文档库 最新最全的文档下载
当前位置:文档库 › 英文版陶瓷生产工艺-Ceramic Tiles Manufacturing Process

英文版陶瓷生产工艺-Ceramic Tiles Manufacturing Process

英文版陶瓷生产工艺-Ceramic Tiles Manufacturing Process
英文版陶瓷生产工艺-Ceramic Tiles Manufacturing Process

2 APPLIED PROCESSES AND TECHNIQUES

CERAMIC TILE MANUFACTURING PROCESS

The ceramic tile manufacturing process consists of a series of successive stages, which can be summarised as follows:

§Raw materials preparation

§Pressing and drying of the green body

§Firing, with or without glazing

§Additional treatments

§Sorting and packing

Depending on whether the product to be made is glazed or not, and whether single fire, twice fire or third fire is involved, the tile will or will not be glazed in a given process, or the order of the glazing and firing stages will be suitably rearranged. (Figure 1).

Figure 1. Diagram of the manufacturing processes considered.

Raw materials preparation – Wet milling – Spray drying - Pressing - Drying - (Firing) - Glazing - Firing (Variable without glazing and with or without polishing) (Variable with cogeneration). Raw materials preparation – Dry milling - Pressing - (Firing) - Glazing - Firing.

Raw materials preparation - Mixing - Extrusion - (Glazing) - Firing.

Raw materials prep aration

The ceramic process starts by selecting the raw materials required for the body composition, which are mainly clays, feldspars, sands, carbonates and kaolins.

In the traditional ceramic industry, the raw materials are generally used as-mined or after some minor treatment. As natural raw materials are involved, preliminary homogenisation is required in most cases to ensure consistent characteristics.

Dry or wet milling

After a first mixing of the body components, the mixture is usually dry milled (hammer or pendulum mills) or wet milled (continuous or batch ball mills).

The resulting milled material exhibits different characteristics depending on whether dry or wet milling is used. In dry milling, fragmentation occurs and particle aggregates and agglomerates remain, with a larger particle size (there are particles larger than 300 microns) than by the wet method (all particles are smaller than 200 microns). A decisive factor in selecting the type of milling to be used is the capital outlay required in each case.

Wet milling and spray drying

Wet milling and subsequent spray drying are currently the most widely implemented methods in ceramic floor and wall tile manufacture by the single-fire process, owing to the important technical improvements they provi de. (Figure 2).

Figure 2.

In wet milling, the raw materials can be wholly or partially fed into the ball mills, which is normally the case, or they can be directly dispersed.

Part of the water contained in the resulting suspension (slip) is removed by spray drying to obtain a product with the required moisture for each process stage. Spray drying is the most widely implemented drying method in tile manufacture.

In this drying process, the fine drops of sprayed suspension come into contact with hot air to yield a solid with a low water content.

The moisture content of the body slip usually ranges from 0.0-0.45 kg water/kg dry solid. The spray-drying process reduces the water content to 0.05-0.07 kg water/kg dry solid.

Spray drying takes place according to the scheme shown in Figure 3:

§Pumping and spraying the slip.

§Hot gas generation and feed.

§Drying by contact of hot gas-slip drops.

§Separation of spray dried powder from the gases.

Figure 3. Schematic illustration of the spray-drying process.

The spray-drying operation is as follows. The slip from the milling facility storage tanks, with a

60-70 % solids content and appropriate viscosity (around 1000cp.), is fed into the spray dryer by

reciprocating pumps.

The slip is sprayed as a fine mist, which dries on coming into contact with the hot gas stream.

The gases come from a conventional air-natural gas burner or are exhaust gases from a

cogeneration turbine.

The granulate, with a moisture content of between 5,5 and 7%, is discharged onto a conveyor

belt and conveyed to the silos for subsequent pressing.

The stream of gases used to dry the slip and produce the powder are exhausted through the top

of the spray dryer. The gases have a high water content and very fine suspended dust particles. The use of the spray-drying process to obtain the raw material for the body (spray-dried

powder) provides important advantages that favour the development of subsequent

manufacturing process stages. One of the most important advantages is producing highly

uniform, more or less spherical hollow granules that provide the spray-dried powder with high

flowability and facilitate press die filling and the pressing of large-size tiles.

Another advantage worth mentioning is that it allows performing two operations, namely drying

and granulation, simultaneously with same facilities. On the other hand, control of process

variables is very simple, although the considerable rigidity of the operating boundary conditions imposed by the facility’s geometry and constructive characteristic, need to be taken into

account. Further to be noted is the continuous character of the process, which allows process

automation.

The energy costs of the drying process are quite high, but energy efficiency can be raised by

heat recovery from the gases and electricity generation by installing cogeneration turbines.

Mixing

In this body preparation stage, the water and raw materials making up the body composition are

closely mixed to a consistent paste that is readily mouldable by extrusion.

Tile forming

Dry pressing

Dry pressing (at 5-7% moisture content) with hydraulic presses is the most common tile forming method. Forming takes place by mechanically compressing the paste in the die and is one of the most cost-efficient forming methods for making ceramic ware with a regular geometry.

In pressing, the oil-hydraulic press system drives the rams into the powder bed in the die. The main hydraulic press characteristics are as follows: high compaction force, high productivity, easy adjustment and consistency in holding the set pressing cycle schedule.

The pressing facilities have developed significantly in the last few years with very sophisticated, easily adjustable and highly versatile programmers.

Extrusion

Tile forming by extrusion processes basically consists of putting the plastic body through a die that produces a constant tile cross section.

The equipment involved is made up of three main parts: a driving system, the die and the cutter. The most common driving system is an auger.

Drying of the green ceramic bodies

After forming, the tile body is dried to reduce the moisture content (0.2-0.5 %) to appropriately low levels for the firing and eventual glazing stages.

In the dryers that are commonly used in the ceramic industry, heat is transferred mainly by convection from hot gases to the tile surface, and also slightly by radiation from these gases and from the dryer walls to the tile surface.

Therefore, during the drying of ceramic bodies, a simultaneous and consecutive displacement of the water takes place through the wet solid and the gas. The air used must be sufficiently dry and hot, because it not only serves to remove the water from the solid but also to provide energy in the form of heat to evaporate the water.

At present, the bodies are dried in vertical or horizontal dryers. After shaping, the bodies are placed in the dryer where they face a hot gas countercurrent. The hot gases come from an air–natural gas burner or from the kiln cooling stack. The main heat transfer mechanism between the air and the bodies is convection.

In the vertical dryers, the pieces are fed into baskets consisting of several decks of rollers. The groups of baskets move upward through the dryer, where they come into contact with the hot gases. The temperature in this type of dryer is normally less than 200oC and the drying cycles range from 35-50 minutes.

The horizontal dryers are designed like the rollers kilns. The items are fed onto different decks inside the dryer, and conveyed horizonta lly on the rollers. Burners located on the sides of the kiln produce the hot drying air countercurrent. The maximum temperature in these types of facilities is usually higher than in the vertical dryers (around 350oC) and the drying cycles are shorter, between 15 and 25 minutes.

Overall, horizontal dryers have a lower energy consumption compared to the vertical dryers due to a better arrangement of the items inside the dryer and a lower thermal mass.

The resulting emission from the drying stage is a gaseous stream with a temperature of about 110oC, with a very low concentration of suspended particulates from the tile surfaces being drawn along in the exhaust stream.

