文档库 最新最全的文档下载
当前位置:文档库 › 色容差

色容差

色容差
色容差

1色温:如果一个光源发光的颜色和一定温度的黑体(标准光源)发光的颜色相同,那么该黑体的温度就为该光源的颜色温度(简称色温Tc)。色温用绝对温标K表示。22相关色温:在人工光源中,只有白炽灯灯丝通电加热与黑体加热的情况相似。对白炽灯以外的其它人工光源的光色,其色度不一定准确地与黑体加热时的色度相同。所以只能用光源的色度与最相接近的黑体色度的色温来确定光源的色温,这样确定的色温叫相关色温。

3绝对黑体

1 定义:如果一个物体能够在任何温度下全部吸收任何波长的辐射,那么这个物体称为绝对黑体。

2 特性:绝对黑体能够将落在其上的所有热量吸收,而没有损失,同时又能够将热量生成的能量全部以“光”的形式释放出来的话,它便会因受到热力的高低而变成不同的颜色。

4绝对黑体为理想状态下的物体。绝对黑体的吸收本领是一切物体中最大的,加热时它辐射本领也最大。

5 1 显色指数:我们如果用光谱功率分布不同的光源去照明物体,一般来说,产生的颜

色感觉是不一样的。光源的这种决定被照物体颜色感觉的性质称为显色指数。显色指数是照明光源的重要特征之一。

6 2 白炽灯的显色指数定义为100,视为理想的基准光源。此系统以8种彩度中等的标

准色样来检验,比较在测试光源下与在同色温的基准下此8色的偏离(Deviation)程度,以测量该光源的显色指数。

7二CIE1931 色度图

8 1 在曲线所包围的面积内包括了一切物理上能实现的所有颜色。在这当中,有一条弯

曲的曲线,它代表各种温度下黑体辐射的x,y值的轨迹。

9 2 X轴色度坐标相当于红基色的比例;Y轴色度坐标相当于绿基色的比例。

10 3 舌形曲线代表单色光位置。

11 4 同时,在此图中也准确的表示了颜色视觉的基本规律以及颜色混合的一般规律

四色容差

1色容差实际指测量值偏离目标值的距离。

2如果要指出测量值的色容差就必须要提供目标值和计算公式。

3在色容差为5的椭圆中,曲线上点的色容差为5。圈内所有点的色坐标都为小于5。

4这些椭圆都可以用一定的方程来表示。

5IEC中规定灯的色坐标不得偏离额定值(x,y)5个sdcm。那也就是说,灯的色坐标都应该在规定的椭圆内。

6五颜色的宽容量

7 1 在x,y色度图中,每一个点都代表不同的颜色,这一颜色与它周围的一些点所代

表的颜色都可以说是不同。但对于人眼来说,我们并不能准确区分某点和它周围的

点之间的颜色的差异,都认为他们的颜色是一样的。

8 2 只有当两个颜色点间有足够的距离时,我们才能够感觉他们颜色的差异。

9 3 定义:我们把人眼感觉不出颜色变化的最大范围就称为颜色的宽容量

104 IEC中有明确的色容差要求,其色容差是指初始测试100H的数据,为方便测试,我们选择12H或2H测试数据,但由于灯在燃点过程中,色坐标会随着灯的燃点时

间会发生漂移,故我们对色容差要求做了相应的调整。

115 2700K系列灯色容差小于6,且色容差在5-6之间需同时符合色坐标(x<0.462;y<0.4175)要求。

12一荧光灯的主要材料

131 荧光粉

142 汞和汞齐

153 灯丝

1 荧光粉简介

1 作用:荧光粉可以吸收汞原子激发的253.7nm的紫外线,同时发射出可见光。

2 荧光灯所用的荧光粉对灯管的光效、颜色、显色指数以及光衰减灯都起到着关键

的作用。

2 灯用荧光粉的特性要求

1 能有效吸收波长为253.7nm的紫外线;

2 通过可见光的效率要很高,吸收可见光能力要很低;

3 在253.7nm紫外线的激发下,转换成可见光的量子效率高;

4 荧光粉的发光光谱应在可见光区域内;

5 长期受紫外线照射和电子、离子的轰击时,能够保持稳定的特性;

6 荧光粉的粒度应控制在最佳范围内;

7 在灯的生产过程中应保持性能稳定,俗成二次特性;

3 荧光粉的分类

1 荧光粉分类:

