文档库 最新最全的文档下载
当前位置:文档库 › 中考数学专题训练-旋转模型几何变换三种模型手拉手-半角-对角互补

中考数学专题训练-旋转模型几何变换三种模型手拉手-半角-对角互补

中考数学专题训练-旋转模型几何变换三种模型手拉手-半角-对角互补
中考数学专题训练-旋转模型几何变换三种模型手拉手-半角-对角互补

几何变换的三种模型手拉手、半角、对角互补

【练1】 (201360°

(1)如图1

(2)如图2 (3)在(2

知识关联图

真题演练

【练2】(2012

(1

,重合,线段CQ的延长线与射线BM交于点D,猜(2)在图2M

的代数式表示),并加以证明;

(3)P在线段BM上运动到某一位置(不与点B,M重合)

=,请直接写出α的范

的延长线与射线BM交于点D,且PQ QD

围.

考点1

:手拉手模型:全等和相似

包含:

等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种

位置的旋转模型,及残缺的旋转模型都要能很快看出来

(1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等)

(2)等边三角形旋转模型图(共顶点旋转等边出伴随全等)

(3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等)

(4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)

例题精讲

【例1】(14

(1

(2

【例2】 (2014年西城一模)

(1)如图24-1

(2)将图24-1

24-2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;

【例3】(2015年海淀九上期末)如图1,

使

使

(1)如图2 ,

关系;

(2

3,

的式子表示).

图2 图3 备用图

图1

【例4】(13年房山一模)

(1)如图1

(2)如图2,

下列结论中正确的是_______(只填序号即可);②C

(3)如图2

,在(2

F

A

C

B

图1

图2

A

考点2: 角含半角模型:全等

【例1】 (2012

分正方形的两个外角,

【例2】(2014年平谷一模)

(1)如图1,

的点,

,连接

间的数量关系是:

D

(2

①如图2

系是__________________;

②如图3,

应满足的等量关系是____________________

考点3:对角互补模型

常和角平分线性质一起考,一般有两种解题方法

(全等型—90°

(全等型—120°) (全等型—

【例1】

【例2】

(1)利用图1

(2)如图1

值;

图1 图2

【例3】 (初二期末)已知:(1=_______________________; (2 (3

【练1】

(2015 (1)如图1

(2)如图1 (3)如图2.

全能突破

【练2】 (2014西城九上期末)

(1

)如图1

位置关系;

2

将图

1

角,如图2所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;

若不成立,说明理由;

(3)△ABC 固定不动,将图

1

图2

备用图

图1

【练3】(2014年朝阳一模24

(1)图①,______________;

(2)

______________;

(3

中考数学专题训练旋转模型几何变换的三种模型手拉手、半角、对角互补

几何变换的三种模型手拉手、半角、对角互补 ?????? ?? ?? ??? ???? ? ????????等腰三角形手拉手模型等腰直角三角形(包含正方形)等边三角形(包含费马点)特殊角旋转变换对角互补模型一般角特殊角角含半角模型一般角 等线段变换(与圆相关) 【练1】 (2013北京中考)在ABC △中,AB AC =,BAC α∠=(060α?<

【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=, ,M 是AC 的中点,P 是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60?且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数; (2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.

例题精讲 考点1:手拉手模型:全等和相似 包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来 (1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等) (2)等边三角形旋转模型图(共顶点旋转等边出伴随全等) (3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等) (4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)

用旋转法………作辅助线证明平面几何题

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC中 B=AC;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 E C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求 ∠BPC 的度数。 证明:把 ABP 绕点B 顺时钍方向旋转90 ?,得?CBD ,则 ABP ??CBD ,∴BP=BD AP=CD=5, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60? PD=PB=4所以: C D 2=PD 2+PC 2。因为: ∠DPC=90?所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

中考数学几何专项复习题-07倍半角模型知识精讲

倍半角模型知识精讲 一、二倍角模型处理方法 1.作二倍角的平分线,构成等腰三角形. 例:如图,在△ABC中,∠ABC=2∠C,作∠ABC的平分线交AC于点D,则∠DBC=∠C,DB=DC,即△DBC是等腰三角形. 2.延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形. 例:如图,在△ABC中,∠B=2∠C,延长CB到点D,使得BD=AB,连接AD,则△ABD、△ADC都是等腰三角形. 例题:如图,在△ABC中,∠C=2∠A,AC=2BC,求证:∠B=90o. 【解答】见解析 【证法一】如图1,作∠C的平分线CE交AB于点E,过点E作ED⊥AC于点D. 则∠ACE=∠A,AE=CE, ∵AE=EC,ED⊥AC,∴CD=AC, 又∵AC=2BC,∴CD=CB,∴△CDE≌△CBE,∴∠B=∠CDE=90o; 【证法二】如图2,延长AC到点D,使得CD=CB,连接BD,取AC的中点E,连接BE.

