文档库 最新最全的文档下载
当前位置:文档库 › 数学建模之规划问题

数学建模之规划问题

数学建模之规划问题
数学建模之规划问题

一、线性规划

1.简介

1.1适用情况

用现有资源来安排生产,以取得最大经济效益的问题。如: (1)资源的合理利用

(2)投资的风险与利用问题 (3)合理下料问题 (4)合理配料问题 (5)运输问题 (6)作物布局问题

(7)多周期生产平滑模型 (8)公交车调度安排 1.2建立线性规划的条件

(1)要求解问题的目标函数能用数值指标来反映,且为线性函数; (2)要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述。 1.3线性规划模型的构成

决策变量、目标函数、约束条件。

2、一般线性规划问题

数学标准形式:

目标函数:1

max ==∑

n

j j

j z c x

约束条件:1

,1,2,...,,..0,1,2,...,.=?==???≥=?∑n

ij j i j j

a x

b i m s t x j n

matlab 标准形式:

min ,

,.,.?≤??

?=??≤≤?

T s t Aeq beq lb ub f x A x b x x

3、可以转化为线性规划的问题

例:求解下列数学规划问题

1234123412341234min ||2||3||4||,

2,..31,123.

2=+++?

?--+≤-?-+-≤-???--+≤-?

z x x x x x x x x s t x x x x x x x x

解:作変量変换1||||,,1,2,3,4,22

+-=

==i i i i

i x x x x u v i 并把新变量重新排序成一维变量[]1414,,,,,??==????

T

u y u u v v v ,则可把模型转化为线性规划模型

[]min ,

,,..0.???-≤???????≥?

T c y u A A b s t v y 其中:[]1,2,3,4,1,2,3,4;=T c 12,1,;2??=---????T

b 111111131 - - ??

??

= - -???? -1 -1 3??

A 。

利用matlab 计算得最优解:12342,0,=-===x x x x 最优值z=2。 程序如下:

二、整数规划

1.简介

数学规划中的变量(部分或全部)限制为整数时称为整数规划。目前流行求解整数规划的方法一般适用于整数线性规划。 1.1整数规划特点

1)原线性规划有最优解,当自变量限制为整数后,出现的情况有 ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。 ②整数规划无可行解。

③有可行解(存在最优解),但最优解值变差。

2)整数规划最优解不能按照实数最优解简单取整获得。 1.2求解方法分类

(1)分枝定界法—可求纯或混合整数线性规划。 (2)隔平面法—可求纯或混合整数线性规划。 (3)隐枚举法—可求“0-1”整数规划。 (4)匈牙利法—解决指派问题。

(5)蒙特卡洛法—求解各种类型规划. 1.3整数规划的应用模型 (1)固定费用的问题。 (2)指派问题。 (3)合理下料问题。 (4)流动推销员问题。 (5)生产与销售计划问题。

2、一般整数规划模型

目标函数:

1

max ==

∑ n

j

j j z c

x

约束条件:

1

,1,2,...,,..0,1,2,...,.=?==???≥=?∑n

ij j j j j

a x

b i m s t x j n

例:指派问题的数学模型(0-1型整数规划)

拟分配n 人去做n 项工作,若分配第i 人去做第j 项工作,需花费ij c 单位时间,如何分配工作才能使花费总时间最少? 模型的建立

引入0-1变量1,i j 0第人做第项工作,

,第i 人不做第j 项工作.?=??ij x

指派问题的数学模型为

1

1

min ,===

∑∑ n

n

ij

ij i j z c

x

111,1,2,...,,..1,1,2,...,,01,,1,2,...,.或==?==???==???= =??

∑∑n

ij j n ij i ij x i n s t x j n x i j n 利用匈牙利算法、拍卖算法等求解出最优解。

三、非线性规划

1、简介

目标函数或约束条件中包含非线性函数的规划问题为非线性规划问题。 1.1非线形规划模型的构成

决策变量、目标函数、约束条件。 1.2非线性规划的应用模型

(1)存贮模型 (2)飞行管理问题 (3)森林救火

(4)抽水费用最小问题 (5)钢管下料问题 (6)投资决策问题 (7)供应与选址问题 (8)广告的费用及其效用

2、非线性规划的模型

一般形式:

min (),

()0,1,2,,,..()0,1,2,,.目标函数:约束条件:≥=??==? j

i f h j q s t g i p x x x

其中:[]1,,= T

n x x x 为模型的决策变量。 Matlab 中非线性规划的数学模型

min (),

,,..()0,()0,.

f x A x b Aeq x beq s t c x ceq x lb x ub ?≤???=??≤??=?≤≤?? 其中:f(x)是标量函数;A,b,Aeq,beq,lb,ub 是相应维数的矩阵和向量;c(x),cex(x)是非线性向量函数。

3、罚函数法

利用罚函数法可将非线性规划问题的求解转化为求解一系列无约束极值问题。 问题

min (),

()0,1,,,

..()0,1,,,()0,1,,.

i j m f x g x i r s t h x j s k x m t ?≤=?

≥=??

==? 取一个充分大的数M>0,构造函数

1

1

1

(,)()max((),0)min((),0)|()|,r s t

i j m i j m p x M f x M g x M h x M k x ====+-+∑∑∑

(或()()(,)()max min ||()||,00m G x H x p x M f x Msum Msum M k x ????

????=+-+ ? ? ? ?????????这

里[][][]111()(),,(),()(),,(),()(),,(),r s t G x g x g x H x h x h x K x k x k x === 可直接利用matlab 中的max 、min 和sum 函数),则增广目标函数P(x,M)为目标函数

的无约束极值问题minP(x,M)的最优解x 即为原问题的最优解。 注意:

1)如果非线性规划问题要求实时算法,则可用罚函数法,但计算精度较低。

2)如果非线性规划问题不要求实时算法,但要求精度高,可使用Lingo 软件编程求解或使用Matlab 的fmincon 命令求解。

四、目标规划

1、简介

1.1求解目标规划的思路

(1)加权系数法

为每一目标赋一个权系数,把多目标模型转化成单一目标的模型。但困难是要确定合理的权系数,以反映不同目标之间的重要程度。 (2)优先等级法

将各目标按其重要程度不同的优先等级,转化为单目标模型。 (3)有效解法

寻求能够照顾到各个目标,并使决策者感到满意的解。由决策者来确定选取哪一个解,即得到一个满意解。但有效解的数目太多而难以将其一一求出。

1.2建立目标规划的条件

(1)正、负偏差变量。

(2)绝对(刚性)约束和目标约束。 (3)优先因子(优先等级)与权系数。 1.3目标规划的目标函数

目标规划的目标函数基本三种形式为

(1)第i 个目标要求恰好达到目标值,即正、负偏差变量都要尽可能地小,这时

i i i i min w d w d --++ +.

