的数学形式就是“项目反应模型”。下面主要对项目反应的理论假设和数学模型做一下简要概述。 一、项目反应理论的基本假设 任何一种数学模型都有一定的前提,任何一种测量都有一定的假设,在项目反应理论中也有三条最基本的假设:潜在特质空间的单维性假设、测验项目间的局部独立性假设、项目特征曲线假设。有的学者还增加了“知道——答对”假设和非速度限制假设。在此仅说明前面三条最基本的假设。 1、潜在特质空间的单维性假设 潜在特质空间是指由心理学中的潜在特质组成的抽象空间。如果考生在测验项目上的反应是有K种潜在特质所决定的,那么这些潜在特征就定义了一个K维潜在空间,考生的各个潜在特质分数综合起来,就决定了该考生在该潜在空间的位置。如果影响考生测验分数的所有重要的心理特质都被确定了,那么该潜在空间就称为完全潜在空间。 目前比较成熟的大多数项目反应模型都假设完全潜在空间是单维的,即只有一种潜在特质决定了考生对项目的反应,也就是说组成某个测验的所有项目都是测量的同一个心理变量,例如知识、能力、态度或人格。当然,这一假设往往不可能得到严格的满足,因为总有其他因素会影响到考生在测验上的反应,这些因素包括认知的、人格的和施测时的客观条件,以及考生的动机水平、焦虑程度、反应速度和考试技巧等。因此在项目反应理论中,只要所预测量的心理特质是影响考生对项目作出反应的主要因素,那么就认为这组测验数据是满足单维假设的。 2、测验项目间的局部独立性假设 所谓局部独立性假设是指某个考生对于某个项目的正确概率不会受到他对于该测验中其他项目反应的影响,也就是说只有考生的特质水平和项目的特性会影响到考生对该项目的反应。在实际的教育和心理测量问题中, 如果前一个项目的内容为后一个项目的

2017年公需课标准化的理论、方法与实践答案

1)单选题,共10题,每题3.0分,共30.0分 1单选题(3.0分) 2008年出版社的《标准化与经济增长——理论、实证与案例》:近30年来,我国标准数量每增加1%,经济增长()%。 A. 0.1 B. 0.5 C. 1.79 D. 1.8 答案C解析 2单选题(3.0分) 标准化是人类社会发展的必然产物。共同的语言、文字、历法、生产工具是人类社会发展和进步最基本和初级的需求,这些都是最早出现的具有()特征的事物,而且多是以实物的形态呈现的。 A. 标准化 B. 标志性 C. 标准 D. 文化 答案A解析 3单选题(3.0分) 参与国际标准化活动能力进一步增强,承担国际标准化技术机构数量持续增长,参与和主导制定国际标准数量达到年度国际标准制修订总数的()。 A. 0.4 B. 0.5 C. 0.45 D. 1.6 答案B解析 4单选题(3.0分) 《深圳市知识产权与标准化战略纲要(2011-2015年)》,这是国内首部标准化与()结合的战略纲要。该纲要明确了下一阶段实施知识产权战略和标准化战略的各项任务和措施。 A. 科技 B. 知识产权 C. 技术创新 D. 专利

答案B解析 5单选题(3.0分) 职业能力倾向是()。 A. 职业性向 B. 潜能 C. 职业人格 D. 从业人员在学习和掌握必备的职业知识和技能时所需具备的基本能力和潜力 答案D解析 6单选题(3.0分) 三次设计法是()。 A. 是一种优化设计,主要用于质量管理前期的技术开发、产品开发、工艺开发 B. 是在20世纪70年代由日本质量管理专家田口玄一提出的一种质量管理方法 C. 是把顾客或市场的要求转化为设计要求、工艺要求、生产要求的质量工程工具,用来指导产品的设计和质量保证 D. 包括系统设计(第一次设计)、参数设计(第二次设计)和容差设计(第三次设计)。它是一种优化设计,主要用于质量管理前期的技术开发、产品开发、工艺开发,从而可提高产品设计质量,降低成本,缩短设计开发周期 答案D解析 7单选题(3.0分) 合格产品和服务的基础是() A. 管理 B. 人和组织 C. 严格的规章制度 D. 高素质的员工 答案B解析 8单选题(3.0分) 首标委的设立,是北京市落实()和首都标准化战略的重要举措,也是北京市在标准化工作机制上的一项重大改革创新。 A. 《质量发展纲要》 B. 《标准化纲要》 C. 《城市发展纲要》 D. 《科技发展纲要》

