文档库 最新最全的文档下载
当前位置:文档库 › 国际数学界的最高奖

国际数学界的最高奖

国际数学界的最高奖
国际数学界的最高奖

国际数学界的最高奖---菲尔兹奖和国际数学家大会诺贝尔奖金中为什么没有设数学奖?对此人们一直有着各种猜测与议论。每年一度的诺贝尔物理、化学、生理学和医学奖,表彰了这几个学科中的重大成就,奖掖了科学精英,可谓举世瞩目。不设数学奖,对于这个重要的基础学科,岂不是失去了一个在世界范围内评价重大成就和杰出人才的机会?

其实,数学领域中也有一种世界性的奖励,这就是每四年颁发一次的菲尔兹奖。在各国数学家的眼里,菲尔兹奖所带来的荣誉可与诺贝尔奖金媲美。菲尔兹奖是由国际数学联盟(简称IMU)主持评定的,并且只在每四年召开一次的国际数学家大会(简称ICM)上颁发。菲尔兹奖的权威性,部分地即来自于此。

所以,这里先简单介绍一下"联盟"与"大会"。

一、十九世纪以来,数学取得了巨大的进展。新思想、新概念、新方法、新结果层出不穷。面对琳琅满目的新文献,连第一流的数学家也深感有国际交流的必要。他们迫切希望直接沟通,以便尽快把握发展大势。正是在这样的情况下,第一次国际数学家大会在苏黎世召开了。紧接着,一九00年又在巴黎召开了第二次会议,在两个世纪的交接点上,德国数学家希尔伯特提出了承前启后的二十三个数学问题,使得这次大会成为名副其实的迎接新世纪的会议。自一九00年以后,大会一般每四年召开一次。只是因为世界大战的影响,在一九一六年和一九四0~一九五0年间中断举行。第二次世界大战以后的第一次大会是一九五0年在美国举行的。

在这次会议前夕,国际数学联盟成立了。这个联盟联络了全世界几乎所有的主要数学家,她的主要任务是促进数学事业的发展和国际交流,组织进行四年一次的国际数学家大会及其他专业性国际会议,颁发菲尔兹奖。自此以后,大会的召开比较正常。从一八九七年算起,总共举行了十九次大会,其中有九次是在一九五0~一九八三年间举行的。

联盟的日常事务由任期四年的执行委员会领导进行,近年来,这个委员会设主席一人,副主席二人,秘书长一人,一般委员五人,都是由在国际数坛上有影响的著名数学家担任。每次大会的议程,由执委会提名一个九人咨询委员会来编定。而菲尔兹奖的获奖人,则由执委会提名一个八人评定委员会来遴选。评委会的主席也就是执委会的主席,可见对这个奖的重视。这个评委会首先由每人提名,集中提出近四十个值得认真考虑的候选人,然后进行充分的讨论并广泛听取各国数学家的意见,最后在评定委员会内部投票决定本届菲尔兹奖的得奖人。

现在,国际数学家大会已是全世界数学家最重要的学术交流盛会了。一九五0年以来,

每次参加者都在两千人以上,最近两次大会的参加者更在三千人以上。这么多的参加者再加上这四年来无数的新成果,用什么方法才能很好地交流呢?近几次大会采取了分三个层次讲演的办法。以一九七八年为例,在各专业小组中自行申请作十分钟讲演的约有七百人,然后由咨询委员会确定在各专业组中作四十五分钟邀请讲演的名单约二百个,以及向全会作一小时综述报告的人选十七位。被指定作一小时报告是一种殊荣,报告者是当今最活跃的一些数学家,其中有不少是过去或未来的菲尔兹奖获得者。

菲尔兹奖的宣布与授予,是开幕式的主要内容。当执委会主席(即评委会主席)宣布本届得主名单之后,全场掌声雷动。接着由东道国的重要人士(当地市长、所在国科学院院长、甚至国王、总统),或评委会主席授予一块金质奖章,外加一干五百美元的奖金。最后由一些权威的数学家来介绍得奖人的杰出工作,并以此结束开幕式。

二、菲尔兹奖是以已故的加拿大数学家约翰·查尔斯·菲尔兹命名的。一八六三年五月十四日,菲尔兹生于加拿大渥太华。他十一岁时父亲逝世,十八岁时又失去了慈母,家境不算太好。菲尔兹十七岁时进入多伦多大学专攻数学。一八八七年,菲尔兹二十四岁,就在美国约翰.霍普金斯大学获得了博士学位。又过了两年,他在美国阿勒格尼大学当上了教授。当时,世界数学的中心是在欧洲。北美的数学家差不多都要到欧洲学习、工作一段时间。

一八九二年,菲尔兹远渡重洋,游学巴黎、柏林整整十年。在欧洲,他与福雪斯、弗劳伯纽斯等著名数学家有密切的交往。这一段经历,大大地开阔了菲尔兹的眼界。作为一个数学家,菲尔兹的工作兴趣集中在代数函数方面,成就不算突出,但作为一名数学事业的组织、管理者,菲尔兹却是功绩卓著的。菲尔兹很早就意识到研究生教育的重要,他是在加拿大推进研究生教育的第一人。

现在人们都知道,一个国家的研究生培养情况如何,是衡量这个国家科学水平的一个可靠指数。而在当时,能有这样的认识实属难能可贵。菲尔兹对于数学的国际交流的重要性,对于促进北美州数学的发展,都有一些卓越的见解。为了使北美的数学迅速赶上欧洲,菲尔兹竭尽全力主持筹备了一九二四年的多伦多国际数学家大会(这是在欧洲之外召开的第一次大会)。这次大会使他精疲力尽,健康状况再也没有好转,但这次会议对于北美的数学水平的成长产生了深远的影响。一九二四年大会没有邀请德国等第一次世界大战的战败国的数学家。在此之前的一九二0年大会,因为是在法国的斯特拉斯堡(战前属德国)举行,德国拒绝参加(一九二八年的波伦亚大会只是由于希尔伯特坚持,德国才参加了。)。

这些事情很可能触发了菲尔兹发起一项国际性奖金的念头,因为菲尔兹强烈地主张数学发展应该是国际性的。当菲尔兹知道了一九二四年大会的经费有结余时,他就建议以此

作为基金设立一项这样的奖。菲尔兹奔走欧美谋求支持,并想在-九三二年苏黎世大会亲自提出正式建议,结果未及开幕他就逝世了。是多伦多大学数学系的悉涅,把这个建议和一大笔钱(其中包括一九二四年大会的结余和菲尔兹的遗产)提交苏黎世大会,大会立即接受了这一建议。按照菲尔兹的意见,这项奖金应该就叫国际奖金,而不应该以任何国家机构或个人的名字来命名。但是国际数学家大会还是决定命名为菲尔兹奖。数学家们希望用这一方式来表示对菲尔兹的纪念和赞许,他不是以自已的研究工作,而是以远见、组织才能和勤恳的工作促进了本世纪的数学事业。

第一次菲尔兹奖颁发于一九三六年。不久,国际形势急剧恶化。原定一九四0年在美国召开的大会已成泡影。第二次的菲尔兹奖是在战后的第一次大会,即一九五0年大会上颁发的。以后,每次大会都顺利地进行了这一议程。一般是每届两名获奖者。但一九六六年、一九七0年、一九七八年得奖人是四名,据说是因为有一位不愿透露姓名的捐款人,使奖金可以临时增加到四份,一九八二年华沙会议因故而延期至一九八三年八月举行,获奖者为三名。总起来,获得菲尔兹奖的数学家己有二十七名。在一九三六年、-九五0年、一九五四年这三次大会上,都是由一位数学家来介绍所有得奖人的工作的。一九三六年卡拉凯渥铎利还讲了一点获奖者的生平。