(2)第i 个目标要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小,这时

.i i min w d ++

(3)第i 个目标要求超过目标值,即超过量不限,但必须是负偏差变量要尽可能地小,这时

.i i min w d --

1.4目标规划的模型应用

(1)求多目标下产品利润最优的决策方案。 (2)求多目标下总运费最小的运输调度方案。

2、目标规划的一般数学模型

设(1,2,,)j x j n = 是目标规划的决策变量,共有m 个约束是刚性约束,可能是等式约束,也可能是不等式约束。设有l 个柔性目标约束,其目标规划约束的偏差为,(1,2,,)i i d d i l +-= 。设有q 个优先级别,分别为

12,,,q p p p ?。在同一个优先级k p 中,有不同的权重,分别记为

,(1,2,,)ki ki w w i l +-= 。目标规划模型的一般数学表达式如下

1

1

1

01

min ()

(,),1,,,,1,,,..0,1,2,,,,0,1,2,,.

q l

k ki i ki i k i n

tj j t j n ij j i i i j j i i z p w d w d a x b t m c x d d d i l s t x j n d d i l --+

+===-+=-+=+?≤=≥=????+-==???≥=?≥=??∑∑∑∑

可用序贯算法求解目标规划。

3、数据包网络分析(DEA )

3.1适用范围

DEA 特别适用于具有多输入多输出的复杂系统,如技术进步、技术创新、资源配置、金融投资等领域,特别对非单纯利益公共部门,如学校、医院、某些文化设施的评价方面。 3.2特点

1)DEA 以决策单位各输入/输出的权重为变量,

1)数据包络分析的C2R 模型 设有n 个DMU ,每个DMU 都有m 种投入和s 种产出,设1,,;1,,ij x i m j n == ()表示第j 个DMU 的第i 种投入量, 1,,1,,rj y r s j n == (;)表示第j 个DMU 的第r 种产出量,(1,,)i v i m = 表示第i 种投入的权值,1,,r u r s = ()表示第r 种产出的权值。

向量,(1,,)j j X Y j n = 分别表示决策单元j 的输入和输出向量,v 和u 分别表示输入输出权值向量,则12(,,,)T j j j mj X x x x = ,12(,,,),

T j j j sj Y x x x = 12(,,,)T m u u u u = ,12(,,,)T S v v v v = 。 定义决策单元j 的效率评价指数为

()/(),1,2,,.T T j j j h u Y v X j n ==

评价决策单元0j 效率的数学模型为

00

max

,

1,1,2,,,..0,0,0,0.

T j T

j T j

T

j

u Y v X u Y j n s t v X u v u v ?≤=???

≥≥≠≠? (1) 通过Charnes ?Cooper 变换:01

,,()

T j tv tu t v X ωμ===可以将模型(1)

转化为等价的线性规划问题

000max ,

0,1,2,,,

..1,0.T j j T T j j T

j j n s t =?-≥=??=??

≥≥??

V Y X Y X μωμωω0,μ 对于C 2R 模型,有如下定义:

(1)若线性规划问题的最优目标01j v =,则称决策单元0j 是弱DEA 有效的。

(2)若线性规划问题存在最优解**0,0,μω>>并且其最优目标值

01j V =,则称决策单元0j 是EDA 有效的。

数学建模(农业规划模型)

数学建模论文

农业生产规划模型 杨欢 (2011级2班1110500122) 【摘要】 本模型就是研究了农民在农业生产中种植农作物和养殖畜牧业的生产规划问题。以现有标准为参考,采用逐步分析法提出了线性规划模型,计算出农民在农业生产中该如何合理规划农作物的种植和畜牧业养殖的分配问题。本文根据题目给出的数据和条件,假设出了必要未知量,再根据题意列出必要方程和不等式,从而建立了完整而又合理的数学模型。 最终建立的数学模型如下: 目标函数Max z=175*x1+300*x2+120*x3+400*x4+2*x5; 约束条件x1+x2+x3+1.5*x4<=100; 400*x4+3*x5<=15000; 20*x1+35*x2+10*x3+100*x4+0.6*x5<=3500; 50*x1+75*x2+40*x3+50*x4+0.3*x5<=4000; x4<=32; x5<=3000; x1,……,x5>=0 最后我们运用LINDO等数学软件进行模型求解和分析,确保了结果的准确性和可行性。 【关键词】农业规划投资最大净收益数学模型LINDO软件 1问题的重述