运放关键参数及选型原则

集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。本文以NE5532为例,分别对各指标作简单解释。下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。 极限参数 主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下: 直流指标 运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。NE5532的直流指标如下: 输入失调电压Vos 输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV 之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT 输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流Ios 输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。 Input bias current(偏置电流)是运放输入端的固有特性,是使输出电压为零(或规定值)时,流入两输入端电流的平均值。偏置电流bias current就是第一级放大器输入晶体管的基极直流电流。这个电流保证放大器工作在线性范围, 为放大器提供直流工作点。 输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。 偏置电流值也限制了输入电阻和反馈电阻数值不可以过大, 使其在电阻上的压降与运算电压可比而影响了运算精度。或者不能提供足够的偏置电流, 使放大器不能稳定的工作在线性范围。如果设计要求一定要用大数值的反馈电阻和输入电阻, 可以考虑用 J-FET 输入的运放。同样是电压控制的还有 MOSFET 器件, 可以提供更小的输入漏电流。

参数估计的基本理论

第3章 参数估计的基本理论 信号检测:通过准则来判断信号有无; 参数估计:由观测量来估计出信号的参数; 解决1)用什么方法求取参数,2)如何评价估计质量或者效果 严格来讲,这一章研究的是参数的统计估计方法,它是数理统计的一个分支。 推荐两本参考书高等教育出版社《数理统计导论》,《Nonlinear Parameter Estimation 》。 我们首先从一个估计问题入手,来了解参数估计的基本概念。 3.1 估计的基本概念 3.1.1 估计问题 对于观察值x 是信号s 和噪声n 叠加的情况: ()x s n θ=+ 其中θ是信号s 的参数,或θ就是信号本身。若能找到一个函数()f x ,利用 ()12,,N f x x x 可以得到参数θ的估计值 θ ,相对估计值 θ,θ称为参数的真值。则称()12,,N f x x x 为参数θ的一个估计量。记作 ()12,,N f x x x θ= 。 在上面的方程中,去掉n 实际上是一个多元方程求解问题。这时,如果把n 看作是一种干扰或摄动,那么就可以用解确定性方程的方法来得出()f x 。但是我们要研究的是参数的统计估计方法,所以上面的描述并不适合我们的讨论。下面给出估计的统计问题描述。(点估计) 设随机变量x 具有某一已知函数形式的概率密度函数,但是该函数依赖于未知参数θ,Ω∈θ ,Ω称为参数空间。因此可以把x 的概率密度函数表示为一个函数族);(θx p 。N x x x ,,,21 表示随机样本,其分布取自函数族);(θx p 的某一成员,问 题是求统计量 ()12,,N f x x x θ= ,作为参数θ的一个估计量。 以上就是用统计的语言给出的参数估计问题的描述。

系统论的概念与基本原则

系统论的概念与基本原则 系统论是研究系统的一般模式、结构和规律的学问,它研究各种系统的共同特征,用数学方法定量地描述其功能,寻求并确立适用于一切系统的原理、原则和数学模型,是具有逻辑和数学性质的一门新兴的科学。系统思想源远流长,但作为一门科学的系统论,人们公认是美籍奥地利人、理论生物学家L.V.贝塔朗菲(L.Von.Bertalanffy)创立的。他在1952年发表“抗体系统论”,提出了系统论的思想。1973年提出了一般系统论原理,奠定了这门科学的理论基础。但是他的论文《关于一般系统论》,到1945年才分开发表,他的理论到1948年在美国再次讲授“一般系统论”时,才得到学术界的重视。确立这门科学学术地位的是1968年贝塔朗菲发表的专著:《一般系统理论——基础、发展和应用》(《General System Theory; Foundations, Development, Applications》),该书被公认为是这门学科的代表作。 系统一词,来源于古希腊语,是由部分级成整体的意思。今天人们从各种角度上研究系统,对系统下的定义不下几十种。如说“系统是诸元素及其顺常行为的给定集合”,“系统是有组织的和被组织化的全体”,“系统是有联系的物质和过程的集合”,“系统是许多要素保持有机的秩序,向同一目的行动的东西”,等等。一般系统论则试图给一个能描示各种系统共同特征的一般的系统定义,通常把系统定义为:由若干要素以一定结构形式联结构成的具有某种功能的有机整体。在这个定义中包括了系统、要素、结构、功能四个概念,表明了要素与要素、要素与系统、系统与环境三方面的关系。 系统论认为,整体性、关联性,等级结构性、动态平衡性、时序性等是所有系统的共同的基本特征。这些,既是系统所具有的基本思想观点,而且它也是系统方法的基本原则,表现了系统论不仅是反映客观规律的科学理论,具有科学方法论的含义,这正是系统论这门科学的特点。,贝塔朗菲对此曾作过说明,英语System Approach直译为系统方法,也可译成系统论,因为它既可代表概念、观点、模型,又可表示数学方法。他说,我们故意用Approach这样一个不太严格的词,正好表明这门学科的性质特点。 系统论的核心思想是系统的整体观念。贝塔朗菲强调,任何系统都是一个有机的整体,它不是各个部分的机械组合或简单相加,系统的整体工功能是各要素在孤立状态下所没有的新质。他用亚里斯多德的“整体大于部分之和”的名言来说明系统的整体性,反对那种认为要素性能好,整体性能一定好,整体性能一定好,以局部说明整体的机械论的观点。同时认为,系统中各要素不是孤立地存在着,每个要素在系统中都处于一定的位置上,起着特定的作用。要素之间相互关联,构成了一个不可分割的整体。要素是整体中的要素,如果将要素从系统整体中割离出来,它