Firing, with or without glazing

Unglazed products are fired after the drying stage. Similarly, in the case of glazed twice-fire products, the green bodies are fired after drying.

Glazing

Glazing involves applying one or more coats of glaze with a total thickness of 75-500 microns onto the tile proper surface by different methods. Glazing is done to provide the fired product with a series of technical and esthetical properties such as impermeability, cleanability, gloss, colour, surface texture, and chemical and mechanical resistance.

The nature of the resulting glaze coating is essentially v itreous, although in many cases the glaze structure contains crystalline elements.

Glazes and frits

The glaze, just like the ceramic body, is made up of a series of inorganic raw materials. The major glaze component is silica (glass former), as well as other elements that act as fluxes (alkalis, alkaline earths, boron, zinc, etc.), opacifiers (zirconium, titanium, etc.), and as colouring agents (iron, chromium, cobalt, manganese, etc.).

A wide variety of glazes are formulated depending on the type of product, firing temperature, and the desired effects and properties of the finished product.

In other ceramic processes (porcelain artware, sanitary ware), glazes are formulated that only contain crystalline, natural or synthetic raw materials, which contribute the necessary oxides. However, in ceramic floor and wall tile manufacture, raw materials of a glassy nature (frits) are used. These are prepared from the same crystalline materials that have previously undergone heat treatment at high temperature.

Frits: Nature, advantages, composition and manufacture.

Frits are vitreous compounds, insoluble in water, made by melting at high temperature (1500oC) followed by fast cooling of the raw materials mixture. Most of the glaze compositions used in tile manufacture have a larger or smaller fritted part, which can consist of a single frit or blend of different types of frits.

For a given chemical composition using frits has certain advantages compared to using unfritted raw materials, such as:

Insolubility of certai n chemical elements.

Lower toxicity; owing to its size and structure, the frit tends to form less ambient dust than the original raw materials, thus reducing the hazard associated with raw materials toxicity.

Wider glaze working temperature range, as they have no defined melting points.

The purpose of the frit production process, usually known as fritting, is to obtain a vitreous material that is insoluble in water by melting and subsequent cooling of the mixture of different materials.

Figure 4. Fritting process

The process starts by proportioning the raw materials that have been previously selected and controlled. The different raw materials are then conveyed pneumatically to a mixer (Figure 4).

A wide variety of frits is a vailable, differing in chemical composition and related physical characteristics. As indicated above, the components that in themselves are soluble or toxic are always provided in fritted form to significantly reduce their solubility. This is the case with lead, boron, alkalis, and some other minor elements. The rest of the components can be used in fritted form or as a crystalline raw material, depending on the desired effect.

Frits can be classified according to very different criteria: in terms of their chemical composition (lead, boric, et.), physical characteristics (opaque, transparent, etc.), melting range (fluxing, hard), etc. A range of frits has been developed for specific manufacturing processes, featuring various concrete characteristics, thus making it even harder to classify ceramic frits. The raw materials mixture is conveyed to a hopper that feeds it into the fritting kiln by means of an auger, whose speed controls raw materials mass flow into the kiln. The material’s residence time inside the kiln is defined by the raw materials melting rate and melt flowability.

The kiln is fitted with natural gas burners, using air or oxygen as an oxidising agent. These systems allow reaching the required temperatures of 1400-1600oC for this process.

Before exhausting the combustion gases through the stack, they are led through a heat exchanger to recover energy for combustion air pre-heating.

The fritting process can be run non-stop with continuous kilns followed by quenching in water or air-cooling, or in rotary batch kilns followed by quenching in water.

Continuous kilns have a tilted base to facilitate the descent of the molten mass. An overflow is fitted at the outlet, together with a burner that heats the viscous frit melt to prevent sudden cooling on contact with the air, facilitating continuous emptying of the kiln.

The melt can be cooled by:

Water. The molten material is quenched on falling into the water. The resulting thermal shock makes the glass shatter into small irregular fragments. These are removed from the water by an auger and subsequently conveyed to a dryer to eliminate any remaining moisture from quenching.

Raw materials

Dosage

Water

Drying

Frit Air

Air. In this case, the molten mass is drawn between two cylinders, fitted with internal air cooling, producing a very fragile sheet that breaks up readily into small flakes.

The batch process is used to produce frits for which there is less demand. In this case, the materials are melted in a rotary kiln, usually followed by quenching in water, these being the only differences from the continuous process.

The rotary kiln consists of a steel cylinder lined with refractory material, which rotates to homogenise the molten mass. A burner is located at one end of the kiln, with the flame facing into the kiln.

The arising gas emissions during continuous and batch melting processes contain gaseous compounds from combustion, gases from the volatilisation of the raw materials feed, and particulates drawn along by the combustion gases exiting the kiln. It is important to note that the composition of these particulates is similar to that of the frit being produced.

Glazes: Preparation and application. Decoration

In the glaze preparation process, the frit and additives are usually ground in alumina ball mills until a preset reject is obtained. The c onditions of the aqueous suspension are then adjusted. Suspension characteristics will depend on the application method to be used.

Ceramic tile glazing is done continuously. The most common application methods used in tile manufacture are by waterfall glazing, spraying, dry glazing or decorating.

Screen-printing is the most widespread tile decorating technique, due to the ease of this application in the glazing lines. The technique is used in single, twice and third firing, and it consists of printing a given design by means of one or more printing screens (tensioned fabric with a set mesh aperture). The screen surface is masked, and the printing ink is only put through the openings of the design to be reproduced. When the squeegee crosses the screen it presses the printing ink through the openings left in the screen, thus printing the design on the tile.

Firing

Firing is one of the most important tile manufacturing process stages as most tile characteristics depend on it. These include mechanical strength, dimensional stability, chemical resistance, cleanability, fire resistance, etc.

The main variables to be considered in the firing stage are the thermal cycle (temperature-time, Figure 5) and kiln atmosphere, which must be adapted to each composition and manufacturing technology, according to the ceramic product to be made.

In the firing operation, the tiles are subjected to a thermal cycle during which a series of reactions take place in the piece, generating changes in the microstructure and providing the desired final properties.

Single and twice fire

Ceramic materials can undergo one, two or more firings. The unglazed ceramic tiles are fired once; glazed tiles can be fired once after applying the glaze to the green tile (single-firing process), or the body may be fired first, followed by glaze application and subsequent second firing (twice-fire process).

There may sometimes be an additional drying stage after glazing. This occurs just before the material is placed in the kiln to reduce tile water moisture content to low enough levels for the firing stage to be carried out properly.

Fast firing

This is currently the prevailing ceramic tile firing method and is done in single-deck roller kilns. It has contributed to reducing firing schedules to less than 40 minutes, due to the heightened coefficients of heat transmission to the tiles, as well as their uniformity and flexibility.

In the single-deck roller kilns, the tiles travel over rollers and the heat required for firing is provided by natural gas–air burners fitted at the sides of the kiln. The main heat transmission mechanisms are convection and radiation. (Figure 6).

As non-muffled kilns are involved, gas comes into direct contact with the tiles. This heightens the heat transmission coefficients, reduces the firing cycle and energy consumption and increases kiln flexibility compared to the kilns that were formerly used.

The hot gases that arise in firing are released into the air by two emission sources. On the one hand there are the gases from the preheating and firing zone, which are exhausted via a stack at the kiln entrance and the gases from the cooling zone, which are exhausted via a stack at the kiln exit.