1.1 问题背景: 近年来,农业生产问题越来越收到人们的关注。人们对“农场”的热衷最初来自网络游戏带来的乐趣,同时带动和启发了人们积极投入到现实农场的建设和经营。当然,人们对农场的热衷还是日常生活的实际需求。中国是一个农业大国,农民的农业生产生活问题不仅在很大程度上影响着我国的经济发展,更是决定着中国13亿人口的温饱问题。所以,对农场进行合理的规划,使其达到最优的效果,也即是最大的收益,是一个不可忽视的问题。 让拥有有限济实力和有限土地的农民,在有限的投资和有限的土地限制下,可以按照不同季经节合理安排种植业和畜牧业的劳动时间,更可用赋予时间进行多项劳动,从而可以在规定的劳动力和劳动时间内收获最大净收益。这不仅可以展我国的农业,更可使农民富裕起来,从而缩小了我国的贫富差距,对我国的经济发展有着重大促进作用。 1.2 问题叙述: 在上述背景下。我们来研究下面的具体问题: 现某农场有100公顷土地和150000元资金可用于发展生产,农场劳动力情况为秋冬季节3500人日,春夏季节4000人日,如果劳动力本身用不了时可外出干活,春夏季收入为21元/人日,秋冬季收入为18元/人日。该农场种植三种作物,大豆、玉米、小麦,并饲养奶牛和鸡。种植作物事不需要专门投资,而饲养动物时每头奶牛投资400元,每只鸡投资3元,养奶牛时每头需要播出1.5公顷土地饲草,并占用人工秋冬季为100人日,春夏季为50人日,年净收入400元/每头奶牛,养鸡不占土地,需人工为每只鸡秋冬季需0.6人日,春夏季为0.3 人日,年净收入20元/每只鸡。农场现有鸡舍允许最多养3000只鸡,牛栏允许最多养32头奶牛。三种作物每年需要的人工及收入情况如下表,试决定该农场的经营方案,使年净收入为最大。(农作物的生产需要和收益如下表所示:) 大豆玉米麦子

数学建模论文(奶牛场问题)

奶牛场计划 摘要 本文是对农场生产计划进行最优化建模,首先要求制订未来五年的生产计划, 计划应贷款的金额、应卖的小母牛、以及用来种植粮食的土地,使成本降到最低。其中农场的收入包含卖牛的收入,卖牛奶的收入,和卖粮食甜菜的收入(当粮食和甜菜充足的情况下),农场的支出包括劳动力的消费,买牛的费用,承包农场的费用,以及购买粮食甜菜的费用(当粮食和甜菜不足的情况下)。通过迭代计算可以把本模型简化成一个收入和支出的关系表达式,将银行贷款利息结合到收支上,建立一个非线性规划模型,同时考虑到粮食的充和不足情况,运用0-1规划方法解决建模问题。最后我们利用LINGO 编程得到最终结果。 关键词:收入支出迭代计算 0-1规划 LINGO

一、问题重述 1.1问题背景 某公司计划承包有200亩土地的农场,建立奶牛场,雇佣工人进行奶牛养殖经营。由于承租费用较高,公司只能向银行贷款进行生产经营。现在要为未来的五年制定生产计划,并向银行还本付息,使公司盈利最大。 1.2相关信息 开始承包时农场有120头母牛,其中20头为不到2岁的幼牛,100头为产奶牛。产奶牛平均每头每年生1.1头牛,其中一半为公牛,生出后不久即卖掉,平均每头卖300元;另一半为母牛,可以在出生后不久卖掉,平均每头卖400元,也可以留下饲养,养至2岁成为产奶牛。幼牛年损失5%;产奶牛年损失2%。产奶牛养到满12岁就卖掉,平均每头卖1200元。现在有20头幼牛, 0岁和1岁各10头;100头产奶牛,从2岁至11岁,每一年龄的都有10头。应该卖掉的小母牛都已卖掉。所有20头是要饲养成产奶牛的。 一头牛所产的奶提供年收入3700元。现在农场最多只能养130头牛。超过此数每多养一头,要投资2000元。每头产奶牛每年消耗0.6吨粮食和0.7吨甜菜。每头小牛每年消耗粮食和甜菜量为奶牛的2/3。粮食和甜菜可以由农场种植出来。每亩产甜菜1.5吨。只有80亩的土地适于种粮食,产量平均0.9吨。从市场购粮食每吨900元,卖出750元。买甜菜每吨700元,卖出500元。 养牛和种植所需的劳动量为:每头小牛每年10小时;每头产奶牛每年42小时;种一亩粮食每年需20小时;种一亩甜菜每年需30小时。 其它费用:每头幼牛每年500元,产奶牛每头每年1000元;种粮食每亩每年150元,种甜菜每亩每年100元。劳动力成本为每小时费用为10元。 承包农场需要一笔费用,其中一部分是土地承租费用,每年6万元(每年底付清),另一部分用于支付开始承包时农场已有的120头牛的费用。平均产奶牛每头4000元,小牛每头400元,到承包结束时,农场的牛按此价折价抵卖。 任何投资都是从5年期的贷款得到。贷款的年利率为12%,每年偿还本息总共的1/5,

农场生产计划 数学建模

农场生产计划 数学模型 问题重述 某农场有3万亩农田,欲种植玉米、大豆和小麦三种农作物.各种作物每亩需施化肥分别为 吨、吨、 吨.预计秋后玉米每亩可收获500千克,售价为 元/千克, 大豆每亩可收获200千克,售价为 元/千克,小麦每亩可收获350 千克,售价为 元 /千克.农场年初规划时考虑如下几个方面: 第一目标:年终收益不低于350万元; 第二目标:总产量不低于万吨; 第三目标:玉米产量不超过万吨,大豆产量不少于万吨,小麦产量以 万吨为宜,同时根据三种农作物的售价分配权重; 第四目标:农场现能提供5000 吨化肥;若不够,可在市场高价购买,但希望高价采购量愈少愈好. 模型假设与建立 模型假设: 1、 假设农作物的收成不会受天灾的影响 2、 假设农作物不受市场影响,价格既定 用321,,x x x 分别表示用于种植玉米、大豆、小麦的农田(单位:亩) + +---++++++=6 455433_22_11*)107 35*10735*10760*10712(**min d p d d d d p d p d p z 模型建立 约束条件 (1)刚性约束 30000321<=++x x x (2)柔性约束 第一目标:年终收益不低于350万元; {} ?????=-++++ -- 3500000 245240120min 113211 d d x x x d