第3章 参数估计理论

第3章 参数估计理论 参数估计的基本方法:点估计,区间估计 点估计:以样本的某一函数值作为总体中未知参数的估计值。 区间估计:把总体中的参数确定在某一区间内。 第1节 点估计 点估计就是以样本的某一函数值作为总体中未知参数的估计值。 设θ是总体X 的待估参数,用样本12,,,n X X X 构造一个合适的统计量12(,,,)n T X X X 来估计参数θ,通常记为?θ,即 12?=(,,,)n T X X X θ ,称为参数θ的估计量。对样本的一组观测值12(,,,)n x x x ,统计量T 的值12?=(,,,)n T x x x θ 称为参数θ的估计值。 点估计的问题就是要找一个作为待估参数θ的估计量 12(,,,)n T X X X 的问题。 点估计的方法:数字特征法(矩估计法)、极大似然估计法、Bayes 估计法、最小二乘法等等。

第2节 矩估计法 矩估计法由英国统计学家K.Person 在20世纪初提出,基本思想就是用样本矩去估计相应的总体矩。理论依据是大数定律。 例1 设总体X 服从参数为θ的指数分布,即 1 1,0 (,)0,0x e x f x x θ θθ -?>?=??≤? 12,,,n X X X 为取自总体 X 的样本,求参数θ的矩估计量。 例2 设总体2 ~(,)X N μσ,12,,,n X X X 为取自总体X 的样本,求 参数2,μσ的矩估计量。 例3 设总体2 ~(0,)X N σ,12,,,n X X X 为取自总体X 的样本,求 参数2σ的矩估计量。 例4 设总体~(,)X U a b ,12,,,n X X X 为取自总体X 的样本,求参数,a b 的矩估计量。 ??=a X b X =+ 例5 设总体~()X P λ,12,,,n X X X 为取自总体X 的样本,求参数 λ的矩估计量。