The gases from the preheating and firing processes are mainly composed of substances from combustion and pollutant gaseous components from raw materials decomposition and suspended dust particles. The gases from the cooling stage consist of hot air and can contain dust particulates.

Additional treatment

In some cases, particularly in porcelain tiles, the fired tile surface is polished to produce a shiny unglazed homogeneous tile.

Sorting and packing

The ceramic tile manufacturing process ends with sorting and packing. Sorting is done by automatic systems with mechanical equipment and tile surface inspection. The result is a controlled product with regard to dimensional regularity, surface appearance and mechanical and chemical characteristics.

陶瓷制作工艺流程

陶瓷制作工艺流程 在陶瓷民俗博览区古窑景区错落有致的分布着古制瓷作坊、古镇窑、陶人画坊。在作坊里可见到“手随泥走,泥随手变”,巧夺天工的拉坯成型;在镇窑里,可看到神奇的松柴烧瓷技艺,从中领略到景德镇古代手工制瓷的魅力。在古窑,我们看到了练泥、拉坯、印坯、利坯、晒坯、刻花、施釉、烧窑、彩绘、釉色变化等 练泥:从矿区采取瓷石,先以人工用铁锤敲碎至鸡蛋大小的块状,再利用水碓舂打成粉状,淘洗,除去杂质,沉淀后制成砖状的泥块。然后再用水调和泥块,去掉渣质,用双手搓揉,或用脚踩踏,把泥团中的空气挤压出来,并使泥中的水分均匀。这一环节在古窑里我没有见到,深感遗憾,于是我在前往三宝村途中仔细寻觅,有幸亲眼目睹。这种瓷石加工方法历史悠久,应与景德镇制瓷历史同步。

拉坯:将泥团摔掷在辘轳车的转盘中心,随手法的屈伸收放拉制出坯体的大致模样。拉坯是成型的第一道工序。拉坯成型首先要熟悉泥料的收缩率。景德镇瓷土总收缩率大致为18—20%,根据大小品种和不同器型及泥料的软硬程度予以放尺。由于景德镇瓷泥的柔软性,拉制的坯体均比之其他黏土成型的要厚。拉坯不仅要注意到收缩率,而且还要注意到造型。如遇较大尺寸的制品,则要分段拉制,从各个分段部位,可看出拉坯师傅的技艺好坏和水平高低。景德镇陶瓷的特殊美感和瓷文化的形成是与其独特的材质、工艺等有着密不可分的联系,甚至在某种程度上说:景德镇瓷器名扬天下,除当地“天赐”的优质黏土之外,基本上是那些“鬼斧神工”的技艺将这些普通的“东西”变成了人类的“宠物”。由此,真正被“神灵”护佑着的正是这制瓷技艺的不断分工、进化和传承。这千年相传的技艺造就和组成了人类陶瓷史甚至是文明史上最耀眼的光环,这光环让人炫目,也让人敬畏。

陶瓷的生产工艺流程.

陶瓷的生产工艺流程 一、陶瓷原料的分类 (1)粘土类 粘土类原料是陶瓷的主要原料之一。粘土之所以作为陶瓷的主要原料,是由于其具有可塑性和烧结性。陶瓷工业中主要的粘土类矿物有高岭石类、蒙脱石类和伊利石(水云母)类等,但我厂的主要粘土类原料为高岭土,如:高塘高岭土、云南高岭土、福建龙岩高岭土、清远高岭土、从化高岭土等。 (2)石英类 石英的主要成分为二氧化硅(SiO ),在陶瓷生产中,作为瘠性原料加入到陶瓷坯料中时, 2 在烧成前可调节坯料的可塑性,在烧成时石英的加热膨胀可部分抵消部分坯体的收缩。当添加到釉料中时,提高釉料的机械强度,硬度,耐磨性,耐化学侵蚀性。我厂的石英类原料主要有:釉宝石英、佛冈石英砂等。 (3)长石类 长石是陶瓷原料中最常用的熔剂性原料,在陶瓷生产中用作坯料、釉料熔剂等基本成分。在高温下熔融,形成粘稠的玻璃体,是坯料中碱金属氧化物的主要来源,能降低陶瓷坯体组分的熔化温度,利于成瓷和降低烧成温度。在釉料中做熔剂,形成玻璃相。我厂的主要长石类原料有南江钾长石、佛冈钾长石、雁峰钾长石、从化钠长石、印度钾长石等。 二、坯料、釉料制备 (1)配料 配料是指根据配方要求,将各种原料称出所需重量,混合装入球磨机料筒中。我厂坯料的配料主要分白晶泥、高晶泥、高铝泥三种,而釉料的配料可分为透明釉和有色釉。 (2)球磨 球磨是指在装好原料的球磨机料筒中,加入水进行球磨。球磨的原理是靠筒中的球石撞击和磨擦,将泥料颗料进行磨细,以达到我们所需的细度。通常,坯料使用中铝球石进行辅助球磨;釉料使用高铝球石进行辅助球磨。在球磨过程中,一般是先放部分配料进行球磨一段时间后,再加剩余的配料一起球磨,总的球磨时间按料的不同从十几小时到三十多个小时不等。如:白晶泥一般磨13个小时左右,高晶泥一般磨15-17小时,高铝泥一般磨14个小时左右,釉料一般磨33-38小时,但为了使球磨后浆料的细度要达到制造工艺的要求,球磨的总时间会有所波动。

陶瓷的生产工艺流程-陶瓷工艺流程

陶瓷得生产工艺流程 一、陶瓷原料得分类 (1)粘土类 粘土类原料就就是陶瓷得主要原料之一。粘土之所以作为陶瓷得主要原料,就就是由于其具有可塑性与烧结性。陶瓷工业中主要得粘土类矿物有高岭石类、蒙脱石类与伊利石(水云母)类等,但我厂得主要粘土类原料为高岭土,如:高塘高岭土、云南高岭土、福建龙岩高岭土、清远高岭土、从化高岭土等。 (2)石英类 石英得主要成分为二氧化硅(SiO ),在陶瓷生产中,作为瘠性原料加入到陶瓷坯料中时,在 2 烧成前可调节坯料得可塑性,在烧成时石英得加热膨胀可部分抵消部分坯体得收缩。当添加到釉料中时,提高釉料得机械强度,硬度,耐磨性,耐化学侵蚀性。我厂得石英类原料主要有:釉宝石英、佛冈石英砂等。 (3)长石类 长石就就是陶瓷原料中最常用得熔剂性原料,在陶瓷生产中用作坯料、釉料熔剂等基本成分。在高温下熔融,形成粘稠得玻璃体,就就是坯料中碱金属氧化物得主要来源,能降低陶瓷坯体组分得熔化温度,利于成瓷与降低烧成温度。在釉料中做熔剂,形成玻璃相。我厂得主要长石类原料有南江钾长石、佛冈钾长石、雁峰钾长石、从化钠长石、印度钾长石等。 二、坯料、釉料制备 (1)配料 配料就就是指根据配方要求,将各种原料称出所需重量,混合装入球磨机料筒中。我厂坯料得配料主要分白晶泥、高晶泥、高铝泥三种,而釉料得配料可分为透明釉与有色釉。 (2)球磨 球磨就就是指在装好原料得球磨机料筒中,加入水进行球磨。球磨得原理就就是靠筒中得球石撞击与磨擦,将泥料颗料进行磨细,以达到我们所需得细度。通常,坯料使用中铝球石进行辅助球磨;釉料使用高铝球石进行辅助球磨。在球磨过程中,一般就就是先放部分配料进行球磨一段时间后,再加剩余得配料一起球磨,总得球磨时间按料得不同从十几小时到三十多个小时不等。如:白晶泥一般磨13个小时左右,高晶泥一般磨15-17小时,高铝泥一般磨14个小时左右,釉料一般磨33-38小时,但为了使球磨后浆料得细度要达到制造工艺得要求,球磨得总时间会有所波动。 (3)过筛、除铁 球磨后得料浆经过检测达到细度要求后,用筛除去粗颗粒与尾沙,通常情况下,我厂所用得