第二目标:总产量不低于万吨; {} ?????=-++++ -- 12500000 350200500min 223212 d d x x x d 第三目标:玉米产量不超过万吨,大豆产量不少于万吨,小麦产量以 万吨为宜, {} ?????=-++ -+ 6000000 500min 3313 d d x d {} ?????=-++--2000000 200m in 4424d d x d {} ?? ???=-+++-+-500000035min 55255d d x d d 第四目标:农场现能提供5000 吨化肥;若不够,可在市场高价购买,但希望 高价采购量愈少愈好. {} ?????=-++++ -+ 5000000 15.02.012.0min 663216 d d x x x d 模型求解:(见附件) 种植面积: 玉米:亩 土豆:亩 小麦:亩 能够得到一个满足条件的种植计划 附件: model : sets : L/1..4/:p,z,goal; V/1..3/:x; HN/1..1/:b; SN/1..6/:g,dp,dm; HC(HN,V):a; SC(SN,V):c; Obj(L,SN):wp,wm; endsets data : p=; goal=0;

数学建模之农场规划问题

农场规划问题 问题重述: 某农户拥有100亩土地和15000元可供投资,每年冬季(9月中旬至来年5月中旬),该家庭的成员可以贡献3500小时的劳动时间,而夏季为4000小时。如果这些劳动时间有富裕,该家庭中的年轻成员将去附近的农场打工,冬季每小时元,夏季每小时元。 现金收入来源于三中农作物(大豆、玉米和燕麦)以及奶牛和母鸡。农作物不需要付出投资,但每头奶牛需要400元的初始投资,可产奶3年,每只母鸡需要3元的吃食投资,只饲养1年。每头奶牛需要亩的土地,并且冬季需要付出100小时劳动时间,夏季付出50小时劳动时间,每年产生的净现金收入为1350元;每只母鸡的对应数字为:不占用土地,冬季小时,夏季小时,年净现金收入元。养鸡厂房最多容纳3000只母鸡,栅栏的大小限制了最多能饲养32头奶牛。 根据统计,三种农作物每种植一亩所需要的劳动时间和收入数据分别为:大豆:冬季20小时,夏季30小时,年净收入元;玉米:冬季35小时,夏季75小时,年净收入元;燕麦:冬季10小时,夏季40小时,年净收入元。 基本假设: 1、假设该农户每年都能及时获得现金收入,即本年度所获得的利润可及时 用于下一年的投资; 2、第五年的投资也考虑到计算中。 问题分析: 这个问题的目标是使得5年内净现金收入最大,要做的决策是生产规划,即确定每种农作物应该种植多少亩,奶牛和鸡各应蓄养多少只,决策受到6个变量的限制,即土地总面积、投资资金、劳动力时间(夏季和冬季)以及奶牛和鸡的

总饲养量。 模型建立: 决策变量: 设用i=0,1,2,3,4,5表示年数,用j=1,2,3,4,5分别表示三种农作物(大豆、玉米、燕麦)及奶牛和母鸡。x xx 可表示第i 年种植三种农作物的亩数或者蓄养奶牛和母鸡的个数,x x 表示第i 年的总现金收入。 目标函数: 设第i 年的总获利为x x 元,因农作物不用投资,则第i 年种植大豆为x x1亩,每亩收入360元,获利360×x x1元;第i 年种植玉米x x2亩,每亩收入600元,获利600×x x2;第i 年种植燕麦x x3亩,每亩收入400元,获利400×x x3元;第i 年买奶牛x x4头,每头收入1350元,获利1350×(x x4+x (x ?1)4+x (x ?2)4)元;第i 年鸡购买x x5只,每只收入元,获利×x x5元;若劳动力有剩余,则第i 年夏季劳动力收入[4000-(30x x1+75x x2+40x x3+50x x4+0.3x x5)]×7元,冬季劳动力收入[3500-(20x x1+35x x2+10x x3+100x x4+0.6x x5)]×6.8元。 即: x x =(x x ?1?400x x4-3x x5)+360x x1+600x x2+400x x3+1350(x x4+x (x ?1)4+x (x ?2)4)+x x5+[4000-(30x x1+75x x2+40x x3+50x x4+0.3x x5)]×7+[3500-(20x x1+35x x2+10x x3+100x x4+0.6x x5)]×6.8 约束条件: 土地总面积 各种农作物及奶牛占用的土地不得超过该农户所拥有的土地, 故∑∑x xx 4x =15i =1≤100 投资钱数 每一年的投资总额度不得高于上一年的净现金收入,故

数学建模中的优化问题与规划模型

与最大、最小、最长、最短等等有关的问题都是优化问题。 解决优化问题形成管理科学的数学方法:运筹学。运筹学主要分支:(非)线性规划、动态规划、图与网络分析、存贮学、排队伦、对策论、决策论。 6.1 线性规划 1939年苏联数学家康托洛维奇发表《生产组织与计划中的数学问题》 1947年美国数学家乔治.丹契克、冯.诺伊曼提出线性规划的一般模型及理论. 1. 问题 例1 作物种植安排 一个农场有50亩土地, 20个劳动力, 计划种蔬菜,棉花和水稻. 种植这三种农作物每亩地分别需要劳动力1/2 1/3 1/4, 预计每亩产值分别为110元, 75元, 60元. 如何规划经营使经济效益最大. 分析:以取得最高的产值的方式达到收益最大的目标. 1. 求什么?分别安排多少亩地种蔬菜、棉花、水稻? x 1亩、 x 2 亩、 x 3 亩 2. 优化什么?产值最大 max f=10x 1+75x 2 +60x 3 3. 限制条件?田地总量 x 1+x 2 +x 3 ≤ 50 劳力总数 1/2x 1 +1/3x 2 +1/4x 3 ≤ 20 模型I : 设决策变量:种植蔬菜x1亩, 棉花x2亩, 水稻x3亩, 求目标函数f=110x1+75x2+60x3 在约束条件x1+x2+x3≤ 50 1/2x1+1/3x2+1/4x3 ≤20 下的最大值 规划问题:求目标函数在约束条件下的最值, 规划问题包含3个组成要素: 决策变量、目标函数、约束条件。 当目标函数和约束条件都是决策变量的线性函数时,称为线性规划问题, 否则称为非线性规划问题。 2. 线性规划问题求解方法 称满足约束条件的向量为可行解,称可行解的集合为可行域, 称使目标函数达最值的可行解为最优解. 命题 1 线性规划问题的可行解集是凸集. 因为可行解集由线性不等式组的解构成。两个变量的线性规划问题的可行解集是平面上的凸多边形。 命题2 线性规划问题的最优解一定在可行解集的某个极点上达到. 图解法:解两个变量的线性规划问题,在平面上画出可行域,计算目标函数在各极点处的值,经比较后,取最值点为最优解。 命题 3 当两个变量的线性规划问题的目标函数取不同的目标值时,构成一族平行直线,目标值的大小描述了直线离原点的远近。 于是穿过可行域的目标直线组中最远离(或接近)原点的直线所穿过的凸多边形的顶点即为取的极值的极点—最优解。 单纯形法: 通过确定约束方程组的基本解, 并计算相应目标函数值, 在可行解集的极点中搜寻最优解. 正则模型: 决策变量: x 1,x 2 ,…,x n . 目标函数: Z=c 1 x 1 +c 2 x 2 +…+c n x n . 约束条件: a 11 x1+…+a1n x n≤b1, ……a m1x1+…+a mn x n≤b m, 模型的标准化 10. 引入松弛变量将不等式约束变为等式约束. 若有 a i1x 1 +…+a in x n ≤b i , 则引入 x n+i ≥ 0, 使得 a i1 x 1 +…+a in x n + x n+i =b i 若有 a j1x 1 +…+a jn x n ≥b j , 则引入 x n+j ≥ 0, 使得 a j1 x 1 +…+a jn x n - x n+j =b j .