由题意可得EC=CD=BC,∠DBE=90o, ∵CD=CB,∠D=∠CBD,∴∠ACB=2∠D, ∵∠ACB=2∠A,∠A=∠D,∴AB=BD, 又∵AE=DC,∴△ABE≌△DBC,∴∠ABE=∠DBC,∴∠ABC=∠EBD=90o. 【证法三】如图3,作∠C的平分线CD,延长CB到点E,使得CE=AC,∴AC=BC+BE. ∵AC=2BC,∴BC=BE,在△ACD与△ECD中,AC=EC,∠ACD=∠ECD,CD=CD, ∴△ACD≌△ECD,∴∠A=∠E, 又∵∠DCB=∠DCA=∠A,∴∠E=∠DCB,∴DC=DE,∴∠ABC=90o. 二、倍半角综合 1.由“倍”造“半” 已知倍角求半角,将倍角所在的直角三角形相应的直角边顺势延长即可. 如图,若() 2.由“半”造“倍” 已知半角求倍角,将半角所在的直角三角形相应的直角边截取线段即可. 如图,在Rt△ABC(∠A<45o)的直角边AC上取点D,当BD=AD时,则∠BDC=2∠A,设,

中考数学模型--旋转综合之角含半角模型

旋转综合之角含半角模型 初三中考复习在即,在数学中考中,几何变换往往是中考中最令人头痛的题型,其辅助线的添加非常灵活,和其他几何知识的综合性也非常强。在几何变换中,旋转是最为常见、也是最为重要的变换,本周我们集中讲解旋转综合中常见的模型、题型,这部分是本期内容的第三讲:旋转综合之角含半角模型,希望各位同学能从中收益。 基本图形 1、如图所示,在等腰Rt △ABC 中,点 D , E 在斜边上,∠DAE = 45? ,将 连接 EF .则△ADE ≌△AFE , DE 2 = BD 2 + CE 2 △ABD 旋转至△ACF , 2、如图所示,在正方形 ABCD 中,点 E , F 分别在边 BC , CD 上,∠EAF = 45? ,将△ABE 旋转至△ADG ,则△AEF ≌△AGF , EF = BE + DF 角含半角模型的解题步骤 1、找旋转点(含半角的角的顶点),构造旋转; 2、证全等; 3、利用全等、相似得到边角的关系. 例 1 如图,已知等边△ABC 的边长为1 , D 是△ABC 外一点且∠BDC =120? , BD = CD , ∠MDN = 60? .求△AMN 的周长.

解 延长 AC 到 E ,使CE = BM ,连接 DE . 易证 所以 可得 所以 从而 所以△AMN 周长为 △BMD ≌ △CED (SAS). ∠BDM = ∠CDE , DM = DE . ∠NDE = ∠NDM = 60?, △MDN ≌△EDN (SAS). MN = EN = CN + CE = CN + BM , C △AMN = AB + AC = 2. 例 2 如图,正方形 ABCD 的边长为 a , BM , DN 分别平分正方形的两个外角,且满足 ∠MAN = 45? ,连接 MC , NC , MN . (1) 填空:与△ABM 相似的三角形是 , ;(用含a 的代数式表示) (2) 求∠MCN 的度数; (3) 猜想线段 BM , DN 和 MN 之间的等量关系并证明你的结论.