日用瓷与建筑陶瓷生产工艺流程

日用陶瓷与建筑陶瓷生产工艺流程 建筑陶瓷是指建筑物室内外装饰用的较高级的烧土制晶,它属精陶或粗瓷类。其主要品种有外墙面砖、内墙面砖、地砖、陶瓷锦砖、陶瓷壁画等。 第一节陶瓷的基本知识 一、陶瓷的概念与分类 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产过程都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的陶瓷生产方法制成的无机多晶产品。 根据陶瓷原料杂质的含量、烧结温度高低和结构紧密程度把陶瓷制品分为陶质、瓷质、和炻质三大类。 陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。 炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧

密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。 二、陶瓷的原料 陶瓷工业中使用的原料品种很多,从它们的来源来分,一种是天然矿物原料,一种是通过化学方法加工处理的化工原料。天然矿物原料通常可分为可塑性物料、瘠性物料、助熔物料和有机物料等四类。下面介绍天然原料主要品种的组成、结构、性能及其在陶瓷工业中的主要用途。 1.可塑性物料——粘土 粘土主要是由铝硅酸盐岩石(火成的、高质的、沉积的)如长石岩、伟晶花岗岩、斑岩、片麻岩等长期风化而成,是多种微细矿物的混和体。 粘土通常分为: (1)高岭土——也称瓷土,为高纯度粘土,烧成后呈白色,主要用于制造瓷器。 (2)陶土——也称微晶高岭土,较纯净,烧成后略呈浅灰色,主要用于制造陶器。 (3)砂质粘土——含有多量细砂、尘土、有机物、铁化物等,是制造普通砖瓦的原料。 (4)耐火粘土——也称耐火泥,此种粘土含杂质较少,熔剂大

陶瓷砖生产工艺流程

陶瓷的定义 ?陶瓷的定义: 以粘土为主要原料加上其他天然矿物原 料经过拣选、粉碎、混练、煅烧等工序制 作的各类产品称作陶瓷。分为日用陶瓷、 建筑陶瓷、电瓷。以上陶瓷制品使用的主 要原料是自然界的硅酸盐矿物(如粘土、 长石、石英)所以又归属硅酸盐类及制品 范畴。 陶瓷发展史 ?我国是陶瓷生产大国,陶瓷生产有悠久历史和辉煌成就。我国最早烧制的是陶器。由于古代人民经过长期实践,积累经验,在原料的选择和精制、窑炉的改进及烧成温度的提高,釉的发展和使用有了新的突破,实现陶器到瓷器的转变。陶瓷工业的新工艺、新技术、新设备层出不穷。

世界瓷砖生产量 ?目前世界瓷砖的生产和消费都获得了较大的发展。2008年世界瓷砖产量84.95亿㎡,比07年增长3.5%左右。在世界瓷砖生产总量中,亚洲处于主导地位,生产量亚洲为61.4%,欧洲为21.6%,美洲为13.5%,消费的比例大致为亚洲为58.9%,欧洲为20.1%,美洲为15.7%。我国生产量大概34亿㎡,占世界生产份额达40%左右,西班牙生产量在5亿㎡左右,意大利生产量在5亿左右。 陶瓷行业布局 ?生产基地以佛山为主 ?新的生产基地目前在江西兴起

瓷砖分类瓷砖 陶质砖瓷质砖 地砖 内墙砖 抛光瓷质砖炻质砖外墙砖 渗花砖微粉砖瓷质釉面砖 ?我公司生产的 瓷砖品种繁 多,现以地砖 生产过程为例 对我公司的生 产工艺流程做 个简单的介绍。 瓷砖的分类原则 ?1、吸水率:用水加入砖底看水吸收快慢陶质砖:E>10% 炻质砖:0.5%< E ≤ 10% 瓷质砖:E≤0.5% ?2、透光性: 陶质砖:不透光 炻质砖:透光性差 瓷质砖:透光

陶瓷生产工艺

一陶瓷生产工艺流程 二原料 菱镁矿,煤矸石,工业氧化铝,氧化钙,二氧化硅,氧化镁。三坯料的制备 1原料粉碎 块状的固体物料在机械力的作下而粉碎,这种使原料的处理操作,即为原料粉碎。(1)粗碎 粗碎装置常采用颚式破碎机来进行,可以将大块原料破碎至40-50毫米的碎块,

这种破碎机是无机材料工厂广泛应用的醋碎和中碎机械。是依靠活动颚板做周期性的往复运动,把进入两颚板间的物料压碎,颚式破碎机具有结构简单,管理和维修方便,工作安全可靠,使用范围广等优点。它的缺点是工作间歇式,非生产性的功率消耗大,工作时产生较大的惯性力,使零件承受较大的负荷,不适合破碎片状及软状粘性物质。破碎比较大的破碎机的生产能力计算方法如下: G=0.06upkbsd/tanq 式中G破碎机生产能力,Kg/h u物料的松动系数,0.6-0.7 P物料的密度 K每分钟牙板摆动次数,次/MIN b进料口长度,单位米 S牙板之开程单位米 Q钳角D破碎后最大物料的直单位毫米 (2)中碎 碾轮机是常用的中碎装置。物料是碾盘与碾轮之间相对滑动与碾轮的重力作用下被碾磨与压碎的,碾轮越重尺寸越大,则粉碎力越强。陶瓷厂用于制备坯釉料的轮碾机常用石质碾轮和碾盘。一般轮子直径为物料块直径的14-40倍,硬质物料取上限,软质物料物料下限。 轮碾机碾碎的物料颗粒组成比较合理,从微米颗粒到毫米级粒径,粒径分布范围广,具有较合理的颗粒范围,常用于碾碎物料。 (3)细碎 球磨机是陶瓷厂的细碎设备。在细磨坯料和釉料中,其起着研磨和混合的作用。陶瓷厂多数用间歇式湿法研磨坯料和釉料,这是由于湿式球磨时水对原料的颗粒表面的裂缝有劈尖作用,其研磨效率比干式球磨高,制备的可塑泥和泥浆的质量比矸干磨得好。泥浆除铁比粉除铁磁阻小效率高,而且无粉尘飞扬。 (4)筛分 筛分是利用具有一定尺寸的孔径或缝隙的筛面进行固体颗粒的分级。当粉粒经过筛面后,被分级成筛上料和筛下料两部分。筛分有干筛和湿筛。干筛的筛分效率主要取决于物料温度。物料相对筛网的运动形式以及物料层厚度。当物料湿度和粘性较高时,容易黏附在筛面上,使筛孔堵塞,影响筛分效率。当料层较薄而筛面与物料之间相对运动越剧烈时,筛分效率就越高,湿筛和干筛的筛分效果主要却决于料将的稠度和黏度。 陶瓷厂常用的筛分机有摇动筛,回转筛以及振筛。 (5)除铁 (6)A磁选条件 坯料和釉料中混有铁质将使制品外观受到影响,如降低白度,产生斑点。因此,原料处理与坯料制备中,除铁是一个很重要的工序。 从物理学中,作用在单位质量颗粒上磁力为 F=RHdH/dh

特种陶瓷制备工艺..