数学建模线性规划

线性规划 1.简介: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。 (x)都是线性函数,则该模型称为在优化模型中,如果目标函数f(x)和约束条件中的g i 线性规划。 2.线性规划的3个基本要素 (1)决策变量 (2)目标函数f(x) (x)≤0称为约束条件) (3)约束条件(g i 3.建立线性规划的模型 (1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。 (2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。

(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。 生产计划问题 某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表 试拟订生产计划,使该厂获得利润最大 解答:根据解题的三个基本步骤 (1)找出未知变量,用符号表示: 设甲乙两种产品的生产量分别为x 1与x 2 吨,利润为z万元。 (2)确定约束条件: 在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制 钢材:9x 1+5 x 2 ≤360, 电力:4x 1+5 x 2 ≤200, 工作日:3x 1+10 x 2 ≤300, x 1≥0 ,x 2 ≥0, (3)确定目标函数: Z=7x 1+12 x 2

数学建模实验答案数学规划模型二

实验05 数学规划模型㈡(2学时) (第4章数学规划模型) 1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102 (1) (LP)在模型窗口中输入以下线性规划模型 max z = 2x1 + 3x2 + 4x3 . + 3x2 + 5x3≤ 600 280x1 + 250x2 + 400x3≤ 60000 x1, x2, x3≥ 0 并求解模型。 ★(1) 给出输入模型和求解结果(见[101]): model: TITLE汽车厂生产计划(LP); !文件名:; max=2*x1+3*x2+4*x3; *x1+3*x2+5*x3<600; 280*x1+250*x2+400*x3<60000; end (2) (IP)在模型窗口中输入以下整数规划模型 max z = 2x1 + 3x2 + 4x3 . + 3x2 + 5x3≤ 600 280x1 + 250x2 + 400x3≤ 60000 x1, x2, x3均为非负整数

并求解模型。 LINGO函数@gin见提示。 ★(2) 给出输入模型和求解结果(见[102]模型、结果):model: TITLE汽车厂生产计划(IP); !文件名:; max=2*x1+3*x2+4*x3; *x1+3*x2+5*x3<600; 280*x1+250*x2+400*x3<60000; @gin(x1); @gin(x2); @gin(x3);!将x1,x2,x3限定为整数; end 2.(求解)原油采购与加工(非线性规划NLP,LP且IP)p104~107 模型: 已知 ? ? ? ? ? ≤ ≤ + ≤ ≤ + ≤ ≤ = ) 1500 1000 ( 6 3000 ) 1000 500 ( 8 1000 ) 500 0( 10 ) ( x x x x x x x c 注:当500 ≤x≤ 1000时,c(x) = 10 × 500 + 8( x– 500 ) = (10 – 8 ) × 500 + 8x

农业生产规划模型数学建模

长江学院 课程设计报告课程设计题目:农业生产规划模型 姓名1:袁珍珍学号: 08354230 姓名2:倪美丹学号: 08354213 姓名3:阮鹏娟学号: 08354216 专业土木工程 班级083542 指导教师邱淑芳 2010年4月11号

摘要: 通过对题目的分析可以看出本题是关于线性规划的问题,解决此类问题要找出决策变量,目标函数,约束条件等,在解题中我们建立了两种模型,通过比较来使问题更加的具有科学性。 中国是一个农业大国,农民的生产生活可以直接影响到国家的经济,优化农业生产模型是一个不可忽视的问题。本题就是研究了农民在农业生产中种植农作物和养殖畜牧业的生产规划问题。以现有标准为参考,采用假设分析法提出了优化模型,计算出农民在农业生产中合理规划农作物的种植和畜牧业养殖的分配问题。让拥有有限经济实力和有限土地的农民,在有限的投资和有限的土地限制下,可以按照不同季节合理安排种植业和畜牧业的劳动时间,更可用赋予时间进行多项劳动,从而可以在规定的劳动力和劳动时间内收获最大净收益。这不仅可以发展我国的农业,更可使农民富裕起来,从而缩小了我国的贫富差距,对我国的经济发展有着重大促进作用。本文根据题目给出的数据和条件,假设出必要未知量,再列出必要方程式,运用Lingo等数学软件分析提出合理的数学模型。关键字: 线性规划、数学建模、Lingo、农业生产、合理分配、最大净收益