中考数学必会几何模型:半角模型

半角模型 已知如图:①∠2=1 2 ∠AOB;②OA=OB. O A B E F 1 23 连接FB,将△FOB绕点O旋转至△FOA的位置,连接F′E,FE,可得△OEF≌△OEF′ 43 2 1 F' F E B A O 模型分析 ∵△OBF≌△OAF′, ∴∠3=∠4,OF=OF′. ∴∠2=1 2 ∠AOB, ∴∠1+∠3=∠2 ∴∠1+∠4=∠2 又∵OE是公共边, ∴△OEF≌△OEF′. (1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点; (2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系; (3)常见的半角模型是90°含45°,120°含60°. 模型实例 例1 已知,正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N.(1)求证:BM+DN=MN. (2)作AH⊥MN于点H,求证:AH=AB.

证明:(1)延长ND 到E ,使DE=BM , ∵四边形ABCD 是正方形,∴AD=AB . 在△ADE 和△ABM 中, ?? ? ??=∠=∠=BM DE B ADE AB AD ∴△ADE ≌△ABM . ∴AE=AM ,∠DAE=∠BAM ∵∠MAN=45°,∴∠BAM+∠NAD=45°. ∴ ∠MAN=∠EAN=45°. 在△AMN 和△AEN 中, ?? ? ??=∠=∠=AN AN EAN M AN EA M A ∴△AMN ≌△AEN . ∴MN=EN . ∴BM+DN=DE+DN=EN=MN . (2)由(1)知,△AMN ≌△AEN . ∴S △AMN =S △AEN . 即EN AD 2 1 MN AH 21?=?. 又∵MN=EN , ∴AH=AD . 即AH=AB .

人教中考数学压轴题解题模型几何图形之半角模型含解析汇报

人教中考数学压轴题解题模型几何图形之半角模型 含解析汇报 The pony was revised in January 2021

说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。 典型例题精讲 例1.如图,折叠正方形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,使2 AD ,求AG. 【解析】:作GM⊥BD,垂足为M. 由题意可知∠ADG=GDM, 则△ADG≌△MDG. ∴DM=DA=2. AC=GM 又易知:GM=BM.

而BM=BD-DM=22-2=2(2-1), ∴AG=BM=2(2-1). 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于 10,求正方形ABCD 的面积? 【解析】:过P 作EF AB ⊥于F 交DC 于E . 设PF x =,则10EF x =+,1 (10)2 BF x =+. 由222PB PF BF =+. 可得:2221 10(10)4 x x =++. 故6x =. 216256ABCD S ==. 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,?垂足为 M ,AM AB =,则有EF BE DF =+,为什么? 【解析】:要说明EF=BE+DF ,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME ,△ADF ≌△AMF 即 可.

手拉手模型-含答案

手拉手模型 一.填空题(共18小题) 1.已知△ABC中,∠ABC=45°,AB=7,BC=17,以AC为斜边在△ABC外作等腰Rt△ACD,连接BD,则BD的长为. 2.如图,在△ABC中,∠ABC=60°,AB=3,BC=5,以AC为边在△ABC外作正△ACD,则BD的长为. 3.四边形ABCD中,AC=BC,∠ACB=90°,∠ADB=30°,AD=,CD=14,则BD=. 4.已知在四边形ABCD中,AB=AC,∠ABC=∠ADC=60°,连接BD,若CD=2,AB =2,则BD的长度为. 5.如图,在四边形ABCD中,∠ADC=∠ABC=45°,CD=,BC=,连接AC、BD,若AC⊥AB,则BD的长度为.

6.如图,四边形ABCD中,∠ABC=∠ACD=∠ADC=45°,△DBC的面积为8,则BC 长为. 7.如图,D为△ABC内一点,且AD=BD,若∠ACD=∠DAB=45°,AC=5,则S△ABC =. 8.如图,线段AB绕着点A逆时针方向旋转120°得到线段AC,点B对应点C,在∠BAC 的内部有一点P,P A=8,PB=4,PC=4,则线段AB的长为. 9.如图,在△ABC中,∠ABC=60°,=,D为△ABC外一点,连接AD、CD.若∠ADC=30°,AC=AD,则的值为.

10.如图,△ABC、△CDE是两个直角三角板,其中∠ECD=∠ACB=90°,∠CED=45°,∠CAB=30°,若AB=DE=2,将直角三角板CDE绕点C旋转一周,则|AD﹣BE|的最大值为. 11.如图,点D为等边△ABC外一点,∠ADC=60°,连接BD,若AD=8,△BCD的面积为,则BD的长为. 12.如图,△ABC中,∠ABC=45°,AB=2,BC=6,AD⊥AC,AD=AC,连接BD,则BD的长为. 13.如图,在△ABC中,∠ABC=60°,AB=3,BC=12,以AC为腰,点A为顶点作等腰△ACD,且∠DAC=120°,则BD的长为.