220kV交联聚乙烯电缆载流量实例计算

220kV交联聚乙烯电缆载流量实例计算 发表时间:2019-06-11T17:39:59.477Z 来源:《电力设备》2019年第1期作者:梁周峰1 张亮2 [导读] 摘要:电缆载流量是电缆线路设计过程中一项重要电气参数。 (1日照阳光电力设计有限公司山东日照 276800; (2国网日照供电公司山东日照 276800) 摘要:电缆载流量是电缆线路设计过程中一项重要电气参数。由于电缆载流量计算较为复杂,基本依靠电缆生产厂家提供。目前,大部分论文、设计手册及相关规程只是介绍计算公式,没有实际计算案例,普通设计人员难以理解和掌握。本文编写的目的就是以220kV单芯 1×2500mm2截面电缆载流量理论计算实例,讲解高压电缆载流量计算流程和相关电气参数计算,便于从事电力设计的同事们理解和掌握电缆载流量的基本计算方法。 关键词:高压电缆、载流量计算 Absrtact:The current carrying capacity of cable is an important electrical parameter in the design of cable line.Because the calculation of cable current carrying capacity is complex,it is basically provided by cable manufacturers.At present,most papers,design manuals and related regulations only introduce calculation formulas,and there are no actual calculation cases.It is difficult for ordinary designers to understand and master.The purpose of this paper is to explain the calculation process and related electrical parameters of high-voltage cable with the theoretical calculation example of carrying capacity of 220 kV single-core 1 x 2500 mm truss section cable,so as to facilitate the power designers to understand and master the basic calculation method of cable carrying capacity. Key words:calculation of high voltage cable current carrying capacity 1、电缆结构参数 电缆结构参数是电缆载流量计算的核心内容,可通过相关电力行业标准中获取或者由电缆生产厂家提供参考值。下表为某电缆生产厂家产品参数值: 表1-1 电缆结构参数表 2、电缆系统运行条件、敷设方式及环境条件 电缆系统运行条件:三相交流系统,单回路,护套单点接地。 敷设条件:隧道(空气)中,平行敷设。 导体运行最高工作温度90℃。 环境温度40℃。 3、载流量计算公式推演 电缆载流量计算公式是基于高于环境温度的导体温升表达式推演而来,表达式为: 式中: I—单根导体流过的电流,A; —高于环境温度的导体温升,K; R—最高工作温度下导体单位长度的交流电阻,Ω/m; Wd—导体绝缘单位长度的介质损耗,W/m; T1—单根导体和金属套间单位长度热阻,K?m/W; T2—金属套和铠装之间内衬层单位长度热阻,K?m/W; T3—电缆外护层单位长度热阻,K?m/W; T4—电缆表面和周围介质之间单位长度热阻,K?m/W; n—电缆(等截面并载有相同负荷)中载有负荷的导体数;

标准化的理论、方法与实践 试卷与参考答案

1)单选题,共 10 题,每题 3.0 分,共 30.0 分 1 单选题 (3.0 分) 2008 年出版社的《标准化与经济增长——理论、实证与案例》:近 30 年来,我国标准数 量每增加 1%,经济增长( )%。
. . . . 答案 C
A. 0.1
B. 0.5
C. 1.79
D. 1.8
2 单选题 (3.0 分) 标准化是人类社会发展的必然产物。共同的语言、文字、历法、生产工具是人类社会发展 和进步最基本和初级的需求,这些都是最早出现的具有( )特征的事物,而且多是以实物 的形态呈现的。
. . . . 答案 A
A. 标准化
B. 标志性
C. 标准
D. 文化
3 单选题 (3.0 分)

参与国际标准化活动能力进一步增强,承担国际标准化技术机构数量持续增长,参与和主 导制定国际标准数量达到年度国际标准制修订总数的( )。
. . . . 答案 B
A. 0.4
B. 0.5
C. 0.45
D. 1.6
4 单选题 (3.0 分) 《深圳市知识产权与标准化战略纲要(2011-2015 年)》,这是国内首部标准化与( )结 合的战略纲要。该纲要明确了下一阶段实施知识产权战略和标准化战略的各项任务和措施。
. . . . 答案 B
A. 科技
B. 知识产权
C. 技术创新
D. 专利
5 单选题 (3.0 分) 职业能力倾向是( )。
.
A. 职业性向

. . . 答案 D
B. 潜能
C. 职业人格
D. 从业人员在学习和掌握必备的职业知识和技能时所需具备的基本能力和潜力
6 单选题 (3.0 分) 三次设计法是( )。
. . .
A. 是一种优化设计,主要用于质量管理前期的技术开发、 产品开发、工艺开发
B. 是在 20 世纪 70 年代由日本质量管理专家田口玄一提出的一种质量管理方法
C. 是把顾客或市场的要求转化为设计要求、工艺要求、生产要求的质量工程工具,用来指 导产品的设计和质量保证
.
D. 包括系统设计(第一次设计)、参数设计(第二次设计)和容差设计(第三次设计)。 它是一种优化设计,主要用于质量管理前期的技术开发、 产品开发、工艺开发,从而可提高产品 设计质量,降低成本,缩短设计开发周期
答案 D
7 单选题 (3.0 分) 合格产品和服务的基础是( )
. .
A. 管理
B. 人和组织