一九五0年评委会主席玻尔就只用清晰而非专门的语言简述工作。一九五四年,由本世纪著名的数学家外尔介绍,他在结束语中盛赞两位得奖者"所达到的高度是自己未曾梦想到的","自已从未见过这样的明星在数学天空中灿烂地升起,"他说: "数学界为你们二位所做的工作感到骄傲。它表明数学这棵长满节瘤的老树仍然充满着汁液和生机。你们是怎样开始的,就怎样继续下去吧!" 从一九五八年起,改成每位获奖者分别由一位数学家介绍。介绍的内容比较地局限于工作,对于获奖者个人的情况很少涉及。这个做法,一直延续到最近一次大会。

三、菲尔兹奖只是一枚金质奖章,与诺贝尔奖金的十万美元相比真是微不足道。为什么在人们心目中,菲尔兹奖的地位竟然与诺贝尔奖金相当?

原因看来很多。菲尔兹奖是由数学界的国际学术团体--国际数学联盟,从全世界的第一流数学家中遴选的。就权威性与国际性而言,任何其他的奖励都无法与之相比。菲尔兹奖四年才发一次,每次至多四名,因而获奖机会比诺贝尔奖要少得多。但是主要的原因应该是:迄今为止的获奖者用他们的杰出工作,证明了菲尔兹奖不愧为最重要的国际数学奖。事情就是这样:从表面上看,一项奖赏为获奖人带来了巨大荣誉;而事实上正相反,正是得奖工作的水准奠定了这项奖励的学术地位的基础。

菲尔兹奖首先是一项工作奖(这一点与诺贝尔奖金相同),即授予的原因只能是"已经

做出的成就",而不能是服务优秀、活动积极等其他原因。但是菲尔兹奖只授予四十岁以下的数学家(起先是一种默契,后来就成为不成文的规定),因此也带有一点鼓励性。问题在于,如果放在整个数学家的范围里,菲尔兹奖的得奖工作地位如何?我们只举一个小小的例子。一九七八年,当代著名的老一辈数学家,布尔巴基学派创始人之一丢东涅发表了一篇题为《论纯数学的当前趋势》的论文,对于近二十年来纯数学各分支的前沿作了全面概述。在文章中,他列举了十三个目前处于主流的数学分支。其中十二个分支中的部分重要工作是由菲尔兹奖获得者作出的。这再清楚不过地说明了菲尔兹奖获奖成就的地位。

四、人们不能不承认,数学对于现实生活的影晌正在与日俱增。

许多学科都在悄悄地或先或后地经历着一场数学化的进程。现在,已经没有哪个领域能够抵御得住数学方法的渗透。数学本身也在一日千里地发展着。全世界成千上万的数学工作者正在几十个分支成百个专门方向上孜孜研究着。他们每年提出大约二十万条新定理!重要论文数,如以《数学评论》的摘要为准,每八至十年翻一番。文献数量的爆炸再加上方法概念的迅速更新,使得工作在不同方向上的数学家连交谈也有点困难,更不用说非数学专业的人了。这样就产生了一个尖锐的矛盾。

一方面,公众非常需要数学,他们渴望理解数学!另-方面,现代数学过于深刻、庞大、变得越来越不容易接近。因此,对于数学,特别是现代数学加以普及,使得数学和数学家的工作能对现实生活产生应有的积极影响,这已成为人们日益重视的课题。

二十一世纪的曙光即将普照全球,要概述一下二十世纪的数学发展决非易事。就纯粹数学而言,我们觉得有两个主题可以起到提纲挈领的作用:一个是希尔伯特二十三问题的提出、解决现状与发展,另一个就是菲尔兹奖的获奖者及其工作。作为一种表彰纯数学成就的奖励,菲尔兹奖当然不能体现现代数学的全部内容。就这个奖本身而言也有种种缺点。但是,无论从哪一方面讲,菲尔兹奖的获得者都可以作为当代数学家的代表,他们的工作所属的领域大体上覆盖了纯粹数学主流分支的前沿。这样,菲尔兹奖就成了一个窥视现代数学面貌的很好的"窗口"。

1949年出生于广东汕头,同年随父母移居香港[3]。1993年被选为美国科学院院士[3],

由于在微分方程、代数几何中的卡拉比猜想,广义相对论中的正质量猜想、以及实和复的蒙目(Mon Ge)一安培(Ampere)方程等领域里所作出的杰出贡献,荣获1982年度最高数学奖菲尔兹奖,是第一位获得这项被称为“数学界的诺贝尔奖”(由于诺贝尔奖中没有

历年诺贝尔物理学奖得主(1901-2016)汇总

历年诺贝尔物理学奖得主(1901-2016)年份获奖者国籍获奖原因 1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位) 1902年亨得里克·洛仑兹荷兰 “关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰 1903年亨利·贝克勒法国“发现天然放射性” 皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的 共同研究” 玛丽·居里法国 1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩) 1905年菲利普·爱德华·安 东·冯·莱纳德 德国“关于阴极射线的研究” 1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究" 1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” 1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法” 1909年古列尔莫·马可尼意大利 “他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国 1910年范德华荷兰“关于气体和液体的状态方程的研究”1911年威廉·维恩德国“发现那些影响热辐射的定律” 1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀” 1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成” 1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象” 1915年威廉·亨利·布拉格英国 “用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国 1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射” 1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展” 1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” 1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” 1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现” 1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作” 1924年卡尔·曼内·乔奇·塞格 巴恩 瑞典“他在X射线光谱学领域的发现和研究”[3]

Haldane大叔的猜想诺奖深度解析(之三)

图1: S=1 的AKLT 模型基态。每个S=1 的自旋(图中的椭圆)可以拆成两个S=1/2 (图中的黑点),两个S=1/2 又可以组合成一个自旋单态。系统在体内是自旋单态的直积,在左右边界上各有一个S=1/2 的边界态。 Haldane这个猜想为什么如此有名呢?原因有三。其一,80年代以前,人们还沉浸在 Landau的对称破缺理论中,还是习惯于从对称性破缺和长程序来区分物质的不同形态或者相,而 Haldane的猜想犹如一声惊雷,让人们开始关注没有对称破缺的物质形态,里面有一个很大的未开垦的王国,即拓扑物质形态,或拓扑相;其二,整数和半整数自旋的区别完全是量子力学的效应,是量子的威力在宏观的强关联多体系统中的体现,没有经典的物理对应;其三,Haldane预言的量子相在实验上被实现,其猜想的正确性也被大量研究所证实。 Haldane还研究了海森堡相互作用中存在各向异性的情况,阐明能隙的存在是很稳定的,不受 XXZ类型或单离子或其他类型的各项异性项的影响。由于整数自旋(特别是S=1)的反铁磁链中的能隙不受微扰的影响,这个稳定存在的有能隙的量子态构成一个非平庸的量子相(其基态没有对称破缺,但因为存在边界态,而与平庸的有能隙的直积态有本质区别),后来被称为 Haldane phase。 Haldane有着过人的计算能力和良好的物理直觉。其猜想是从准经典的角度,在磁有序的经典基态上考虑量子涨落,并在大的时间和空间尺度下取连续极限,通过场论的分析而得到的。由于其理论相对比较晦涩,这些我们放到本文后半部分讲解,这里先说说 Haldane猜想对后来研究产生的影响。 在 Haldane大叔提出 conjecture之后不久,Affleck-Kennedy-Lieb-Tasaki四位大佬提出了后来以其名字命名的 AKLT模型Affleck et al. [1987](其基态可以严格的得到,如图1所示),简洁而漂亮阐述了S=1的自旋反铁磁链的基态,即 Haldane phase,并证明了其(1)没有反铁磁长程序;(2)具有有限的能隙;(3)具有自旋S=1/2的边界态。其中第三条是 Haldane phase最异乎寻常也最引人注意的地方。可惜的是 Haldane本人没有意识到整数自旋链具有半整数自旋边界态这个奇特性质,后来才被 Tai-Kai Ng从场论角度解释清楚Ng [1994]。看来 Nobel奖级的大人物的思维也有断电的时候:-);亦或是 Haldane大叔宅心仁厚,给后人分一杯羹。