人教版八年级数学 几何培优讲义设计 第6讲 夹半角模型 无答案

知识目标 第 6 讲 夹半角模型 知识导航 夹半角,顾名思义,是一个大角夹着一个大小只有其一半的角,如下图所示。 这类题目有其固定的做法,当 取不同的值的时候,也会有类似的结论,下面我们就来看一看这一类问题。夹 半角的常见分类: (1)90 度夹 45 度 (2)120 度夹 60 度 (3)2α夹α 题型一 90 度夹 45 度 【例 1】 如图,正方形 ABCD 中, E 在 BC 上,F 在 CD 上,且∠EAF =45°,求证:(1)BE +DF =EF (2)∠AEB =∠AEF 【练习】在例 1 的条件下,若 E 在 CB 延长线上,F 在 DC 延长线上,其余条件不变,证明: (1)DF -BE =EF (2)∠AEB +∠AEF =180°

夹边角和勾股定理结合会产生很多有趣的结论,比如: (1)已知△ABC 为等腰三角形,∠ACB=90°,M、N 是AB 上的点,∠MCN=45°,求证:AM2+BN2=MN2 (2)如图,正方形ABCD 中,F 为CD 中点,点E 在BC 上,且∠EAF=45°,求证:点E 为线段BC 靠近B 的三等分点. 题型二120 度夹60 度 【例2】已知如图,△ABC 为等边三角形,∠BDC=120°,DB=DC,M、N 分别是AB、AC 上的动点,且∠MDN=60°,求证:MB+CN=MN. 【练习】如图,四边形ABCD 中,∠A=∠BCD=90°,∠ADC=60°,AB=BC,E、F 分别在AD、DC 延长线上,且∠EBF=60°,求证:AE=EF+CF.

真题演练 在等边△ABC 的两边 AB 、AC 所在直线上分别有两点 M 、N .D 为△ABC 外一点,且∠MDN =60°,∠BDC =120°,BD =DC .探究:当 M 、N 分别在直线 AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系以及 △AMN 的周长 Q 与等边△ABC 的周长 L 的关系. (1)当点 M 、N 在边 AB 、AC 上,且 DM =DN 时,BM 、NC 、MN 之间的数量关系是 ; Q 此时 = ;(不必证明) L (2)当点 M 、N 在边 AB 、AC 上,且当 DM ≠DN 时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明; (3)当 M 、N 分别在边 AB 、CA 的延长线上时,若 AN =2,则 Q = (用含有 L 的式子表示)

(完整版)手拉手模型

手拉手模型 手拉手模型 特点:由两个顶角相等的等腰三角形所组成,并且顶角的顶点为公共顶点 结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180° (3)OA平分∠BOC 变形: 例1.如图,B是线段AC上一点,分别以AB和BC为边长,在直线AC的同一侧作两个等边三角形,△ABD和△ECB,连接AE和CD,AE与DC交于点H,与BD与BE交于点G,F. (1)求证:△BCD≌△BEA; (2)探究△BFG的形状,并证明你的结论. H F G E D A B C

思考:的数量关系。 与DC AE (2) AE 与DC 之间的夹角为60(3) DFB AGB (4) CFB EGB (5)BH 平分 AHC (6)AC GF //变式精练1:如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)AE 与DC 的夹角为60°; (2)AE 与DC 的交点设为H ,BH 平分∠AHC . 思考:DC AE ;AE 与DC 之间的夹角为60 试一试继续旋转结论是否成立。 H F G E D A B C

变式精练2.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE. (1)试判断BD、CE的数量关系,并说明理由; (2)延长BD交CE于点F,试求∠BFC的度数; (3)把两个等腰直角三角形按如图2放置,(1)中的结论是否仍成立?请说明 理由. 练习:已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50° (1)求证:①AC=BD;②∠APB=50°; (2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为