特种陶瓷材料的制备工艺 10材料1班 王俊红,学号:1000501134 摘 要:介绍粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法。 目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些急需解决的问题。 当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。 压力成形不能满足形状复杂性和密度均匀性的要求。 多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;陶瓷材料 前言:陶瓷分为普通陶瓷和特种陶瓷两大类, 特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。 它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。 特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。 因此研究特种陶瓷制备技术至关重要。 正文:特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成形,第三步是烧结。 特种陶瓷制备工艺流程图 一、 陶瓷粉体的制备 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即粉末制备 坯料制备 成型 干燥 烧结 后处理 热压或热等静压烧结 成品

陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著使组分之间发生固相反应,得到所需的物相。同时,机械球磨混合无法使组分分的影响。粉末制备方法很多,但大体上可以归结为机械研磨法和化学法两个方面。 传统陶瓷粉料的合成方法是固相反应加机械粉碎(球磨)。其过程一般为:将所需要的组分或它们的先驱物用机械球磨方法(干磨、湿磨)进行粉碎并混合。然后在一定的温度下煅烧。由于达不到微观均匀,而且粉末的细度有限(通常很难小于 l μm 而达到亚微米级),因此人们普遍采用化学法得到各种粉末原料。根据起始组分的形态和反应的不同,化学法可分为以下三种类型: 1.固相法: 化合反应法:化合反应一般具有以下的反应结构式: A(s)+B(s)→C(s)+D(g) 两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。 钛酸钡粉末的合成就是典型的固相化合反应。等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应: BaCO3+TiO2→BaTiO3+CO2↑ 该固相化学反应在空气中加热进行。生成用于PTC制作的钛酸钡盐,放出二氧化碳。但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。 热分解反应法:

日用瓷与建筑陶瓷生产工艺流程

日用瓷与建筑陶瓷生产 工艺流程 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

日用陶瓷与建筑陶瓷生产工艺流程 建筑陶瓷是指建筑物室内外装饰用的较高级的烧土制晶,它属精陶或粗瓷类。其主要品种有外墙面砖、内墙面砖、地砖、陶瓷锦砖、陶瓷壁画等。 第一节陶瓷的基本知识 一、陶瓷的概念与分类 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产过程都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的陶瓷生产方法制成的无机多晶产品。 根据陶瓷原料杂质的含量、烧结温度高低和结构紧密程度把陶瓷制品分为陶质、瓷质、和炻质三大类。 陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。 炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。 二、陶瓷的原料 陶瓷工业中使用的原料品种很多,从它们的来源来分,一种是天然矿物原料,一种是通过化学方法加工处理的化工原料。天然矿物原料通常可分为可塑性物料、瘠性物料、助熔物料

陶瓷生产流程 英文版 外贸陶瓷必看

陶瓷生产流程英文版外贸陶瓷必看!! 以下以贴花和手绘,分别介绍釉上彩和釉下彩的工艺流程: 第一种;Decaled Dinnerware https://www.wendangku.net/doc/f713913315.html,ling 练泥 Various raw materials including feldspar, silica, clay and pottery stone are mixed and fine-milled in the ball mill. 2.Filter press & Vacuum extrusion 摞泥 The clay body is made by filter-pressing the slip. The pressed body de-aired and extruded to the required size through the pug mill. 3.Green Making 制坯 Using appropriated roller head and plaster mould, green body is formed. For the irregular shapes such as teapots and figurines, slip casting is used. In casting, liquid clay (slip) is poured into plaster moulds and the green shape forms on the mould as the water is absorbed through the plaster mould. 4.Finishing 修坯 The rough edges and foot of the green ware are cleaned with wet sponge by automatic edge-cleaning machine or by skilled hand 5.Glazing 上釉 To seal the surface of the biscuit body and to give the product its glossy finish, glaze is applied using automatic glaze spraying line. 6.Glost firing 烧釉 Carefully loading the glazed ware onto a kiln car, the glazed ware is fired at 1280∑C. At the temperature, the glaze powder melts and turns into a transparent glass layer covering the biscuit body. The glost-fired ware is inspected and ready for the decoration. 7.Lithography 贴花 The printed decal is transferred onto the glost ware and dried. 8.Decoration firing 二次烧结 The decal and the ware are fired at appropriated temperatures and the printed patterns permanently fuse onto the glaze layer to give permanent durable decoration. 9.Inspeciton & Packaging 修整成箱 Experienced eyes in the inspection area checks for possible faults in the ware and the finished ware is packaged as necessary

陶瓷生产工艺技术概况

陶瓷生产工艺技术概况 第一节陶瓷生产及原料概况 陶瓷是指用粘土、石英等天然硅酸盐原料经过粉碎、成型、煅烧等过程而得到的具有 一定形状和强度的制品。主要指日常生活中常见的日用陶瓷和建筑陶瓷、电瓷等。 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天 的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产 过程都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的 陶瓷生产方法制成的无机多晶产品。 陶瓷制品的品种繁多,它们之间的化学成分、矿物组成、物理性质、以及制造方法, 常常互相接近交错,无明显的界限,而在应用上却有很大的区别。因此很难硬性地归纳为 几个系统,详细的分类法各家说法不一,到现在国际上还没有一个统一的分类方法。整理 汇编如下: 一、根据陶瓷原料杂质的含量、和结构紧密程度把陶瓷制品分为陶质、瓷质和炻质三类 1、陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为 有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要 经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 2、炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。

3、瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。瓷器是陶瓷器发展的更高阶段。它的特征是坯体已完全烧结,完全玻化,因此很致密,对液体和气体都无渗透性,胎薄处星半透明,断面呈贝壳状,以舌头去舔,感到光滑而不被粘住。 二、陶瓷可简单分为硬质瓷,软质瓷、特种瓷三大类 1、硬质瓷 (hard porcetain) 具有陶瓷器中最好的性能。用以制造高级日用器皿,电瓷、化学瓷等。我国所产的瓷器以硬质瓷为主。硬质瓷器,坯体组成熔剂量少,烧成温度高,在1360℃以上色白质坚,呈半透明状,有好的强度,高的化学稳定性和热稳定性,又是电气的不良传导体,如电瓷、高级餐具瓷,化学用瓷,普通日用瓷等均属此类,也可叫长石釉瓷。 2、软质瓷(soft porcelain)与硬质瓷不同点是坯体内含的熔剂较多,烧成温度稍低,在1300℃以下,因此它的化学稳定性、机械强度、介电强度均低,一般工业瓷中不用软质瓷,其特点是半透明度高,多制美术瓷、卫生用瓷、瓷砖及各种装饰瓷等。这两类瓷器由于生产中的难度较大(坯体的可塑性和干燥强度都很差,烧成时变形严重),成本较高,生产并不普遍。至于熔块瓷 (Fritted porcelain) 与骨灰磁 (bone china),它们的烧成温度与软质瓷相近,其优缺点也与软质瓷相似,应同属软质瓷的范围。英国是骨灰瓷的着名产地,我国唐山也有骨灰瓷生产。 3、特种陶瓷是随着现代电器,无线电、航空、原子能、冶金、机械、化学等工业以及电子计算机、空间技术、新能源开发等尖端科学技术的飞跃发展而发展起来的。这些陶瓷所用的主要原料不再是粘土,长石,石英,有的坯体也使用一些粘土或长石,然而更多的是采用纯粹的氧化物和具有特殊性能的原料,多以各种氧化物为主体,如高铝质瓷,它是以氧化铝为主,镁质瓷,以氧化镁为主;滑石质瓷,以滑石为主;铍质瓷,以氧化铍或绿