参数估计练习题

第七章参数估计练习题 一.选择题 1. 估计量的含义是指() A. 用来估计总体参数的统计量的名称 B. 用来估计总体参数的统计量的具体数值 C.总体参数的名称 D.总体参数的具体取值 2.一个95%的置信区间是指() A. 总体参数有95%的概率落在这一区间内 B. 总体参数有5%的概率未落在这一区间内 C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数。 D. 在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数。 %的置信水平是指() A. 总体参数落在一个特定的样本所构造的区间内的概率是95% B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95% C.总体参数落在一个特定的样本所构造的区间内的概率是5% D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5% 4. 根据一个具体的样本求出的总体均值的95%的置信区间() A.以95%的概率包含总体均值 B.有5%的可能性包含总体均值 C. 一定包含总体均值 D.要么包含总体均值,要么不包含总体均值 5. 当样本量一定时,置信区间的宽度() A.随着置信水平的增大而减小 B. .随着置信水平的增大而增大 C.与置信水平的大小无关D。与置信水平的平方成反比 6. 当置信水平一定时,置信区间的宽度() A.随着样本量的增大而减小 B. .随着样本量的增大而增大 C.与样本量的大小无关D。与样本量的平方根成正比 7. 在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与 总体参数的离差越小越好。这种评价标准称为() A.无偏性 B. 有效性 C. 一致性 D. 充分性 8. 置信水平(1-α)表达了置信区间的() A.准确性 B. 精确性 C. 显着性 D. 可靠性 9. 在总体均值和总体比例的区间估计中,边际误差由()A.置信水平决定 B. 统计量的抽样标准差确定 C. 置信水平和统计量的抽样标准差 D. 统计量的抽样方差确定 10. 当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是() A.正态分布 B. t 分布 C.χ2分布 D. F分布

同轴电缆的电气参数计算

同轴电缆的电气参数计算 同轴电缆的一个回路是同轴对,它是对地不对称的.在金属圆管(称为外导体)内配置另一圆形导体(称为内导体),用绝缘介质使两者相互绝缘并保持轴心重合,如此所构成的线对称同轴对。同轴电缆可用于开通多路栽波通信或传输电视节目,也可用同轴电缆传输高数码的数据信息(如UL2919屏幕线) 1.一次传输参数: 同轴电缆的一次传输参数要紧随电流的频率及电缆结构尺寸D/d变化而变化. (1) .有效电阻,随频率的增大而增大.而与内外导体直径比没直截了当的关系. (2) .电感随频率的增大而减小,随内外导体直径比增大而增大. (3) .电容与频率无关,随直径比的增大而减小. (4) .电导与频率差不多上成正比,随直径的增大而减小. 具体运算公式如下: 1.1.有效电阻: 同轴电缆的有效电阻包括内导体的有效电阻及外导体的有效电 阻,当内外导体差不多上铜导体时,总的有效电阻为: 常= 1^+8列10-心77巧+吉)(欧姆/公里) 1.2有效电感:同轴回路的电感由内.外导体的内电感和内外导体 之间的外电感组成,当内外导体差不多上铜时,回路的电感为: n 132 1 1 (2F(〒)+jh(-+万沪IL (亨/公里) 1.3同轴电缆电容: 同于同轴电缆无外部电场,因此同轴对的工作电容就等于同轴对内外导体间的部分电容,电容运算可按圆柱形电容器的电容公式来运算: 55.56乜 以少d) Dw-外导体结构的修正系数(理想外导体Dw=O,非理想外导体Dw=

编织外导体中的单线直径) K1-内导体结构的修正系数, D1-同轴线外导体内径(mm) 1.4绝缘电导: 同轴对的绝缘导体G由两部分组成:一是由绝缘介质极化作用引起的交 流电导G~,另一个部分是由于绝缘不完善而引起的直流电导GO: G=G0+G~ G~= 3 Ctg( S ) GO——直流损耗 G ----- 交流损耗 3——电流频率 C——工作电容tg( S )---介质损耗角正切 2.二次传输参数: 二次传输参数是用以表征传输线的特性参数,它包括特性阻抗ZC, 衰 减常数a,及相移常数. 2.1.同轴电缆特性阻抗: 2.1.1.关于斜包,铝箔纵包可近似看作是理想外导体,运算如下:” 138,. .D. 60 J 耳 D d 计一 2.12编织外导体,绞线内导体运算如下: F 60妬D十1谢/ D---外导体外径 d----内导体外径 Dw---编织导体直径 K1----导体结构修正系数 22同轴电缆衰减的运算公式: R fc G [Z R O 復二叫+ %二计三+ ■^*(7二坨玄 a R-导体电阻损耗引起的衰减重量,导体衰减(电阻衰减)