中考模型解题系列之大角夹半角模型

中考模型解题系列之大角夹半角模型 满分100分 答题时间30分钟 1.(本小题100分) (2010重庆改编)等边的两边AB 、AC 所在直线上分别有两点M 、N ,D 为外一点,且 ,,BD=DC.探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及 的周长Q 与等边的周长L 的关系. (I )如图1,当点M 、N 在边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是_____________;此时___________; (II )如图2,点M 、N 在边AB 、AC 上,且当DM DN 时,猜想(I )问的两个结论还成立吗?写出你的猜想并加以证明; (III )如图3,当M 、N 分别在边AB 、CA 的延长线上时,若AN=,则Q=_________(用、L 表示). 核心考点: 全等三角形的判定与性质 旋转的性质

单选题(本大题共8小题,共100分) 1.(本小题10分)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0

2018北师大版下册数学截长补短和半角模型[原创]

32 H A B F E 1G E F D C B A D C B A O G A B C D A B C 初中几何之截长补短模型 模型 截长补短 如图①,若证明线段AB 、CD 、EF 之间存在 EF=AB+CD ,可以考虑截长补短法。 截长法:如图②,在EF 上截取EG=AB ,再证明 GF=CD 即可。 补短法:如图③,延长AB 至H 点,使BH=CD , 再证明AH=EF 即可。 模型分析 截长补短的方法适用于求证线段的和差倍分关系。截长,指在长线段中 截取一段等于已知线段;补短,指将短线段延长,延长部分等于已知线段。 该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法 构造全等三角形来完成证明过程。 模型实例 例1.如图,已知在△ABC 中,∠C=2∠B ,AD 平分∠BAC 交BC 于点D 。 求证:AB=AC+CD 。 例2.如图,已知OD 平分∠AOB ,DC ⊥OA 于点C ,∠A=∠GBD 求证AO+BO=2CO 。 精练1.如图,在△ABC 中,∠BAC=60°,AD 是∠BAC 的平分线,且 AC=AB+BD 。 求∠ABC 的度数。

E A B C D E A B C D F E A B C D A O E A B C D 2.如图,∠ABC+∠BCD=180°,BE 、CE 分别平分∠ABC 、∠BCD 。求证:AB+CD=BC 。 3.如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB 。求证AC=AE+CD 。 4.如图,在△ABC 中,∠ABC=90°,AD 平分∠BAC 交BC 于点D ,∠C=30°, BE ⊥AD 于点E 。求证:AC-AB=2BE 。 5.如图,Rt △ABC 中,AC=BC ,AD 平分∠BAC 交BC 于点D ,CE ⊥AD 交AD 于F 点,交AB 于点E 。求证:AD=2DF+CE 。 6.如图,五边形ABCDE 中,AB=AC ,BC+DE=CD ,∠B+∠E=180°。求证:AD 平分∠CDE 。

几何辅助线之手拉手模型初

手拉手模型教学目标: 1:理解手拉手模型的概念,并掌握其特点 2:掌握手拉手模型的应用 知识梳理: 1、等边三角形 条件:△OAB,△OCD均为等边三角形 结论:;; 导角核心: 2、等腰直角三角形 条件:△OAB,△OCD均为等腰直角三角形 结论:;; 导角核心: 3、任意等腰三角形 条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD 结论:;;

核心图形: 核心条件:;; 典型例题: 例1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC; (3)AE与DC的夹角为60°;(4)△AGB≌△DFB; (5)△EGB≌△CFB;(6)BH平分∠AHC;GF∥AC 例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC 例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC 例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H 问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?

例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE? 例6:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,∠ABD=∠CBE,连接AE与CD. 问(1)△ABE≌△DBC是否成立? (2)AE是否与CD相等?(3)AE与CD之间的夹角为多少度? (4)HB是否平分∠AHC? 例7:如图,分别以△ABC 的边AB、AC 同时向外作等腰直角三角形,其中 AB =AE , AC =AD,∠BAE =∠CAD=90°,点G为BC中点,点F 为BE 中点,点H 为CD中点。探 索GF 与GH 的位置及数量关系并说明理由。 例8:如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD任意一点(P与A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD 于点E. (1)如图1,猜想∠QEP=_______°; (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明; (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.