阐述题目 某农户拥有100亩土地和25000元可供投资,每年冬季(9月份中旬至来年5月中旬),该家庭的成员可以贡献 3500h的劳动时间,而夏季为4000h。如果这些劳动时间有赋予,该家庭中的年轻成员将去附近的农场打工,冬季每小时元,夏季每小时元。 现金收入来源于三种农作物(大豆、玉米和燕麦)以及两种家禽(奶牛和母鸡)。农作物不需要付出投资,但每头奶牛需要400元的初始投资,每只母鸡需要3元的初始投资,每头奶牛需要使用亩土地,并且冬季需要付出100h劳动时间,夏季付出50h劳动时间,该家庭每年产生的净现金收入为450元;每只母鸡的对应数字为:不占用土地,冬季,夏季,年净现金收入元。养鸡厂房最多只能容纳3000只母鸡,栅栏的大小限制了最多能饲养32偷奶牛。 根据估计,三种农作物每种植一亩所需要的劳动时间和收入如下表所示。建立数学模型,帮助确定每种农作物应该种植多少亩,以及奶牛和母鸡应该各蓄养多少,使年净现金收入最大。

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

数学建模实验报告

湖南城市学院 数学与计算科学学院《数学建模》实验报告 专业: 学号: 姓名: 指导教师: 成绩: 年月日

实验一 初等模型 实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。 实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。 A 题 飞机的降落曲线 在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线。根据经验,一架水平飞行的飞机,其降落曲线是一条S 形曲线。如下图所示,已知飞机的飞行高度为h ,飞机的着陆点为原点O ,且在整个降落过程中,飞机的水平速度始终保持为常数u 。出于安全考虑,飞机垂直加速度的最大绝对值不得超过g /10,此处g 是重力加速度。 (1)若飞机从0x x 处开始下降,试确定出飞机的降落曲线; (2)求开始下降点0x 所能允许的最小值。 y 0x 一、 确定飞机降落曲线的方程

如图所示,我们假设飞机降落的曲线的方程为I d cx bx ax x f +++=23)( 由题设有 h x f f ==)(,0)0(0。 由于曲线是光滑的,所以f(x)还要满足0)(,0)0(0='='x f f ,代入f(x) 可以得到 ?? ? ? ?? ?=++='=+++==='==0 23)()(0)0(0)0(020*******c bx ax x f h d cx bx ax x f c f d f 得 ,0,0,3,22 3 ===- =d c x h b x h a 飞机的降落曲线为 )32()(2 30 2 0x x x x h x f --= 二、 找出最佳着陆点 飞机的垂直速度是关于时间t 的导数,所以 dt dx x x x x h dt dy )66(20 20--= 其中 dt dx 是飞机的水平速度, ,u dt dx = 因此 )(60 2 20x x x x hu dt dy --= 垂直加速度为 )12(6)12(6020 20202 2--=--=x x x hu dt dx x x x hu dt y d 记 ,)(22dt y d x a =则126)(0 2 02-=x x x hu x a ,[]0,0x x ∈ 因此,垂直加速度的最大绝对值为 2 26)(max x hu x a = []0,0x x ∈ 设计要求 1062 2g x hu ≤ ,所以g h u x 600?≥ (允许的最小值)

数学建模(工厂资源规划问题)

工厂资源规划问题 冉光明 29 信息与计算科学 指导老师:赵姣珍

目录 摘要 (1) 关键词 (1) 问题的提出 (2) 问题重述与分析 (3) 符号说明 (4) 模型假设 (4) 模型建立与求解 (5) 模型检验 (9) 模型推广 (10) 参考文献 (11) 附录 (12)

摘要:本问题是个优化问题。问题首先选择合适的决策变量即各种产品数,然后通过决策变量来表达约束条件和目标函数,再利用或编写程序,求得最优产品品种计划;最后通过优化模型对问题作以解释,得出当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时,得到的是最优品种规划。 问题一回答:当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时, 产品不值得生产。用运算分析,当产品的利润增加至25 3 时,若使产品品种计划最优, 此时需要消耗技术服务29h,劳动力消耗46h,行政管理消耗25h。 问题二回答:利用得到当技术服务增加1h时,利润增加2.5元;劳动力增加1h,利润增加1元;行政管理的增减不会影响利润。 问题三回答:增加的决策变量,调整目标函数。当技术服务消耗33h,劳动力消耗17h,不消耗行政管理,新增量50h时,管理部门采取这样的决策得到最优的产品品种规划。 问题四回答:增加新的约束条件,此时当技术服务消耗32h,劳动力消耗58h,行政管理消耗10h时,得到最优产品品种规划。 本文对模型的求解给出在线性约束条件下的获利最多的产品品种规划。 关键词:线性规划;优化模型;最优品种规划

问题的提出 某工厂制造三种产品,生产这三种产品需要三种资源:技术服务、劳动力和行政管理。下表列出了三种单位产品对每种资源的需要量: 现有100h的技术服务、600h劳动力和300h的行政管理时间可使用,求最优产品品种规划。且回答下列问题: ⑴若产品值得生产的话,它的利润是多少?假使将产品的利润增加至25/3元,求获利最多的产品品种规划。 ⑵确定全部资源的影子价格。 ⑶制造部门提出建议,要生产一种新产品,该种产品需要技术服务1h、劳动力4h 和行政管理4h。销售部门预测这种产品售出时有8元的单位利润。管理部门应有怎样的决策? ⑷假定该工厂至少生产10件产品,试确定最优产品品种规划。