(工艺流程)陶瓷材质解析和工艺制做流程

陶瓷材质解析和工艺制做流程(2006/05/18 15:38) 浏览字体:大中小陶瓷制做工艺流程 I. 制模 i. 雕型(厡形阶段) 1. 木擳土(深灰色):是一种水性土,质地较细,可做不规则的雕模 2. 石膏(白色):质地较硬,适合作比较工整的雕模 3. 油土(土黄色):不需保湿,常用来做poly的雕模或是厚度较薄易龟裂的浮雕。2 此阶段须注意ü 原型厚薄均匀,比例合理才能避免日后有开裂的问题ü 浮雕之深浅、角度需适中便于分片,如有利角将造成卡模。ü 转角要圆,避免利角造成开裂。ü 原型会比图稿尺寸大或高,由于每一种土因烧成温度不同都有其收缩比的关系。 n 陶土分类烧成温度越高收缩比越高吸水率越低,与硬度也成正比。特性类别烧成温度收缩比吸水率烧成颜色特性白云土普通950°~1050° 4%~6% 15% 白色无光质脆,实用性低,吸水率高手绘色彩较鲜艳重质1110°~1150° 6%~8% 10% 半瓷普通1150°~1250° 10%~12% 4%~8% 米黄无光质硬,实用性高,吸水率低易适作手绘彩,色釉效果佳白半瓷米白无光红土低温1000°~1050° 4%-7% >15% 红褐颜色较淡,质脆,吸水率高高温1110°~1150° 8%~12% <8% 颜色较暗,质硬,吸水率低全瓷(瓷器) 1200°~1350° <1% 死白瓷化,质硬,吸水率低,实用性高骨灰瓷(瓷器) ii. 分片(样品模) 1. 利用石膏将原形翻制成模具。2 此阶段须注意ü 为避免模线问题,分片数愈少越好,分片时也须注意每片之间隙不可过大。ü 若曾上过钾肥皂(是一种隔离剂)需清洗干净,以避免日后发生针孔、气泡瑕疵。 iii. 包case-意指大货生产时,为复制子模所需而翻制的母模(阳模,材质为超硬石膏) 1. 利用母模可以再重复

建筑陶瓷生产工艺流程

建筑陶瓷生产工艺流程 建筑陶瓷是指建筑物室内外装饰用的较高级的烧土制晶,它属精陶或粗瓷类。其主要品种有外墙面砖、内墙面砖、地砖、陶瓷锦砖、陶瓷壁画等。 第一节陶瓷的基本知识 一、陶瓷的概念与分类 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产过程都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的陶瓷生产方法制成的无机多晶产品。 根据陶瓷原料杂质的含量、烧结温度高低和结构紧密程度把陶瓷制品分为陶质、瓷质、和炻质三大类。 陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。 炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。 二、陶瓷的原料 陶瓷工业中使用的原料品种很多,从它们的来源来分,一种是天然矿物原料,一种是通过化学方法加工处理的化工原料。天然矿物原料通常可分为可塑性物料、瘠性物料、助熔物料和有机物料等四类。下面介绍天然原料主要品种的组成、结构、性能及其在陶瓷工业中的主要用途。 1.可塑性物料——粘土

陶瓷生产工艺

陶瓷生产工艺 一大早下着小雨,冷风透进骨子里,可即使是这样的天气,也影响不到我的兴奋。今天是认识实习的第一天,首站佛山。以前对佛山有一点点的了解,知道它以建筑陶瓷知名,佛山有300多家陶瓷企业,中国的陶瓷出口欧美、东南亚等地区,我们的主要竞争对手是墨西哥,其在欧美的市场占有率较大。只是知道一点点,但对整个建筑陶瓷的生产过程并不了解。这学期学习陶瓷工业设备后,对窑炉认识一知半解,还没见到现实生活中瓷砖的生产,现实中的窑炉。 集合完毕,我们就开始了今天的佛山之旅。包车里,司机师傅放着不知道是那个年代的老歌,就像是催眠曲,听得我们大家都睡着了,路上这一个半小时显得很短,眼睛一闭一睁就过去了。 我们首站来到的金意陶。佛山金意陶陶瓷有限公司是广东东鹏陶瓷股份有限公司与行业精英共同组建的一家专业生产高档瓷质饰釉砖(仿古砖)的大型陶瓷企业,注重产品研发,制造回归自然、超越自然的陶瓷产品。金意陶瓷砖是一种符合潮流的仿古风格瓷砖。今天负责带我们参观的是金意陶产品研发部门。他们我们参观了他们的生产线,给我们讲解了仿古砖生产的整个流程。我们学到了很多。 生产仿古砖的工艺流程和其他建筑陶瓷一样,分那么几个步骤: 1.制粉,因为我们参观的金意陶本部在市区,地处居民区,为避免污

染,金意陶的原材料粉磨是在三水生产基地进行的; 2.压制成型原料粉经过压机压制成型,压出我们看到的瓷砖坯体; 3.干燥脱水四十分钟左右,控制含水量<0.5%; 4.上釉印花,干燥完的坯体在生产线上经过上釉和印花再烧结,才能出现我们所看到的陶瓷表面各式各样的花样纹路,不同的花色,要经过(欢迎访问零二七范文网https://www.wendangku.net/doc/f713913315.html,,范文大全)几次印花才能完成; 5.烧制,金意陶的烧制用的是辊道窑,长110米,烧结温度1200℃。没有自动的温控系统,主要靠颜色来判断温度,用高速调温烧嘴和压力制度来调节控制温度,在预热带和烧成带分别需要半个多小时,再经过急冷、慢冷、水冷就基本完成了。 6.磨边使砖的大小形状一致,检验分级,包装。检验除了抽样送检外,还有目测检验是否有裂纹,与样板颜色对比是否一致,合格后包装出货由于生产的自动化,整条生产线所需的员工并不多,大概十个左右,而在国外,自动化程度比我们高,需要的工作人员更少。这样一条生产线日生产量约4000平方米,每块砖成本30多元,售价100多元。常年不断窑,三班换工,产值可观。现在,这些窑正在往长窑的方 向发展,各工厂都向着高产量,高自动化的方向

陶瓷的生产工艺流程

陶瓷的生产工艺流程(图) 2010年08月16日09:21 【字号大中小】打 印 留 言 论 坛 网 摘 手机点 评 纠错 E-mail推荐:

陶瓷的生产工艺流程 原料工序:坯釉原料进厂后,经过精选、淘洗,根据生产配方称量配料,入球磨细碎,达到所需细度后,除铁、过筛,然后根据成型方法的不同,机制成型用泥浆压滤脱水,真空练泥,备用;对于化浆工艺,把泥浆先压滤脱水,后通过加入解凝剂化浆,除铁、过筛后备用;对注浆成型用泥浆,进行真空处理后,成为成品浆,备用。 成型工序:分为滚压成型和注浆成型。然后干燥、修坯,备用。 烧成工序:在取得白坯后,入窑素烧,经过精修、施釉,进行釉烧,对出窑后的白瓷检选,得到合格白瓷。 彩烤工序:对合格白瓷进行贴花、镶金等步骤后,入烤花窑烧烤,开窑后进行花瓷的检选,得到合格花瓷成品。 包装工序:对花瓷按照不同的配套方法、各种要求进行包装,即形成本公司的最终产品,发货或者入库。 建筑陶瓷是指建筑物室内外装饰用的较高级的烧土制晶,它属精陶或粗瓷类。其主要品种有外墙面砖、内墙面砖、地砖、陶瓷锦砖、陶瓷壁画等。 第一节陶瓷的基本知识 一、陶瓷的概念与分类 陶瓷是指用粘土、石英等天然硅酸盐原料经过粉碎、成型、煅烧等过程而得到的具有一定形状和强度的制品。主要指日常生活中常见的日用陶瓷和建筑陶瓷、电瓷等。 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产过程

都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的陶瓷生产方法制成的无机多晶产品。 根据陶瓷原料杂质的含量、烧结温度高低和结构紧密程度把陶瓷制品分为陶质、瓷质、和炻质三大类。 陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。 炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。 二、陶瓷的原料 陶瓷工业中使用的原料品种很多,从它们的来源来分,一种是天然矿物原料,一种是通过化学方法加工处理的化工原料。天然矿物原料通常可分为可塑性物料、瘠性物料、助熔物料和有机物料等四类。下面介绍天然原料主要品种的组成、结构、性能及其在陶瓷工业中的主要用途。 1.可塑性物料——粘土 粘土主要是由铝硅酸盐岩石(火成的、高质的、沉积的)如长石岩、伟晶花岗岩、斑岩、片麻岩等长期风化而成,是多种微细矿物的混和体。

全抛釉瓷砖生产工艺简介

全抛釉瓷砖生产工艺简介 全抛釉瓷砖通过抛光仿古砖表面的一种特殊配方釉而形成的一种瓷砖。这种釉料是施于仿古砖面的最后一道釉,当前一般为透明面釉,施了全抛釉的全抛釉瓷砖集抛光砖与仿古砖优点于一体的,釉面如抛光砖般光滑亮洁,同时其釉面花色如仿古砖般图案丰富,色彩厚重或绚丽。其釉料特点是透明不遮盖底下的面釉和各道花釉,抛釉时只抛掉透明釉的薄薄一层,效果更是别具一格。 一、全抛釉瓷砖技术特点 运用多层特殊制造工艺,将全透析釉料下彩技术结合先进印刷工艺,令花纹俯在下层,低碳能源、清洁生产,表面光洁剔透,独有釉料精抛工序,与抛光砖比较可以减少90%的材料损耗,更加节能减排,绿色环保;并且取代了稀缺昂贵的高档石材,降低建筑装饰成本,保护自然资源。产品华贵大气,格调高雅,呈现如水晶般的璀璨炫丽,源于石材,更胜过石材。 二、工艺介绍 全抛釉是釉下彩,全抛釉瓷砖属于釉面砖。其坯体工艺类似于一般的釉面地砖,主要不同是它在施完底釉后就印花,再施一层透明的面釉,烧制后把整个面釉抛去一部份,保留一部份面釉层、印花层、底釉,全抛砖的主要目标是代替抛光砖。 1、原料成分: 其化学成份主要以: 钾钠长石,方解石,石英,硅灰石,高岭土,氧化铝等组成; 2、原料加工: 将上述原料经过研磨、干燥成粉用于成型; 3、成型: 使用高吨位全自动压砖机成型;

4、干燥: 将成型的砖坯干燥使其强度增加用于下道表面装饰工序; 5、施釉和印花: 施釉和印花是仿古砖生产的重要工序,生产中主要工艺控制点基本集中在施釉线上,很多仿古砖产品通过印花技术使表面的花色得到改善,提高其品味。前几年,仿古砖主要通过云彩、磨釉产生花色不重复的效果,其后则趋向于用胶辊印花、干粉印花等手段来实现仿古、仿天然的图案。目前国内生产逐渐采用陶瓷喷墨打印技术。通过这些新技术在生产中的应用,使瓷砖的表面花纹随机变化,花色和品种多样,为取代天然材料的技术研究开辟了新的途径。 印花后的砖坯最后再上一道用于抛光的特殊透明釉。 6、烧成: 烧成是陶瓷生产的心脏,为了使仿古砖的产品吸水率控制在0 .5%以下,达到完全玻化的状态,烧成温度已提高到1 2 0 0 C以上。此外,为了使瓷砖达到特殊的装饰效果,除了一次烧成之外,二次烧、三次烧技术也在仿古砖生产中得到了应用。 7、抛釉: 釉面抛光采用弹性全抛工艺,通过抛釉使砖表面光亮柔和、平滑不凸出,显得晶莹透亮,釉下石纹纹理清晰自然,与上层透明釉料融合后,犹如一层透明水晶釉膜覆盖,使得整体层次更加立体分明。

各类瓷砖的生产工艺

各类瓷砖的生产工艺 瓷砖的生产工艺流程为:原料→球磨→配料→过筛除铁→喷雾干燥→贮料→送粉→压制→干燥→施釉→印花/喷墨→上砖底粉→烧制→切边→检测→分拣→打包入库。 通体砖:原材料为岩石碎屑,经过球磨成粉,严格按照瓷砖的生产流程进行生产,生产出来的通体砖表面比较粗糙,具有较强的防滑性和耐磨性。 抛光砖:是在通体砖的基础上加多了一个抛光的工艺,经过抛光后硬度更高,更耐磨,装饰性更强。抛光砖又分渗花砖、颗粒砖、微粉砖、多管道布料砖,渗花砖就是在坯体上施加一层渗花釉,经过两次抛光;颗粒砖在混料工序中多造粒;微粉砖是球磨更细的粉料,经过两次送粉、两次压制使产品吸水率更低、防渗透能力更强;多管道布料是在粉料下料时由很多管道一次下料一次压制成型,使花色纹路自然简单。 玻化砖:是抛光砖的升级版。原料为石英砂和泥,其是经过更高温高压一次烧成后直接由磨具打磨光亮而无需抛光而成,其瓷化程度更高,在产品性能上更由于抛光砖。 仿古砖:与抛光砖的生产不同在于施釉方式上喷釉或淋釉或两者结合,印花上平面印花或辊筒印花或胶辊印花或互相结合,在抛光上柔抛或半抛或全抛,其在色彩图案上更丰富,在产品功能上吸水率更低。