丘成桐:我最痛恨中国数学界派系之争整理

丘成桐:我最痛恨中国数学界的派系之争 2008年07月03日09:29 2008年7月3日 / 第29期 “我很痛恨派系之争。做学问就是做学问,讲派系真的是很可怜的一件事,就像“大跃进”的时候讲亩产万斤差不多。现在在数学上,有一两个方向我们做得很好,还有很多方向做得不好,达不到世界第一流。” 1982年,丘成桐获得数学界的诺贝尔奖—菲尔茨奖;1994年,他又获得瑞典皇家科学院为弥补诺贝尔奖没设数学奖而专门设立的国际大奖—克雷福特奖;1997年,他再次获得美国国家科学奖。用丘成桐的学生、浙江大学数学系教授刘克峰的话说:“他创造了一个中国人的数学神话,他是一个活着的传奇。” 文/ 庄清湄图/ 小武 采访在丘成桐下榻的复旦大学皇冠假日酒店进行。第二天上午,丘成桐就要给复旦大学学生做一场关于几何分析的讲座。丘先生说道:“在中国大陆,只要是和学问有关的我都不收钱,收了也会捐出去。由企业赞助的演讲我会收钱,可钱还是捐出去的。” 1976年,27岁的丘成桐完成了数学难题卡拉比猜想;1978年,29岁的丘成桐应邀在芬兰赫尔辛基召开的数学家大会上做一小时报告,在他之前的华人数学家中只有陈省身有过这样的荣誉。 最近十多年来,丘成桐为了提高中国数学的学术水平,做了很多努力,他把自己做的事称为“尽本分”。丘成桐为中国数学“尽本分”的念头,始于1979年。 “我在香港长大,后来到美国去留学,1979年之前从来没有想过能再回中国大陆。”丘成桐说:“所以,当我踏上中国土地的那一刻非常激动。”为了迎接丘成桐的归来,广东梅州的老乡为他修了一条泥路,宰了一头牛。 1982年,丘成桐获得数学界的诺贝尔奖——菲尔茨奖;1994年,他又获得瑞典皇家科学院为弥补诺贝尔奖没设数学奖而专门设立的国际大奖——克雷福特奖;1997年,他再次获得美国国家科学奖。用丘成桐的学生、浙江大学数学系教授刘克峰的话说:“他创造了一个中国人的数学神话,他是一个活着的传奇。” 波士顿科学博物馆数学馆中,墙壁上刻着几十个当代数学家的名字,其中有三个中国人:华罗庚、陈省身和丘成桐。

世界上的数学奖简介

世界上的数学奖简介 (按拼音字母顺序排列) 爱尔特希奖(Erdes Prize) 由以色列数学联合会授奖。此奖由P.爱尔特希教授捐赠而于1976年设立,每年授奖一次,奖励一位取得突出成果的以色列数学家。 安培奖(Prix Ampere) 巴黎科学院授奖。法国电气公司于1975年为纪念物理家安培(1775-1836)诞生200周年而设立,每年授奖一次,奖励一位或几位在纯粹数学、应用数学或物理学领域中研究成果突出的法国科学家。” 奥斯特洛斯基奖(Ostrowski Prize) 瑞士奥斯特洛斯基基金会颁发。此奖系国际性,著名瑞士数学家 A.M.奥斯特洛斯基(1893-1986)留下遗产建立了奥斯特洛斯基基金。1987年设此奖,每两年颁奖一次,奖励一、二位在纯粹数学或数值分析的基础理论方面于前五年中有突出成就的数学家。1989年首次颁奖。 巴尔扎恩奖(Eugenio Balzan Prize) 国际巴尔扎恩基金会(意大利)颁奖。该基金会于1956年由E.巴尔扎恩捐资设立。每年颁发三个奖,主要奖励在文学,道德科学与艺术,物理、数学与自然科学、医学等学科的成就1962-1993年共有4位数学家获此奖。 贝维克奖(Berwick Prize) 伦敦数学会颁奖。此奖分初级与高级两等,即JuniorBerwick Prize和Senior Berwick Prize。分别奖励青年数学家和资深数学家的成就。 伯格曼奖(Bergman Prize) 伯格曼信托基金会授奖。出生于波兰的美国数学家S。伯格曼的遗孀去世后,按其遗愿为纪念其丈夫把她的捐款设立了伯格曼信托基金会并设立此奖。由美国数学会审选受奖者,每年一次,1989年首次颁奖,奖励在核函数理论及其在实与复分析中的应用、函数理论方法在椭圆型偏微分方程中的应用,特别是伯格曼算子方法等方面的成果。 伯克霍夫奖(Geore David Birkhoff Prize) 美国数学会和美国工业与应用数学会联合颁奖。此奖于1967年设立,每五年颁奖一次。奖励在应用数学领域有突出贡献者。 博谢纪念奖(B6cher Memorial Prize) 美国数学会颁奖。1923年为纪念M.博谢教授而设立,每五年颁奖一次。奖励过去五年内在分析方面值得注意的研究成果。 波利亚奖(Georg Póle Award)