初中数学突破中考压轴题几何模型之正方形的半角模型教案有答案

初中数学突破中考压轴题几何模型之正方形的 半角模型教案有答案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。 2.掌握正方形的性质定理1和性质定理2。 3.正确运用正方形的性质解题。 4.通过四边形的从属关系渗透集合思想。 5.通过理解四种四边形内在联系,培养学生辩证观点。 正方形的性质 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形, 所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。 正方形性质定理1:正方形的四个角都是直角,四条边相等。 正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。 说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。 例1.如图,折叠正方形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD 重合,得折痕DG,使2 AD=,求AG. 【解析】:作GM⊥BD,垂足为M. 由题意可知∠ADG=GDM, 则△ADG≌△MDG. ∴DM=DA=2. AC=GM 又易知:GM=BM. 而BM=BD-DM=22-2=2(2-1), ∴AG=BM=2(2-1). 例2 .如图,P为正方形ABCD内一点,10 ==,并且P点到CD边的距离也 PA PB 等于10,求正方形ABCD的面积? 【解析】:过P作EF AB ⊥于F交DC于E.

初中几何专项——手拉手模型

E A D B C E A D B C E D C B A 图3图21图 O H G A B C D M P D E C B A 手拉手模型 模型 手拉手 如图,△ABC 是等腰三角形、△ADE 是等腰三角形,AB=AC ,AD=AE ,∠BAC=∠DAE= 。 结论:△BAD ≌△CAE 。 模型分析 手拉手模型常和旋转结合,在考试中作为几何综合题目出现。 模型实例 例1.如图,△ADC 与△GDB 都为等腰直角三角形,连接AG 、CB ,相交于点H ,问:(1)AG 与CB 是否相等? (2)AG 与CB 之间的夹角为多少度? 3.在线段AE 同侧作等边△CDE (∠ACE<120°),点P 与点M 分别是线段BE 和AD 的中点。 求证:△CPM 是等边三角形。

F E C B A H D E C B A 1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在 BC上,且AE=CF。 (1)求证:BE=BF; (2)若∠CAE=30°,求∠ACF度数。 2.如图,△ABD与△BCE都为等边三角形,连接AE与CD,延长AE交CD于点 H.证明: (1)AE=DC; (2)∠AHD=60°; (3)连接HB,HB平分∠AHC。

B A D C P E 3图B D A E C 图21 图P D E C B A 3.将等腰Rt △ABC 和等腰Rt △ADE 按图①方式放置,∠A=90°,AD 边与AB 边重合,AB=2AD=4。将△ADE 绕点A 逆时针方向旋转一个角度α(0°<α>180°),BD 的延长线交CE 于P 。 (1)如图②,证明:BD=CE ,BD ⊥CE ; (2)如图③,在旋转的过程中,当AD ⊥BD 时,求出CP 的长。

用旋转法--作辅助线证明平面几何题《总结》

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等 邻边的公共端点,旋转另一位置的引辅助线的方法。 1、 旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、 旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、 旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 已知,在Rt ABC 中;∠BAC=90?; D 为BC 边上任意一点,求证:2AD 2=BD 2+CD 2.证明:把 ABD 绕点A 逆时钍方向旋转90 ?,得?ACE ,则 ABD ??ACE ,∴BD=CE , ∠B=∠ACE ; ∠BAD=∠CAE , AD=AE 。又 ∠BAC=90?;∴∠DAE=90?所以: D E 2=AD 2+AE 2=2AD 2。因为: ∠B+∠ACB=90?所以: ∠DCE=90? CD 2+CE 2=DE 2=2AD 2即: 2AD 2=BD 2+CD 2。注:也可以把ADC 顺时针方向旋转90?来证明。注 E C D

例2

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求 ∠BPC 的度数。 证明:把 ABP 绕点B 顺时钍方向旋转90 ?,得?CBD ,则 ABP ??CBD ,∴, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60 ?所以: C D 2=PD 2+PC 2。因为: ∠DPC=90?所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

第5讲角含半角模型(解析版)

中考数学几何模型5:角含半角模型TH 名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。 类型一:等腰直角三角形角含半角模型 (1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2. 图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE (2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2. 图示(2) (3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..