木纹砖:分为釉面砖和劈开砖,釉面砖在印花上使用丝网印刷工艺,劈开砖则采用两种或两种以上的坯料通过螺旋混合在剖切而成。其表面施釉抛光,又分亚光木纹砖、亮面木纹砖、柔光木纹砖。 全抛釉:一般在印花上采用丝网印花或喷墨技术,在仿古砖的最后一道工序上再施一层釉,再进行抛光,图案色彩如仿古砖丰富多彩,砖面如抛光砖高洁光滑。 微晶石:即微晶玻璃陶瓷复合板,不同于其他瓷砖产品,其是经过砖坯烧,玻璃层烧,二次烧成使两者融为一体的高新技术产品,部分企业仍保密其生产工艺。行业内的微晶石属于高端瓷砖产品,既具高硬度、高强度、低吸水率的性能,装修效果又奢华高贵,为高级场所或别墅的首选。 抛晶砖:是经过三次烧成:一次砖坯烧,二次釉料烧,三次装饰烧。其最突出的特点是采用多次印花工艺或砖面使用“镶金镀银”即加入金粉、银粉装饰后烧釉而成的高档装饰建材。

陶瓷生产工艺流程讲义2003

陶瓷生产工艺流程讲义2003 陶瓷生产工艺 介绍本课程的主要内容: A陶瓷的分类 A-1陶瓷常见的分类 A-2陶瓷墙地砖的分类 B陶瓷生产工艺流程介绍 B-1抛光砖的生产工艺流程 B-2仿古砖的生产工艺流程 B-3瓷片的生产工艺流程 C陶瓷生产工艺流程相关插图 陶瓷的分类 首先来看一下按陶瓷吸水率的不同一般把陶瓷分为:瓷器、炻器、陶器 瓷器:吸水率E<0.5% 炻器:吸水率E介于0.5%和5.5%之间,其中炻器又有人分为细炻器(0.5%

按用途我们一般把陶瓷分为:建筑陶瓷、日用陶瓷、艺术陶瓷、特种陶瓷 四大类 建筑陶瓷:主要是用于建筑内部、外部等装饰 日用陶瓷:主要是指我们日常生活所使用的陶瓷,如:吃饭用的碗、勺子、茶杯、酒杯、煲汤用的耐热煲、广东常见的煲仔饭的那个钵等等 艺术陶瓷:主要是指用于装饰、欣赏、收藏等具有艺术价值的陶瓷,如:花瓶、陶艺名家的作品、瓷板画等 特种陶瓷:主要是只具有声、光、电、磁、热、生物、化学等一种或多种功能的陶瓷以及具有特殊结构的陶瓷,如:绝缘瓷、压电陶瓷(打火机中的部件、火花塞中的部件)、陶瓷骨骼等 因为我们的主要客户群体是建筑陶瓷生产企业,所以接下来我们重点介绍下建筑陶瓷的分类 建筑陶瓷主要分为:墙地砖、卫生陶瓷 卫生陶瓷:主要是指马桶、小便器、蹲便器、卫洗丽、洗面器等 墙地砖:主要分为内墙砖、外墙砖、地板砖,一般我们所说的内墙砖就是指瓷片(有腰线砖),主要是贴在厨房、卫生间的墙上; 外墙砖有小规格的瓷砖,比较薄(类似瓷片),目前有劈开砖(目前不在我们的业务范围,因为规模不是很大); 地板砖主要有抛光砖、仿古砖,其中抛光砖又有微粉砖、聚晶微粉砖、渗抛砖,但是他们的共同点是砖表面都经过抛光,砖面平整、光亮; 仿古砖是一个外来的概念,主要是指它的色彩比较古典、复古的风格,我们慢慢的就叫它仿古砖,它的实质是釉面砖,个人认为仿古砖是未来地砖的发展趋势,有墙地一体化的趋势,市场比较大,特别要提出的是目前很多陶瓷厂在生产的抛釉砖也是属于仿古砖,我司目前主推的全抛釉就是针对仿古砖厂的。

陶瓷的生产工艺流程教案资料

陶瓷的生产工艺流程

陶瓷的生产工艺流程 一、陶瓷原料的分类 (1)粘土类 粘土类原料是陶瓷的主要原料之一。粘土之所以作为陶瓷的主要原料,是由于其具有可塑性和烧结性。陶瓷工业中主要的粘土类矿物有高岭石类、蒙脱石类和伊利石(水云母)类等,但我厂的主要粘土类原料为高岭土,如:高塘高岭土、云南高岭土、福建龙岩高岭土、清远高岭土、从化高岭土等。 (2)石英类 石英的主要成分为二氧化硅(SiO2),在陶瓷生产中,作为瘠性原料加入到陶瓷坯料中时,在烧成前可调节坯料的可塑性,在烧成时石英的加热膨胀可部分抵消部分坯体的收缩。当添加到釉料中时,提高釉料的机械强度,硬度,耐磨性,耐化学侵蚀性。我厂的石英类原料主要有:釉宝石英、佛冈石英砂等。 (3)长石类 长石是陶瓷原料中最常用的熔剂性原料,在陶瓷生产中用作坯料、釉料熔剂等基本成分。在高温下熔融,形成粘稠的玻璃体,是坯料中碱金属氧化物的主要来源,能降低陶瓷坯体组分的熔化温度,利于成瓷和降低烧成温度。在釉料中做熔剂,形成玻璃相。我厂的主要长石类原料有南江钾长石、佛冈钾长石、雁峰钾长石、从化钠长石、印度钾长石等。 二、坯料、釉料制备 (1)配料 配料是指根据配方要求,将各种原料称出所需重量,混合装入球磨机料筒中。我厂坯料的配料主要分白晶泥、高晶泥、高铝泥三种,而釉料的配料可分为透明釉和有色釉。

(2)球磨 球磨是指在装好原料的球磨机料筒中,加入水进行球磨。球磨的原理是靠筒中的球石撞击和磨擦,将泥料颗料进行磨细,以达到我们所需的细度。通常,坯料使用中铝球石进行辅助球磨;釉料使用高铝球石进行辅助球磨。在球磨过程中,一般是先放部分配料进行球磨一段时间后,再加剩余的配料一起球磨,总的球磨时间按料的不同从十几小时到三十多个小时不等。如:白晶泥一般磨13个小时左右,高晶泥一般磨15-17小时,高铝泥一般磨14个小时左右,釉料一般磨33-38小时,但为了使球磨后浆料的细度要达到制造工艺的要求,球磨的总时间会有所波动。 (3)过筛、除铁 球磨后的料浆经过检测达到细度要求后,用筛除去粗颗粒和尾沙,通常情况下,我厂所用的筛布规格为:坯料一般在160-180目之间;釉料一般在200-250目之间。过筛后,再用湿式磁选机除去铁杂质,这是工序就叫除铁。如不除铁,烧成的产品上会产生黑点,这就是通常所说的斑点或者杂质。过筛、除铁通常都做两次。 (5)压滤 将过筛、除铁后的泥浆通过柱塞泵抽到压滤机中,用压滤机挤压出多余水分。 (6)练泥(粗练) 经过压滤的所得的泥饼,组织是不均匀的,而且含有很多空气。组织不均匀的泥饼如果直接用于生产,就会造成坯体在此后的干燥、烧成时的收缩不均匀而产生变形和裂纹。经过粗练后,泥段的真空度一般要求达到0.095-0.1之间。粗练后的泥团还有另一个好处就是将泥饼做成一定规格的泥段,便于运输和存放。 (7)陈腐 将经过粗练的泥段在一定的温度和潮湿的环境中放置一段时间,这个过程称为陈腐。陈腐的主要作用是:通过毛细管的作用使泥料中水分更加均匀分布;增加腐植酸物质的含量,改善

相关文档