有关细胞生物学的历届诺贝尔奖

1910年诺贝尔生理学或医学奖 他对蛋白质和核酸的研究为细胞化学做出了贡献 科塞尔发现核素是蛋白质和核酸的复合物。他小心地水解核酸,得到了组成核酸的基本成分:鸟嘌呤、腺嘌呤、胸腺嘧啶和胞嘧啶,还有些具有糖类性质的物质和磷酸。确定了核酸这个生物大分子的组成之后,随之而来的问题是这些物质在大分子中的比例,它们之间是如何连接的。斯托伊德尔( H. Steudel )找到了前一个问题的答 案。通过分析,他发现单糖、每种嘌呤或嘧啶碱基、磷酸的比例为 1 : 1 :1。科塞尔及 其同事发现,如果小心地水解核酸,糖基团与含氮的基团是连在一起的。科塞尔还对核酸与蛋白质的结合方式进行了研究。他发现有些物种的核酸与蛋白质结合比较紧密,有些则比较松散。 1962年诺贝尔生理学或医学奖 发现了核酸的分子结构及其在遗传信息传递中的作用 1951年,美国一位23岁的生物学博士沃森来到卡文迪许实验室,他也受到薛定谔《生命是什么》的影响。克里克同他一见如故,开始了对遗传物质脱氧核糖核酸DNA 分子结构的合作研究。他们虽然性格相左,但在事业上志同道合。沃森生物学基础扎实,训练有素;克里克则凭借物理学优势,又不受传统生物学观念束缚,常以一种全新的视角思考问题。他们二人优势互补,取长补短,并善于吸收和借鉴当时也在研究DNA分子结构的鲍林、威尔金斯和弗兰克林等人的成果,结果不足两年时间的努力便完成了DNA分子的双螺旋结构模型。沃森和克里克在1953年4月25日的《自然》杂志上以1000多字和一幅插图的短文公布了他们的发现。在论文中,沃森和克里克以谦逊的笔调,暗示了这个结构模型在遗传上的重要性:“我们并非没有注意到,我们所推测 的特殊配对立即暗示了遗传物质的复制机理。”在随后发表的论文中,沃森和克里克详细地说明了DNA双螺旋模型对遗传学研究的重大意义:(1)它能够说明遗传物质的自我复制。这个“半保留复制”的设想后来被马修?麦赛尔逊( Matthew Meselson )和富兰克林?斯塔勒(Franklin W. Stahl )用同位素追踪实验证实。(2)它能够说明遗传物质是如何携带遗传信息的。(3 )它能够说明基因是如何突变的。基因突变是由于碱基序列发生了变化,这样的变化

历届诺贝尔生理学奖或医学奖名单

历届诺贝尔生理学奖或医学奖名单(1901—2013) 1901年,E . A . V . 贝林(德国人)从事有关白喉血清疗法的研究1902年,R.罗斯(英国人)从事有关疟疾的研究 1903年,.芬森(丹麦人)发现利用光辐射治疗狼疮 1904年,.巴甫洛夫(俄国人)从事有关消化系统生理学方面的研究1905年,R.柯赫(德国人)从事有关结核的研究 1906年,C.戈尔季(意大利人)、S.拉蒙–卡哈尔(西班牙人)从事有关神经系统精细结构的研究 1907年拉韦朗(法国人)发现并阐明了原生动物在引起疾病中的作用1908年P.埃利希(德国人)、E.梅奇尼科夫(俄国人)从事有关免疫力方面的研究 1909年.科歇尔(瑞士人)从事有关甲状腺的生理学、病理学以及外科学上的研究 1910年A.科塞尔(德国人)从事有关蛋白质、核酸方面的研究 1911年A.古尔斯特兰德(瑞典人)从事有关眼睛屈光学方面的研究1912年A.卡雷尔(法国人)从事有关血管缝合以及脏器移植方面的研究 1913年.里谢(法国人)从事有关抗原过敏的研究 1914年R.巴拉尼(奥地利人)从事有关内耳前庭装置生理学与病理学方面的研究 1915年—— 1918年未颁奖 1919年 J . 博尔德特(比利时人)作出了有关免疫方面的一系列发

1920年克劳(丹麦人)发现了有关体液和神经因素对毛细血管运动机理的调节 1921年未颁奖 1922年.希尔(英国人)从事有关肌肉能量代谢和物质代谢问题的研究;迈尔霍夫(德国人)从事有关肌肉中氧消耗和乳酸代谢问题的研究1923年.班廷(加拿大),麦克劳德(加拿大人)发现胰岛素 1924年W.爱因托文(荷兰人)发现心电图机理 1925年未颁奖 1926年菲比格(丹麦人)发现菲比格氏鼠癌(鼠实验性胃癌) 1927年J.瓦格纳–姚雷格(奥地利人)发现治疗麻痹的发热疗法 1928年尼科尔(法国人)从事有关斑疹伤寒的研究 1929年C.艾克曼(荷兰人)发现可以抗神经炎的维生素;.霍普金斯(英国人)发现维生素B1缺乏病并从事关于抗神经炎药物的化学研究1930年K.兰德斯坦纳(美籍奥地利人)发现血型 1931年.瓦尔堡(德国人)发现呼吸酶的性质和作用方式 1932年.谢林顿、.艾德里安(英国人)发现神经细胞活动的机制 1933年.摩尔根(美国人)发现染色体的遗传机制,创立染色体遗传理论 1934年.迈诺特、.墨菲、.惠普尔(美国人)发现贫血病的肝脏疗法1935年H.施佩曼(德国人)发现胚胎发育中背唇的诱导作用 1936年.戴尔(英国人)、O.勒韦(美籍德国人)发现神经冲动的化学

1918年诺贝尔物理学奖——能量子的发现

1918年诺贝尔物理学奖——能量子的发现 1918年诺贝尔物理学奖授予德国柏林大学的普朗克(Max KarlErnst Ludwig Planck ,1858—1947),以承认他发现能量子对物理学的进展所作的贡献。 1895年前后,普朗克正在德国柏林大学当理论物理学教授,由于鲁本斯(H.Rubens )的介绍,经常参加以基本量度基准为主要任务的德国帝国技术物理研究所(Physikalisch Technische Reichsanstalt ,简称PTR )有关热辐射的讨论。这时PTR 的理论核心人物维恩(W.Wien )因故离开PTR ,PTR 的实验研究成果需要有理论研究工作者的配合,普朗克正好补了这个空缺。 维恩在1893年提出了关于辐射能量分布的定律,即著名的维恩分布定律: T a e b u --=5λ 其中u 表示能量随波长λ分布的函数,也叫能量密度,T 表示绝对温度,a ,b 是两个任意常数。 维恩分布定律发表后引起了物理学界的注意。实验物理学家力图用更精确的实验予以检验;理论物理学家则希望把它纳入热力学的理论体系。普朗克认为维恩的推导过程不大令人信服,假设太多,似乎是凑出来的。于是从1897年起,普朗克就投身于这个问题的研究。他企图用更系统的方法以尽量少的假设从基本理论推出维恩公式。经过二三年的努力,终于在1899年达到了目的。他把电磁理论用于热辐射和谐振子的相互作用,通过熵的计算,得到了维恩分布定律,从而使这个定律获得了普遍的意义。 然而就在这时,PTR 成员的实验结果表明维恩分布定律与实验有偏差。1899年卢梅尔(O.R.Lummer )与普林舍姆(E.Pringsheim )向德国物理学会报告说,他们把空腔加热到800K ~1400K ,所测波长为0.2μm ~6μm ,得到的能量分布曲线基本上与维恩公式相符,但公式中的常数,似乎随温度的升高略有增加。第二年2月,他们再次报告,在长波方向(他们的实验测得8μm )有系统偏差。 根据维恩公式,应有:lnu=ln (bλ-5)T a λ- 从而lnu ~T 1曲线应为一根直线。但是,他们却发现温度越高,偏离得越厉害。 接着,鲁本斯和库尔班(F.Kurlbaum )将长波测量扩展到5.2μm 。他们发现在长波区域辐射能量分布函数(即能量密度)与绝对温度成正比。 普朗克刚刚从经典理论推导出的辐射能量分布定律,看来又需作某些修正。正在这时,瑞利(Lord Rayleigh )从另一途径也提出了能量分布定律。