数学建模 农场规划问题

model: Max=950*x11+7.5*x21+360*x31+600*x41+400*x51+6.8*(3500-100*x11-0.6*x21-20*x31-35*x4 1-10*x51)+7.0*(4000-50*x11-0.3*x21-30*x31-75*x41-40*x51)+1350*x11+950*x12+7.5*x21+36 0*x31+600*x41+400*x51+6.8*(3500-100*(x11+x12)-0.6*x21-20*x31-35*x41-10*x51)+7.0*(4000 -50*(x11+x12)-0.3*x21-30*x31-75*x41-40*x51)+1350*(x11+x12)+950*x13+7.5*x21+360*x31+6 00*x41+400*x51+6.8*(3500-100*(x11+x12+x13)-0.6*x21-20*x31-35*x41-10*x51)+7.0*(4000-50 *(x11+x12+x13)-0.3*x21-30*x31-75*x41-40*x51) +1350*(x12+x13)+950*x14+7.5*x21+360*x31+600*x41+400*x51+6.8*(3500-100*(x12+x13+x14) -0.6*x21-20*x31-35*x41-10*x51)+7.0*(4000-50*(x12+x13+x14)-0.3*x21-30*x31-75*x41-40*x51 ) +1350*(x13+x14)+950*x15+7.5*x21+360*x31+600*x41+400*x51+6.8*(3500-100*(x13+x14+x15) -0.6*x21-20*x31-35*x41-10*x51)+7.0*(4000-50*(x13+x14+x15)-0.3*x21-30*x31-75*x41-40*x51 ); x11+x12+x13<=32; x12+x13+x14<=32; x13+x14+x15<=32; x21<=3000; x22<=3000; x23<=3000; x24<=3000; x25<=3000; 1.5*x11+x31+x41+x51<=100; 1.5*x11+x32+x42+x52<=100; 1.5*x11+1.5*x12+1.5*x13+x33+x43+x53<=100; 1.5*x12+1.5*x13+1.5*x14+x34+x44+x54<=100; 1.5*x13+1.5*x14+1.5*x15+x35+x45+x55<=100; 100*x11+0.6*x21+20*x33+35*x43+10*x52<=3500; 100*x11+100*x12+0.6*x22+20*x33+35*x43+10*x52<=3500; 100*x11+100*x12+100*x13+0.6*x23+20*x33+35*x43+10*x52<=3500; 100*x12+100*x13+100*x14+0.6*x24+20*x34+35*x44+10*x54<=3500; 100*x13+100*x14+100*x15+0.6*x25+20*x35+35*x45+10*x55<=3500; 50*x11+0.3*x21+30*x33+75*x43+40*x52<=4000; 50*x11+50*x12+0.3*x22+30*x33+75*x43+40*x52<=4000; 50*x11+50*x12+50*x13+0.3*x23+30*x33+75*x43+40*x52<=4000; 50*x12+50*x13+50*x14+0.3*x24+30*x34+75*x44+40*x54<=4000; 50*x13+50*x14+50*x15+0.3*x25+30*x35+75*x45+40*x55<=4000; 400*x11+3*x21<=15000; 400*x12+3*x22<=15000+950*x11+7.5*x21+360*x31+600*x41+400*x51+6.8*(3500-100*x11-0.6 *x21-20*x31-35*x41-10*x51)+7.0*(4000-50*x11-0.3*x21-30*x31-75*x41-40*x51); 400*x13+3*x23<=950*x11+7.5*x21+360*x31+600*x41+400*x51+6.8*(3500-100*x11-0.6*x21-2 0*x31-35*x41-10*x51)+7.0*(4000-50*x11-0.3*x21-30*x31-75*x41-40*x51)+1350*x11+950*x12 +7.5*x21+360*x31+600*x41+400*x51+6.8*(3500-100*(x11+x12)-0.6*x21-20*x31-35*x41-10*x5 1)+7.0*(4000-50*(x11+x12)-0.3*x21-30*x31-75*x41-40*x51);

数学建模例题及解析

。 例1差分方程——资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢银行贷款的利息是多少呢为什么每个月要付1200元呢是怎样算出来的因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a.明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款,不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为。所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2) 这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月,已知;每月还款x=1200元,已知A。即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难。然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银行(3)表示N=60,x=1200给定时0 A。例如,若R =0.01,则由(3)可算得的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。事实上,利用图形计算器或Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这对夫妇每月可有节余900元,是否可以去买房呢

【习题】数学建模题目

数学建模题目 题目:A-K为个人单独完成题(一个人完成) 1-4题为三人共同完成题目 B题食品厂用三种原料生产两种糖果,糖果的成分要求和销售价见表1。 表1糖果有关数据 原料A原料B原料C价格(元/kg)高级奶糖≥50%≥25%≤10%24 水果糖≤40%≤40%≥15%15 各种原料的可供量和成本见表2。 表2各种原料数据 原料可供量(公斤)成本(员/公斤) A50020 B75012

该厂根据订单至少需要生产600公斤高级奶糖,800公斤水果糖,为求最大利润,试建立线性规划模型并求解。 C 题:某商业公司计划开办5家新商店。为了尽早建成营业,商业公司决定由5家建筑公司分别承建。已知建筑公司i A (5,4,3,2,1=i )对新商店j B (5,4,3,2,1=j )的建造费用的 报价(万元)为ij c (5,4,3,2,1,=j i ),见表3。商业公司应当对5家建筑公司怎样分配建造任务,才能使总的建造费用最少? 表3 各建筑公司的建筑费用数据 1 B 2 B 3 B 4 B 5 B 1A 48715122A 791714103A 6912874A 67146105 A 6 9 12 10 6 D 题上海医科大学病理生理教研室曾做过小鼠肉瘤的增长实验,并得到了如表4所示的数据。 表4 小鼠肉瘤的实验数据 时间 06 9 11 13 15 17 19 21 23 25 27 体积 0.004 0.031 0.061 0.074 0.103 0.152 0.210 0.339 0.520 0.813 1.269 1.558 (1)若t 时刻肿瘤的体积)(t v 满足指数模型

数学建模之规划问答

一、线性规划 1.简介 1.1适用情况 用现有资源来安排生产,以取得最大经济效益的问题。如: (1)资源的合理利用 (2)投资的风险与利用问题 (3)合理下料问题 (4)合理配料问题 (5)运 输 问 题 (6)作物布局问题 (7)多周期生产平滑模型 (8)公交车调度安排 1.2建立线性规划的条件 (1)要求解问题的目标函数能用数值指标来反映,且为线性函数; (2)要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述。 1.3线性规划模型的构成 决策变量、目标函数、约束条件。 2、一般线性规划问题 数学标准形式: 目标函数: 1 max == ∑ n j j j z c x 约束条件:1 ,1,2,...,,..0,1,2,...,.=?==???≥=?∑n ij j i j j a x b i m s t x j n matlab 标准形式:

min , ,.,.?≤?? ?=??≤≤? T s t Aeq beq lb ub f x A x b x x 3、可以转化为线性规划的问题 例:求解下列数学规划问题 1234123412341234min ||2||3||4||,2,..31,123. 2=+++? ?--+≤-?-+-≤-???--+≤-? z x x x x x x x x s t x x x x x x x x 解:作変量変换1||||,,1,2,3,4,22 +-= ==i i i i i x x x x u v i 并把新变量重新排序成一维变量[]1414,,,,,??==???? L L T u y u u v v v ,则可把模型转化为线性规划模型 []min , ,,..0.???-≤???????≥? T c y u A A b s t v y 其中:[]1,2,3,4,1,2,3,4;=T c 12,1,;2??=---??? ?T b 111111131 - - ?? ??= - -???? -1 -1 3??A 。 利用matlab 计算得最优解:12342,0,=-===x x x x 最优值z=2。 程序如下: 略