任意等腰三角形 类型二:正方形中角含半角模型 (1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD. 图示(1)作法:将△ABE绕点A逆时针旋转90° (2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE. 图示(2)作法:将△ABE绕点A逆时针旋转90° (3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠ C=180°,点E,F分别在边BC,CD上,∠EAF=1 2 ∠BAD,连接EF,则:EF=BE+DF. 图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小

几何辅助线之手拉手模型初三

手拉手模型 教学目标: 1:理解手拉手模型的概念,并掌握其特点 2 :掌握手拉手模型的应用 知识梳理: 导角核心: 2 、等腰直角三角形 1、等边三角形 条件:△ OAB ,△ OCD 均为等边三角形 结论:|①心 C 迪ORD ;② = 6(^;③OE 平分ZAED

结论:I ①;② 厶阳二刈;③QE 半分"ED 3、任意等腰三角形 条件:△ OAB , △ OCD 均为等腰三角形,且/ AOB = / COD 结论:\ s=m ; 〔 _.口; _n ;,窓八矗/禺7 核心图形: ZAOB = ZCOD 条件:△ OAB , △ OCD 均为等腰直角三角形

典型例题: 例1在直线ABC 的同一侧作两个等边三角形△ ABD 和厶BCE ,连接AE 与CD ,证明:(1) △ ABE ◎△ DBC ; (2) AE=DC ; (3) AE 与 DC 的夹角为 60°; (4)A AGB ◎△ DFB ; (5)△ EGB CFB ; ( 6) BH 平分/ AHC ; GF // AC 例3:如果两个等边三角形△ ABD 和厶BCE ,连接AE 与CD ,证明 : 例2:如果两个等边三角形△ (1 )△ ABE ◎△ DBC ; (2) ABD 和厶BCE ,连接 AE 与CD ,证明: AE=DC ; (3) AE 与 DC 的夹角为 60°; H,BH 平分/ AHC D B

(1 )△ ABE S' DBC ; (2) AE=DC ; (3) AE 与DC 的夹角为60°; (4) AE与DC的交点设为H,BH平分/ AHC 例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H 问:(ADG ◎△ CDE是否成立?(2)AG是否与CE 相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分/ AHE ? 例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问(1)' ADG S' CDE是否成立?

三角形手拉手模型-专题讲义(无答案)

手拉手模型 1、等边三角形 条件:△OAB,△OCD均为等边三角形 结论:;;导角核心:八字导角 2、等腰直角三角形 条件:△OAB,△OCD均为等腰直角三角形 结论:;;导角核心:

3、任意等腰三角形 条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD 结论:;; 核心图形: 核心条件:;; 例题讲解: A类 1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,等边三角形要得到哪些结论? 要联想到什么模型?

证明:(1)△ABE≌△DBC; (2)AE=DC; (3)AE与DC的夹角为60°; (4)△AGB≌△DFB; (5)△EGB≌△CFB; (6)BH平分∠AHC; 解题思路: 1:出现共顶点的等边三角形,联想手拉手模型 2:利用边角边证明全等; 3:八字导角得角相等; 2:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H. 等腰直角三角形要得到哪些结论? 要联想到什么模型? 问(1)△ADG≌△CDE是否成立? (2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度? (4)HD是否平分∠AHE?

解题思路: 1:出现共顶点的等腰直角三角形,联想手拉手模型 2:利用边角边证明全等; 3:八字导角得角相等; 3:如图,分别以△ABC 的边AB、AC 同时向外作等腰直角三角形,其中 AB =AE ,AC =AD,等腰直角三角形要得到哪些结论? 要联想到什么模型? ∠BAE =∠CAD=90°,点G为BC中点,点F 为BE 中点,点H 为CD中点。探索GF 与多个中点,一般考虑什么? GH 的位置及数量关系并说明理由。

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

几何图形之半角模型 主题半角模型 教学内容 教学目标 1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。 2.掌握正方形的性质定理1和性质定理2。 3.正确运用正方形的性质解题。 4.通过四边形的从属关系渗透集合思想。 5.通过理解四种四边形内在联系,培养学生辩证观点。 知识结构 正方形的性质 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形, 所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。 正方形性质定理1:正方形的四个角都是直角,四条边相等。 正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。 说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

典型例题精讲 例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG . 【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM . 而BM=BD-DM=2 2-2=2(2-1), ∴AG=BM=2(2-1). 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积 【解析】:过P 作EF AB ⊥于F 交DC 于E . 设PF x =,则10EF x =+,1 (10)2 BF x =+. 由2 22PB PF BF =+. 可得:2 221 10 (10)4 x x =++. 故6x =. 2 16256ABCD S ==. 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥, ?垂足为M ,AM AB =,则有EF BE DF =+,为什么 【解析】:要说明EF=BE+DF ,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME ,△ADF ≌△AMF 即可. 理由:连结AE 、AF . 由AB=AM ,AB ⊥BC ,AM ⊥EF ,AE 公用, ∴△ABE ≌△AME . ∴BE=ME . 同理可得,△ADF ≌△AMF . ∴DF=MF . ∴EF=ME+MF=BE+DF .