国际数学界的最高奖---菲尔兹奖

国际数学界的最高奖---菲尔兹奖 诺贝尔奖金中为什么没有设数学奖?对此人们一直有着各种猜测与议论。每年一度的诺贝尔物理、化学、生理学和医学奖,表彰了这几个学科中的重大成就,奖掖了科学精英,可谓举世瞩目。不设数学奖,对于这个重要的基础学科,岂不是失去了一个在世界范围内评价重大成就和杰出人才的机会?其实,数学领域中也有一种世界性的奖励,这就是每四年颁发一次的菲尔兹奖。在各国数学家的眼里,菲尔兹奖所带来的荣誉可与诺贝尔奖金媲美。 菲尔兹奖是由国际数学联盟(简称IMU)主持评定的,并且只在每四年召开一次的国际数学家大会(简称ICM)上颁发。菲尔兹奖的权威性,部分地即来自于此。所以,这里先简单介绍一下“联盟”与“大会”。 一、十九世纪以来,数学取得了巨大的进展。新思想、新概念、新方法、新结果层出不穷。面对琳琅满目的新文献,连第一流的数学家也深感有国际交流的必要。他们迫切希望直接沟通,以便尽快把握发展大势。正是在这样的情况下,第一次国际数学家大会在苏黎世召开了。紧接着,一九○○年又在巴黎召开了第二次会议,在两个世纪的交接点上,德国数学家希尔伯特提出了承前启后的二十三个数学问题,使得这次大会成为名副其实的迎接新世纪的会议。 自一九零零年以后,大会一般每四年召开一次。只是因为世界大战的影响,在一九一六年和一九四○ ——一九五○年间中断举行。第二次世界大战以后的第一次大会是一九五零年在美国举行的。在这次会议前夕,国际数学联盟成立了。这个联盟联络了全世界几乎所有的主要数学家,它的主要任务是促进数学事业的发展和国际交流,组织进行四年一次的国际数学家大会及其他专业性国际会议,颁发菲尔兹奖。自此以后,大会的召开比较正常。从一八九七年算起,总共举行了十九次大会,其中有九次是在一九五○ ——一九八三年间举行的。 联盟的日常事务由任期四年的执行委员会领导进行,近年来,这个委员会设主席一人,副主席二人,秘书长一人,一般委员五人,都是由在国际数坛上有影响的著名数学家担任。每次大会的议程,由执委会提名一个九人咨询委员会来编定。而菲尔兹奖的获奖人,则由执委会提名一个八人评定委员会来遴选。评委会的主席也就是执委会的主席,可见对这个奖的重视。这个评委会首先由每人提名,集中提出近四十个值得认真考虑的候选人,然后进行充分的讨论并广泛听取各国数学家的意见,最后在评定委员会内部投票决定本届菲尔兹奖的得奖人。 现在,国际数学家大会已是全世界数学家最重要的学术交流盛会了。一九五零年以来,每次参加者都在两千人以上,最近两次大会的参加者更在三千人以上。这么多的参加者再加上这四年来无数的新成果,用什么方法才能很好地交流呢?近几次大会采取了分三个层次讲演的办法。以一九七八年为例,在各专业小组中自行申请作十分钟讲演的约有七百人,然后由咨询委员会确定在各专业组中作四十五分钟邀请讲演的名单约二百个,以及向全会作一小时综述报告的人选十七位。被指定作一小时报告是一种殊荣,报告者是当今最活跃的一些数学家,其中有不少是过去或未来的菲尔兹奖获得者。 菲尔兹奖的宣布与授予,是开幕式的主要内容。当执委会主席(即评委会主席)宣布本届得主名单之后,全场掌声雷动。接着由东道国的重要人士(当地市长、所在国科学院院长、甚至国王、总统),或评委会主席授予一块金质奖章,外加一干五百美元的奖金。最后由一些权威的数学家来介绍得奖人的杰出工作,并以此结束开幕式。

历届诺贝尔生理学或医学奖获奖者(2018版)

诺贝尔生理学或医学奖历年获奖者(1901-2018) 年份得主国家得奖原因 1901年埃米尔·阿道夫·冯·贝 林 德国 “对血清疗法的研究,特别是在治疗白喉应用上 的贡献,由此开辟了医学领域研究的新途径,也 因此使得医生手中有了对抗疾病和死亡的有力武 器” 1902年罗纳德·罗斯英国“在疟疾研究上的工作,由此显示了疟疾如何进入生物体,也因此为成功地研究这一疾病以及对抗这一疾病的方法奠定了基础” 1903年尼尔斯·吕贝里·芬森丹麦“在用集中的光辐射治疗疾病,特别是寻常狼疮方面的贡献,由此开辟了医学研究的新途径” 1904年伊万·巴甫洛夫俄罗斯“在消化的生理学研究上的工作,这一主题的重要方面的知识由此被转化和扩增” 1905年罗伯特·科赫德国“对结核病的相关研究和发现” 1906年卡米洛·高尔基意大利 “在神经系统结构研究上的工作”圣地亚哥·拉蒙-卡哈尔西班牙 1907年夏尔·路易·阿方斯·拉 韦朗 法国“对原生动物在致病中的作用的研究” 1908年伊拉·伊里奇·梅契尼 科夫 俄罗斯 “在免疫性研究上的工作”保罗·埃尔利希德国 1909年埃米尔·特奥多尔·科 赫尔 瑞士 “对甲状腺的生理学、病理学以及外科学上的研 究” 1910年阿尔布雷希特·科塞尔德国“通过对包括细胞核物质在内的蛋白质的研究,为了解细胞化学做出的贡献” 1911年阿尔瓦·古尔斯特兰德瑞典“在眼睛屈光学研究上的工作” 1912年亚历克西·卡雷尔法国“在血管结构以及血管和器官移植研究上的工作” 1913年夏尔·罗贝尔·里歇法国“在过敏反应研究上的工作” 1914年罗伯特·巴拉尼奥地利“在前庭器官的生理学与病理学研究上的工作”1919年朱尔·博尔代比利时“免疫性方面的发现” 1920年奥古斯特·克罗丹麦“发现毛细血管运动的调节机理” 1922年阿奇博尔德·希尔英国“在肌肉产生热量上的发现” 奥托·迈尔霍夫德国 “发现肌肉中氧的消耗和乳酸代谢之间的固定关 系” 1923年弗雷德里克·格兰特·班 廷 加拿大 “发现胰岛素”约翰·麦克劳德加拿大 1924年威廉·埃因托芬荷兰“发明心电图装置”1926年约翰尼斯·菲比格丹麦“发现鼠癌”