参数估计方法

参数估计的方法 矩法 一、矩的概念 矩(moment )分为原点矩和中心矩两种。对于样本n y y y ,,, 21,各观测值的k 次方的平均值,称为样本的k 阶原点矩,记为k y ,有∑==n i k i k y n y 1 1,例如,算术 平均数就是一阶原点矩;用观测值减去平均数得到的离均差的k 次方的平均数称为样本的k 阶中心矩,记为k y y ) (-或k μ ?,有∑-= -=n i k i k y y n y y 1 ) (1)(,例如,样本 方差 ∑-=n i i y y n 1 2 ) (1就是二阶中心矩。 对于总体N y y y ,,, 21,各观测值的k 次方的平均值,称为总体的k 阶原点矩,记为)(k y E ,有∑= =N i k i k y N y E 1 1)(;用观测值减去平均数得到的离均差的k 次方 的平均数称为总体的k 阶中心矩,记为 ] )[(k y E μ-或 k μ,有 ∑-= -=N i k i k y N y E 1 ) (1])[(μμ。 二、矩法及矩估计量 所谓矩法就是利用样本各阶原点矩来估计总体相应各阶原点矩的方法,即 ∑= =n i k i k y n y 1 1→)(k y E (8·6) 并且也可以用样本各阶原点矩的函数来估计总体各阶原点矩同一函数,即若 ))(,),(),((k y E y E y E f Q 2= 则 ),,,(k y y y f Q 2?= 由此得到的估计量称为矩估计量。 [例8.1] 现获得正态分布),(2σμN 的随机样本n y y y ,,, 21,要求正态分布),(2σμN 参数μ和2σ的矩估计量。 首先,求正态分布总体的1阶原点矩和2阶中心矩: ?=?? ? ???--? =?=∞ +∞-∞ +∞-μσμσπdy y y dy y yf y E 2 2 exp 2)(21)()( (此处?? ? ???--2 2exp σμ2)(y 表示自然对数底数e 的?? ? ???--2 2σμ2)(y 的指数式,即] [2)(22 σμ--y e )

SPC的基本原则与理论知识(doc 50页)_New

SPC的基本原则与理论知识(doc 50页)

第一章节 重新认识SPC 质量改进工具和技术 序号 工具和要求 应用 A1 调查表 系统地收集数据,以获取对问题的明确认识 使用于非数字数据的工具和技术 A2 分布图 将大量的有关某一特定主题的观点,意见或想法按组归类 A3 水平对比法 把一个过程与那些公认的站领先地位的过程 进行对比,以识别质量改进的机会 SPC 兴起的背景 ● 美国W.A.Shewhart 博士于1924年发明管制图,开启了统计品管的新时代; ● 如果工作经验对产品品质有举足轻重的影响(如手工业),那么,SPC 就没有太多发挥的空间,相反地,如果某一公司开始将经验加以整理,而纳入设备,制理或系统时;也就是说,该公司开始宣告"经验挂帅时间"将要结束,那么SPC 的导入时机也就自然成熟了; ● ISO9000要求为客户提供合格的产品,只有稳定而一贯的"过程",与"系统"才能保证长期做出合格的产品,然而,如何检核一贯"过程",与"系统"仍然稳定的存在呢?这必须仰赖SPC 来发挥功能; SPC 的基本原则 ● 产品质量的统计观点 A.产品质量有变异; B.变差具有统计规律性; ● 对异常因素分类和控制 ● 稳定状态是生产过程追求的 目标 ● 预防为主 SPC 的理论基础 ● 数理概率统计理论; ● 分布理论(6σ); ● 正态.二项等分布; ● 参数估计.方差分析等;

内容主要有:过程的概念;过程变差; 过程能力分析; 计量型控制图(X—R图,X—S图等); 计数型控制图(p图,np图,c图,u图等); 第二章节SPC应用的基础 2.1数据与质量特性值 ●质量数据 1.数据的特点:①波动性; ②规律性; 2.质量特性:反映产品特定性质之内容; (如:尺寸、重量、硬度、力度、电阻值、丝印寿命、外观等) 3.质量特性数据:测量质量特性所得的数据; (如:“力度150g”、“力度偏重20g”、“力度偏重5pcs”)4.数据分类: ①计量值数据:(如单位为“mm、g、℃、Ω”的数据) ②计数值数据:(如单位为“PCS、箱、桶、罐”的数据)●数据参数 1.数据表达式:公式中一般用X1X2……Xn表示一组数据中n个数据。 2.频数:同一记录中同一数据出现的数据。 公式中一般用n1 n2 n3…ni表示个数。

相关文档
相关文档 最新文档