数学建模常见问题

1 预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归); 2 归类判别:欧氏距离判别、fisher判别等; 3 图论:最短路径求法; 4 最优化:列方程组用lindo 或lingo软件解; 5 其他方法:层次分析法马尔可夫链主成分析法等; 6 用到软件:matlab lindo (lingo)excel ; 7 比赛前写几篇数模论文。 这是每年参赛的赛提以及获奖作品的解法,你自己估量着吧…… 赛题解法 93A非线性交调的频率设计拟合、规划 93B足球队排名图论、层次分析、整数规划 94A逢山开路图论、插值、动态规划 94B锁具装箱问题图论、组合数学 95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论 96A最优捕鱼策略微分方程、优化 96B节水洗衣机非线性规划 97A零件的参数设计非线性规划 97B截断切割的最优排列随机模拟、图论 98A一类投资组合问题多目标优化、非线性规划 98B灾情巡视的最佳路线图论、组合优化 99A自动化车床管理随机优化、计算机模拟 99B钻井布局0-1规划、图论 00A DNA序列分类模式识别、Fisher判别、人工神经网络 00B钢管订购和运输组合优化、运输问题 01A血管三维重建曲线拟合、曲面重建 01B 工交车调度问题多目标规划 02A车灯线光源的优化非线性规划 02B彩票问题单目标决策 03A SARS的传播微分方程、差分方程 03B 露天矿生产的车辆安排整数规划、运输问题 04A奥运会临时超市网点设计统计分析、数据处理、优化 04B电力市场的输电阻塞管理数据拟合、优化 05A长江水质的评价和预测预测评价、数据处理 05B DVD在线租赁随机规划、整数规划

数学建模-农场资源配置问题

农场资源配置最优化 【摘要】资源是社会经济活动中人力、物力和财力的总和,是经济发展的基本物质条件。资源配置是对相对稀缺的资源在各种不同用途上加以比较做出的选择。由于农业生产资源的稀缺性,建设现代农业的过程中,必须对有限的资源进行合理配置,用最少的资源耗费得到最大的生产产出,获得最佳的经济效益,实现资源配置的最优化。避免农业生产资源的闲置和浪费。按照市场配置方式,努力发挥市场在资源配置中的指导作用,依托组织、产业和技术优势,大力开发境外资源,全面整合和优化配置资源。应充分利用产业发展,合理调配各种资源实现资源的最优配置。 本文以某农户拥有100亩土地和25000元可供投资为前提,建立数学模型,确定每种农作物应该种植多少亩,以及奶牛和母鸡应该各蓄养多少,使年净现金收入最大。 在此文中我们通过对农户投资的合理设置及其分配使得收入最大化问题而进行研究,通过精密细致的理论研究和数据分析,和LINGO 软件的运作求解,寻求农户的土地和劳作时间的最优化设置,试图从小角度透视农户投资的最优化。 数模方法及主要结果:在本题中,我们先进行问题重述,接着进行问题假设,排除了外部变化对结果的影响,然后对符号进行设定,由于涉及的未知量较多,并没有使用常规的图解法,于是建立基于目标函数与约束条件的线性规划模型,从而转化到对该线性模型最优解的探讨,接着进行问题分析和建立模型及运用了LINGO软件进行模型求解,得到了问题所需的最优解——农民出去打工才能获得最大利润。 【关键字】资源优化配置;农户投资;数学建模

一、问题重述 某农户拥有100亩土地和25000元可供投资,每年冬季(9月份中旬至来年5月中旬),该家庭的成员可以贡献 3500h的劳动时间,而夏季为4000h。如果这些劳动时间有富余,该家庭中的年轻成员将去附近的农场打工,冬季每小时6.8元,夏季每小时7.0元。 现金收入来源于三种农作物(大豆、玉米和燕麦)以及两种家禽(奶牛和母鸡)。农作物不需要付出投资,但每头奶牛需要400元的初始投资,每只母鸡需要3元的初始投资,每头奶牛需要使用1.5亩土地,并且冬季需要付出100h劳动时间,夏季付出50h劳动时间,该家庭每年产生的净现金收入为450元;每只母鸡的对应数字为:不占用土地,冬季0.6h,夏季0.3h,年净现金收入3.5元。养鸡厂房最多只能容纳3000只母鸡,栅栏的大小限制了最多能饲养32头奶牛。 根据估计,三种农作物每种植一亩所需要的劳动时间和收入如下表所示。建立数学模型,帮助确定每种农作物应该种植多少亩,以及奶牛和母鸡应该各蓄养 二、问题假设 1、农户的家庭成员不会因为生病等因素而导致劳动时间改变 2、假设家禽及种植物不会因灾害而导致农户收入减少 3、假设这段时间内家禽及种植物的市场价格稳定 4、家庭中的年轻成员将去附近的农场打工的工资收入水平不变 三、符号设定 Xi:农作物种植亩数(其中大豆为X1,玉米为X2,燕麦为X3) Yi:家禽被蓄养只数(其中奶牛为Y1,母鸡为Y2) 四、问题分析 问题要求每种农作物应该种植多少亩,以及奶牛和母鸡应该各蓄养多少,使年净现金收入最大 而年净现金收入=年总现金收入-年总现金支出 年总现金收入=农作物种植收入+家禽蓄养收入+家庭中的年轻成员去附近

相关文档
相关文档 最新文档