数学界的诺贝尔奖

数学界的诺贝尔奖 諾貝爾獎為什麼沒有包括數學這一學門?對於這個問題有不少揣測。例如,有人說,諾貝爾(A.B. Nobel, 1833~1896年)與當時斯德哥爾摩大學的數學教授 M.G. Mittag-Leffler(1846年~1927年)有嫌隙,諾貝爾不想設個諾貝爾數學獎的目的正是要防止 Mittag-Leffler 得獎。儘管這類揣測都經不起事實的考驗,它們仍然是茶餘飯後大家喜歡談論的話題。 費爾茲與奈望林納 可是在數學家之間,也有一個像諾貝爾獎那麼崇高的獎,那就是費爾茲獎 (Fields medals) 與奈望林納獎 (Nevanlinna prize)。 費爾茲獎是根據加拿大多倫多大學教授費爾茲(J.C. Fields, 1863~1932年)的遺囑與捐贈成立的。它的全名是國際數學傑出成就獎 (The International Medals for Outstanding Discoveries in Mathematics)。自1936年首次頒獎,然後因第二次世界大戰中輟16年,1950年起,每四年召開一次國際數學家會議,每次頒授二到四位費爾茲獎的得主。費爾茲獎授予對當代數學有傑出貢獻者,以鼓勵他們繼續完成更偉大的科學成就。雖然沒有明文規定,費爾茲獎得主的年齡一向不超過四十歲。到目前為止,共有34位費爾茲獎的得主,其中只有四個東方人:日本的小平邦彥(1954年)、廣中平祐(1970年)、森重文(1990年)與我國的丘成桐(1983年)。 奈望林納獎由芬蘭赫爾辛基大學提供基金,為紀念芬蘭數學家奈望林納(R. Nevanlinna, 1895~1980年)設立的。奈望林納獎的目的是獎勵在資訊科學的數學理論有傑出貢獻的學者。到目前為止,共有三位奈望林納獎的得主。 費爾茲是加拿大人,1887年在美國約翰霍浦金斯大學獲得博士學位。1902年起任教於加拿大多倫多大學,他是1924年國際數學家會議在加拿大多倫多舉行時的大會主席。費爾茲本人的數學研究相當優異,他曾被選為英國皇家學會的會員,但是現在人們還記得他的原因恐怕是由於他設立的這個數學大獎。 奈望林納是當代傑出的複變函數論學者。他在1920年代建立亞純函數的值分布理論。奈望林納的理論後來被推廣到多複變函數與算術幾何,是九十年代頗受矚目的一支數學理論。第一屆費爾茲獎得主之一L.V. Ahlfors 是奈望林納的學生. 1990年的費爾茲獎 1990年的國際數學家會議,於八月二十一至二十九日在日本京都舉行。 京都是日本的古都(794~1868年),794年桓武天皇把國都自奈良遷來京都,並仿 照當時唐朝的長安建造京都的城門與街道。這是一個保留許多日本傳統文化的城市, 日本文學家川端康成的小說《古都》與谷崎潤一郎的小說《細雪》,都以京都為背景。 這次京都的國際數學家會議誕生了四個費爾茲獎的得主:森重文 (S. Mori)、德林斐 特 (V.G. Drinfeld)、鍾斯 (V.F.R. Jones) 與維騰 (E. Witten)。在十八、十九世 紀數學家與物理學家一直是密切合作的朋友,可是二十世紀的數學與物理似乎變成互 不往來的兩個世界,這種分離的局面看樣子快結束了:在這次費爾茲獎的得主,除了 森重文之外,其餘三人的研究領域和數學物理都有密切的聯繫。在另一方面,計算機 科學對數學的影響似乎不如物理,在四年前柏克萊的國際數學家會議,曾有記者問起 四位得獎人(費爾茲獎的 Donaldson、Faltings、 Freedman 與奈望林納獎的 Valiant),計算機的出現對他們的研究工作有何影響?三個費爾茲獎得主回答:「毫 無用處」,研究資訊科學理論的 Valiant 居然承認,他也不用計算機。 森重文 (Shigefumi Mori)

历年与生物有关的诺贝尔奖

1901年(第一届诺贝尔奖颁发),德国科学家贝林(Emil von Behring)因血清疗法防治白喉、破伤风获诺贝尔生理学或医学奖。 1902年,德国科学家费雪(Emil Fischer)因合成嘌呤及其衍生物多肽获诺贝尔化学奖。 美国科学家罗斯(Ronald Ross)因发现疟原虫通过疟蚊传入人体的途径获诺贝尔生理学或医学奖。 1903年,丹麦科学家芬森(Niels Ryberg Finsen)因光辐射疗法治疗皮肤病获诺贝尔生理学或医学奖。 1904年,俄国科学家巴浦洛夫(Ivan Pavlov)因消化生理学研究的巨大贡献获诺贝尔生理学或医学奖。 1905年,德国科学家科赫(Robert Koch)因对细菌学的发展获诺贝尔生理学或医学奖。 1906年,意大利科学家戈尔吉(Camillo Golgi)和西班牙科学家拉蒙·卡哈尔(Santiago Ramóny Cajal)因对神经系统结构的研究而共同获得诺贝尔生理学或医学奖。 1907年,德国科学家毕希纳因发现无细胞发酵获诺贝尔化学奖。 法国科学家阿方·拉瓦拉(Alphonse Laveran)因发现疟原虫在致病中的作用获诺贝尔生理学或医学奖。 1908年,德国科学家埃尔利希(Paul Ehrlich)因发明“606”、俄国科学家梅奇尼科夫(Hya Mechaikov)因对免疫性的研究而共同获得诺贝尔生理学或医学奖。 1909年,瑞士科学家柯赫尔(Theodor Kocher)因对甲状腺生理、病理及外科手术的研究获诺贝尔生理学或医学奖。 1910年,俄国科学家科塞尔(Albrecht Kossel)因研究细胞化学蛋白质及核质获诺贝尔生理学或医学奖。 1911年,瑞典科学家古尔斯特兰(Allvar gullstrand)因研究眼的屈光学获诺贝尔生理学或医学奖。 1912年,法国医生卡雷尔(Alexis Carrel)因血管缝合和器官移植获诺贝尔生理学或医学奖。 1913年,法国科学家里歇特(Charles Richet)因对过敏性的研究获诺贝尔生理学或医学奖。 1914年,奥地利科学家巴拉尼(Robert barany)因前庭器官方面的研究获诺贝尔生理学或医学奖。 1915年,德国科学家威尔泰特(Richard Willstatter)因对叶绿素化学结构的研究获诺贝尔化学奖。 1916年,1917年,1918年,(无)1919年,比利时科学家博尔德(Jules Bordet)因发现免疫力,建立新的免疫学诊断法获诺贝尔生理学或医学奖。 1920年,丹麦科学家克罗格(August Krogh)因发现毛细血管的调节机理获诺贝尔生理学或医学奖。 1921年,(无) 1922年,英国科学家希尔(Archibald 因发现肌肉生热,德国科学家迈尔霍夫(Otto Meyerhof)因研究肌肉中氧的消耗和乳酸代谢而共同获得诺贝尔生理学或医学奖。1923年,加拿大科学家班廷(Frederick 、英国科学家麦克劳德(John Macleod)因发现胰岛素而共同获得诺贝尔生理学或医学奖。 1924年,荷兰科学家埃因托芬(Willem Einthoven)因发现心电图机制获诺贝尔生理学或医学奖。 1925年,(无) 1926年,丹麦医生菲比格(Johannes Fibiger)因对癌症的研究获诺贝尔生理学或医学奖。 1927年,德国科学家维兰德(Heinrich Wieland)因发现胆酸及其化学结构获诺贝尔化学奖。 奥地利医生尧雷格(Julius Wagner-Jauregg)因研究精神病学、治疗麻痹性痴呆获诺贝尔生理学或医学奖。 1928年,德国科学家温道斯(Adolf Windaus)因研究丙醇及其维生素的关系获诺贝尔化学奖。 法国科学家尼科尔因对斑疹伤寒的研究获诺贝尔生理学或医学奖。 1929年,英国科学家哈登(Arthur Harden)因有关糖的发酵和酶在发酵中作用研究、瑞典科学家奥伊勒歇尔平(Hans Yon Euler-Chelpin)因有关糖的发酵和酶在发酵中作用而共同获得诺贝尔化学奖。 荷兰科学家艾克曼(Christiaan Eijkman)因发现防治脚气病的维生素B1、英国科学家霍普金斯(Sir Frederick Hopkins)因发现促进生命生长的维生素而共同获得诺贝尔生理学或医学奖。 1930年,德国科学家费歇尔(Hans Fischer)因研究血红素和叶绿素,合成血红素获诺贝尔化学奖。 美国科学家兰斯坦纳(Karl Landsteiner)因研究人体血型分类、并发现四种主要血型获诺贝尔生理学或医学奖。 1931年,德国科学家瓦尔堡(Otto Warburg)因发现呼吸酶的性质及作用获诺贝尔生理学或医学奖。 1932年,英国科学家艾德里安(Edgar Adrian)因发现神经元的功能、英国科学家谢