第5讲角含半角模型(原卷版) 2020年中考数学几何模型能力提升篇(全国通用)

中考数学几何模型5:角含半角模型st ●模型1:截长补短模型●模型2:共顶点模型●模型3:对角互补模型●模型:4:中点模型●模型5:角含半角模型 ●模型6:弦图模型 ●模型7:轴对称最值模型 ●模型8:费马点最值模型 ●模型9:隐圆模型 ●模型10:胡不归最值模型 ●模型11:阿氏圆最值模型 ●模型12:主从联动模型

名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。 类型一:等腰直角三角形角含半角模型 (1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2. 图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE (2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2. 图示(2) (3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理.. 任意等腰三角形

类型二:正方形中角含半角模型 (1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD. 图示(1)作法:将△ABE绕点A逆时针旋转90° (2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE. 图示(2)作法:将△ABE绕点A逆时针旋转90° (3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠ C=180°,点E,F分别在边BC,CD上,∠EAF=1 2 ∠BAD,连接EF,则:EF=BE+DF. 图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小

中考数学必考几何模型:手拉手模型

手拉手模型 模型 手拉手 如图,△ABC 是等腰三角形、△ADE 是等腰三角形,AB =AC ,AD =AE ,∠BAC =∠DAE =α. 结论:连接BD 、CE ,则有△BAD ≌△CAE . 模型分析 如图①, ∠BAD =∠BAC -∠DAC ,∠CAE =∠DAE -∠DAC . ∵∠BAC =∠DAE =α, ∴∠BAD =∠CAE . 在△BAD 和△CAE 中, AB AC BAD CAE AD AE =?? ∠=∠??=? ﹐﹐ ﹐ 图②、图③同理可证. (1)这个图形是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形. (2)如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,所以把这个模型称为手拉手模型. (3)手拉手模型常和旋转结合,在考试中作为几何综合题目出现. 模型实例 例1 如图,△ADC 与△EDG 都为等腰直角三角形,连接AG 、CE ,相交于点H ,问: (1)AG 与CE 是否相等? (2)AG 与CE 之间的夹角为多少度? C D E A B 图① C D E A B 图② C D E A B 图③ C G H O

解答: (1)AG =CE .理由如下: ∵∠ADG =∠ADC +∠CDG ,∠CDE =∠GDE +∠CDG ,∠ADC =∠EDG =90°, ∴∠ADG =∠CDE . 在△ADG 和△CDE 中, AD CD ADG CDE DG DE =?? ∠=∠??=? ﹐﹐ ﹐ ∴△ADE ≌△CDE . ∴AG =CE . (2)∵△ADG ≌△CDE , ∴∠DAG =∠DCE . ∵∠COH =∠AOD , ∴∠CHA =∠ADC =90°. ∴AG 与CE 之间的夹角是90°. 例2 如图,在直线AB 的同一侧作△ABD 和△BCE ,△ABD 和△BCE 都是等边三角形,连接AE 、CD ,二者交点为H . 求证:(1)△ABE ≌△DBC ; (2)AE =DQ ; (3)∠DHA =60°; (4)△AGB ≌△DFB ; (5)△EGB ≌△CFB ; (6)连接GF ,GF ∥AC ; (7)连接HB ,HB 平分∠AHC . 证明:(1)∠ABE =120°,∠CBD =120°, 在△ABE 和△DBC 中, BA BD ABE DBC BE BC =?? ∠=∠??=? ﹐﹐ ﹐ ∴△ABE ≌△DBC . (2)∵△ABE ≌△DBC , ∴AE =DC . (3)△ABE ≌△DBC , ∴∠1=∠2. ∴∠DGH =∠AGB . C D E F G H A B

相关文档
相关文档 最新文档