【历届诺贝尔奖得主(八)】1983年物理学奖

1983年12月10日第八十三届诺贝尔奖颁发。 物理学奖 美国科学家昌德拉塞卡因对恒星结构方面的杰出贡献、美国科学家福勒因与元素有关的核电应方面的重要实验和理论而共同获得诺贝尔物理学奖。 苏布拉马尼扬·钱德拉塞卡是一位印度裔美国籍物理学家和天体物理学家。钱德拉塞卡在1983年因在星体结构和进化的研究而与另一位美国体物理学家威廉·艾尔弗雷德·福勒共同获诺贝尔物理学奖。他也是另一个获诺贝尔奖的物理学家拉曼的亲戚。钱德拉塞卡从1937年开始在芝加哥大学任职,直到1995年去世为止。他在1953年成为美国的公民。钱德拉塞卡兴趣广泛,年轻时曾学习过德语,并读遍自莎士比亚到托马斯·哈代时代的各种文学作品。 人物简介 苏布拉马尼扬·钱德拉塞卡(SubrahmanyanChandrasekhar,1910年10月19日 —1995年8月15日),在恒星内部结构理论、恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学和相对论天体物理学等方面都有重要贡献。1983年因在星体结构和进化的研究而获诺贝尔物理学奖。他是另一个获诺贝尔奖的物理学家拉曼的亲戚。 他一生中写了约四百篇论文和诸多书籍。他兴趣广泛,年青时曾学习德语,读遍自莎士比亚到托马斯·哈代的文学作品。 1937年起钱德拉塞卡在芝加哥大学工作,1953年取得美国国籍。晚年他曾研读牛顿的《自然哲学的数学原理》,并写了《Newton'sPrincipiafortheCommonReader》。此书出版后不久他便逝世了。 他算过白矮星的最高质量,即钱德拉塞卡极限。所谓“钱德拉塞卡极限”是指一颗白矮星能拥有的最大质量,任何超过这一质量的恒星将以中子星或黑洞的形式结束它们的命运。 人物生平 钱德拉塞卡于1910年出生在英属印度旁遮普地区拉合尔(现在的巴基斯坦),在家中排名第3,父亲为印度会计暨审计部门的高阶官员。 钱德拉塞卡的父亲也是一位技术娴熟的卡纳蒂克音乐(Carnaticmusic)演奏者与一些音乐学著作的作者。他的母亲则是一位知识份子,并曾将亨利克·易卜生的剧作《玩偶之家》翻译成泰米尔语。 钱德拉塞卡起初在家中学习,后来则进入清奈的高中就读(1922年至1925年间)。他在1925年至1930年进入了清奈的院长学院(PresidencyCollege),并获得学士学位。钱德拉塞卡在1930年7月获得印度政府的奖学金,于是前往英国剑桥大学深造。他后来进入剑桥三一学院就读,并成为劳夫·哈沃德·福勒(RalphHowardFowler)的学生。在保罗·狄拉克的建议下,钱德拉塞卡花费一年的时间在哥本哈根进行研究,并且认识了尼尔斯·玻尔。 钱德拉塞卡在1933年夏天获得剑桥大学的博士学位,并且在当年十月成为三一学院的研究员(1933年-1937年),他在这段时期认识了天文学家亚瑟·爱丁顿与爱德华·亚瑟·米尔恩(EdwardArthurMilne)。 钱德拉塞卡在1936年与LalithaDoraiswamy结婚。 学术生涯 苏布拉马尼扬·钱德拉塞卡,1930年毕业于印度马德拉斯大学,1933年获得英国剑桥大学三一学院博士学位。 1930~1934年在英国剑桥大学三一学院学习理论物理。

国际数学家大会颁发的四项奖项

国际数学家大会颁发的四项奖项 现在国际数学家大会颁发菲尔兹奖、奈望林纳奖、高斯奖、陈省身奖四项奖。 一菲尔兹奖 国际数学家大会在开幕式上颁发菲尔茨奖,它以终生致力于数学研究的菲尔兹教授的名字命名。菲尔兹奖是数学领域的一项国际大奖,每四年颁发一次,每次至多四名,只授予四十岁以下的数学家,表彰数学上的重要贡献,授予的原因只能是“已经做出的成就”,如此苛刻的获奖条件使获得菲尔茨奖的难度超越了诺贝尔奖。菲尔兹奖只是一枚金质奖章和1500美元的奖金,与诺贝尔奖金的十万美元相比是微不足道,但是在各国数学家的眼里,菲尔兹奖所带来的荣誉可以与诺贝尔奖媲美。 菲尔兹奖由国际数学联盟主持评定,只在每四年召开一次的国际数学家大会上颁发。国际数学联盟的日常事务由任期四年的执行委员会领导进行,近年来,这个委员会设主席一人,副主席二人,秘书长一人,一般委员五人,都是由在国际数坛上有影响的著名数学家担任。每次大会的议程,由执委会提名一个九人咨询委员会来编定。菲尔兹奖的获奖人,由执委会提名一个八人评定委员会来遴选。评委会的主席也是执委会的主席。菲尔兹奖的评委会首先每人提名,从全世界第一流数学家中遴选,集中提出近四十个值得认真考虑的候选人,然后进行充分的讨论并广泛听取各国数学家的意见,最后在评定委员会内部投票决定本届菲尔兹奖的得奖人。因此,就权威性与国际性而言,任何其他的奖励都无法与菲尔兹奖相比。 菲尔兹奖自1936年设立以来每4年在大会开幕式上由主办国国家元首颁奖,截至目前共有17个国家的52名数学家得奖,其中美国得主最多,共有13名,其次是法国人(12名)和英国人(7名)。

二奈望林纳奖 国际数学家大会从1982年开始颁发奈望林纳奖,每4年一次,一次只有一位获奖者,得奖者不大于40岁。奈望林纳奖奖励在在计算机科学的数学领域(比如计算机科学、程序语言、代数分析)最杰出的数学成就。金制奖章上刻着拉尔夫·奈望林纳等的头像。1950年,奈望林纳成为第一位将计算机的使用引入芬兰的数学家。 奈望林纳奖1981年由国际数学家大会执行委员会设立。1982年4月接受赫尔辛基大学的馈赠,以纪念在1980年过世的芬兰数学家罗尔夫·奈望林纳而命名。奖项为一面金牌和奖金。 奈望林纳奖自1982年开始颁发,至2010年共有八人获奖。 1982年,美国数学家罗伯特·塔尔杨,他在计算机科学的数学方面做出了重要贡献,特别是对算法设计和算法分析有重要建树。 1986年,英国数学家L.瓦利亚特,他对理论计算机科学的每一个分支都有决定性的影响,有关计算问题的理论是他最重要、最深刻的贡献。 1990年,苏联数学家A.A.拉兹博洛夫,他对计算复杂性理论有重要建树,特别是对单调布尔函数的复杂度做了很好的工作。 1994年,以色列数学家A.威治森,他在关于零知识证明方面的工作极有成就。 1998年,美国数学家肖尔,他对量子计算算法有重要贡献。 2002年,印度数学家M.苏丹,他在概率可析验证明、最优化问题的不可逼近性以及纠错码方面做出了重要贡献。 2006年,美国康奈尔大学计算机科学教授乔恩·克莱伯格(Jon Kleinberg),他的工作为重要的实际问题带来了深刻的理论见解,它们已成为认识和管理今天日益增多的网络世界的核心。从网络分析和线路安排、数据挖掘到几何比较和蛋白质结构的分析,他的工作横跨多个领域。除了对研究的基础性的贡献外,他还深入思考技术对社会、经济和政治的影响。 2010年,美国人丹尼尔·斯皮尔曼(Daniel Spielman)。因其在线性规划中的平滑分析、基于图的代码算法以及数值计算中图论的应用而获奖。 三高斯奖 国际数学家大会从2006年开始颁发高斯奖,以后每4年一次在国际数学家大会上颁发。高斯奖设立的正式通告发布于“数学王子”高斯诞辰225年之际2002年4月30日,并以其名字命名。获奖者由国际数学联盟遴选的评审团评定。 高斯奖是德国数学联盟与国际数学联盟联合颁发,并由德国数学联盟管理的国际性数学奖项,该奖由一枚奖章和奖金(1万欧元)组成,其奖金来源是1998年柏林国际数学家大会的经费结余。

1983年诺贝尔物理学奖——天体物理学的成就

1983年诺贝尔物理学奖——天体物理学的成就 1983年诺贝尔物理学奖一半授予美国伊利诺斯州芝加哥大学的钱德拉塞卡尔(Subrahmanyan Chandrasekhar,19l0—1995),以表彰他对恒星结构和演变有重要意义的物理过程的理论研究;另一半授予加利福尼亚州帕萨迪那加州理工学院的W.A.福勒(William AlfredFowler,1911—1995),以表彰他对宇宙中化学元素的形成有重要意义的核反应的理论和实验研究。 钱德拉塞卡尔是另一诺贝尔物理学奖获得者拉曼(SirChandrasekhara Venkata Raman)的外甥,1910年10月19日出生于巴基斯坦的拉合尔,1930年毕业于印度马德拉斯大学,后在英国剑桥大学学习和任教。1937年移居美国。 钱德拉塞卡尔的主要贡献是发展了白矮星①理论。 白矮星的特性是大约在1915年由美国天文学家亚当斯(W.S.Adams)发现的。1925年英国物理学家R.H.福勒(R.H.Fowler)用物质简并假说解释了白矮星的巨大密度。物质简并假说称,电子和电离的核在极大的压力下组成高度密集的物质。1926年爱丁顿(A.S.Eddington )建议,氢转变为氦是恒星能量的可能泉源,这就为恒星演化理论奠定了基础。 1930年—1936年,钱德拉塞卡尔在剑桥大学三一学院工作期间,就投入到了白矮星的研究之中。他找到了决定恒星生命的基本参数,通过应用相对论和量子力学,利用简并电子气体的物态方程,为白矮星的演化过程建立了合理的模型,并作出了如下预测: 1.白矮星的质量越大,其半径越小; 2.白矮星的质量不会大于太阳质量的1.44倍(这个值被称为钱德拉塞卡尔极限); 3.质量更大的恒星必须通过某些形式的质量转化,也许要经过大爆炸,才能最后归宿为白矮星。 钱德拉塞卡尔的理论解释了恒星演化的最后过程,因此对宇宙学作出了重大贡献。1939年他在全面研究了恒星结构的基础上出版了《恒星结构研究导论》一书,系统总结了他的白矮星理论。他还在恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学等方面进行了许多工作。 钱德拉塞卡尔1995年8月21日由于心脏病发作而去世,享年84岁。他在晚年时潜心研究牛顿的《自然哲学的数学原理》。1995年3月20日他还在美国物理学会圣何塞年会上做过题为“牛顿…原理?的一些命题”的特邀报告。当时他正在写一本有关牛顿的书。 W.A.福勒1911年8月9日出生于美国宾夕法尼亚州的匹兹堡。由于从事与

《诺贝尔奖 物理学奖 百科知识一览表》

《诺贝尔奖· 物理学奖百科知识一览表》 布莱恩·施密特 获奖时间:2011亚当·里斯 获奖时间:2011萨尔·波尔马特 获奖时间:2011安德烈·盖姆 获奖时间:2010康斯坦丁·诺沃肖洛夫 获奖时间:2010高锟 获奖时间:2009乔治·史密斯 获奖时间:2009韦拉德·博伊尔 获奖时间:2009南部阳一郎 获奖时间:2008小林诚 获奖时间:2008益川敏英 获奖时间:2008艾尔伯·费尔 获奖时间:2007皮特·克鲁伯格 获奖时间:2007约翰·马瑟 获奖时间:2006乔治·斯穆特 获奖时间:2006罗伊·格劳伯 获奖时间:2005约翰·霍尔 获奖时间:2005特奥多尔·亨施 获奖时间:2005戴维·格罗斯 获奖时间:2004戴维·普利策

获奖时间:2004弗兰克·维尔泽克 获奖时间:2004阿列克谢·阿布里科索夫获奖时间:2003安东尼·莱格特 获奖时间:2003维塔利·金茨堡 获奖时间:2003雷蒙德·戴维斯 获奖时间:2002里卡尔多·贾科尼 获奖时间:2002小柴昌俊 获奖时间:2002埃里克·康奈尔 获奖时间:2001沃尔夫冈·凯特纳 获奖时间:2001卡尔·威依迈 获奖时间:2001阿尔费罗夫 获奖时间:2000杰克·基尔比 获奖时间:2000赫拉尔杜斯·霍夫特 获奖时间:1999韦尔特曼 获奖时间:1999劳克林 获奖时间:1998霍斯特·路德维希·施特默获奖时间:1998崔琦 获奖时间:1998朱棣文 获奖时间:1997W.D.菲利普斯 获奖时间:1997科昂·塔努吉 获奖时间:1997戴维·莫里斯·李 获奖时间:1996道格拉斯·D·奥谢罗夫

数学奖项

满意答案好评率:100% 数学顶尖杂志前40名的杂志简称全称对照表 B AMER MATH SOC BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY J AM MATH SOC JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY COMMUN PUR APPL MATH COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS FOUND COMPUT MATH FOUNDATIONS OF COMPUTATIONAL MATHEMATICS ACTA MATH-DJURSHOLM ACTA MATHEMATICA ANN MATH ANNALS OF MATHEMATICS DISCRETE CONT DYN S DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS INVENT MATH INVENTIONES MATHEMATICAE DUKE MATH J DUKE MATHEMATICAL JOURNAL J MATH PURE APPL JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES MEM AM MATH SOC MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY J ALGEBRAIC GEOM JOURNAL OF ALGEBRAIC GEOMETRY NUMER LINEAR ALGEBR NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS COMP GEOM-THEOR APPL COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS CALC VAR PARTIAL DIF CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS J FUNCT ANAL JOURNAL OF FUNCTIONAL ANALYSIS AM J MATH AMERICAN JOURNAL OF MATHEMATICS MATH ANN

相关文档