1)红粉

2)绿粉

3)蓝粉

2 不同的色温由三种粉按照不同的比例混合而成。如:2700K、3000K、4000K、6000K、18000K(天青色)等

1 2700K中的粉没有蓝粉,6000K中含有很多的蓝粉,通常6000K的发光效率都要低于2700K。

2 6000K的荧光粉由3种粉混合而成,其粉的稳定性也就不如2700K稳定。

3 关于高显色的粉,通常低色温的,如2700K系列,显色指数很难超过85。而6000K

的可以达到95以上。但显色指数和发光效率相互矛盾,也就是说,同样的条件下,粉的显色指数越高,粉的发光效率就会越低。

4 显色指数是指光源反映物质本身颜色的一种能力,白炽灯和日光的显色指数为

100,也就是说,在他们的光下,我们看到的是物质本身的真实颜色。

5 由于荧光灯采用的三基色荧光粉并不是连续的光谱,而是一个个单独的谱带,所

以,有时不能反映物质的真实颜色。

4 汞和汞齐

1 汞和汞齐的作用:汞是荧光灯发电中辐射出紫外线253.7nm的工作物质。

2 汞的物化性能:汞在常温为银白的液体金属,也是唯一的一种常温下为液态的金属。,汞在常温下化学性质很稳定,而在高温下易生成氧化汞。

3 通常灯用汞的纯度可以达到99.999%。

4 汞在常温(20℃)下,汞的蒸气压为0.16pa. 40℃时蒸气压为0.8pa,100℃时蒸气压为36.39pa。

5 汞在蒸气发电时主要辐射253.7nm和185nm和少量其它波长的紫外线,同时

辐射出其它一定的谱线,如405nm(紫色)、436nm(蓝紫色)、546nm(绿色)等。

6 荧光灯在使用液汞灯,管内的蒸气压决定于管内最冷端的温度。

7 荧光灯内维持放电的汞量十分有限,而实际用量要远远超过所需量,因为在灯

管燃点过程中,汞原子可以和杂质气体、玻璃中的钠元素等发生化学反映,生成汞

化合物。

5 汞齐的简介

1 汞与Na ZnSnPbIn等金属可以发生反应形成金属互化物,不同比例的互化物在

不同的温度下有不同的蒸气压。

2 对于紧凑型节能灯,由于管内其他较高,电流较大,灯管内冷端的温度要大于

40℃,因此,在设计时,需要使用汞齐来替代液汞。

6 汞齐的分类

1 低温汞齐:主要用来替代液汞。

2 中温汞齐:主要应用在负载较小的荧光灯。

3 高温汞齐:主要应用在负载较大的灯。

4 汞齐的工作原理:荧光灯的最佳的汞蒸气压为0.8pa,汞齐的蒸气压由汞齐所在

位置的温度决定,不同的汞齐在一定温度下具有不同的汞蒸气压,故在设计灯管时可以利用这一特性来选择使用汞齐的类型。

7 辅助汞齐

1 辅助汞齐是在以不锈钢网为基体,镀上一层铟元素。

2 辅助汞齐的主要作用改善灯观的初始光通特性。

8 灯丝

1 荧光灯的阴极是用钨丝作为基体,在螺旋灯丝中涂敷三碳酸盐材料。

2 灯丝是电极的载体和发射源,它的性能直接决定到灯的启动性能、早期黄黑以

及灯管的寿命。

3 目前所采用的灯丝按照结构可分为单丝三螺旋和主辅式灯丝

五种计算公式

人力资源管理师三级(三版)计算题汇总 历年考点:定员,劳动成本,人工成本核算,招聘与配置,新知识:劳动定额的计算 一、劳动定额完成程度指标的计算方法 1.按产量定额计算产量定额完成程度指标=(单位时间内实际完成的合格产品产量/产量定额)×100% 2.按工时定额计算工时定额完成程度指标=(单位产品的工时定额/单位产品的 【能力要求】: 一、核定用人数量的基本方法(原) (一)按劳动效率定员根据生产任务和工人的劳动效率,以及出勤率来计算。 实际上是根据工作量和劳动定额来计算。适用于:有劳动定额的人员,特别是以手工操作为主的工种。公式中:工人劳动效率=劳动定额×定额完成率。劳动定额可以分为工时定额和产量定额两种基本形式,两者转化关系为: 所以无论采用产量定额还是工时定额,两者计算的结果都是相同的。一般来说,某工种生产产品的品种单一,变化较小而产量较大时,宜采用产量定额来计算。可采用下面的公式: 如果把废品率考虑进来,则计算公式为: 二、劳动定员 【计算题】: 某企业主要生产 A、B、C 三种产品,三种产品的单位产品工时定额和 2011年的订单如表所示。预计该企业在 2011 年的定额完成率为 110%,废品率为 2.5%,员工出勤率为95%。 请计算该企业 2011 年生产人员的定员人数 【解答】: A 产品生产任务总量=150×100=15000(工时) B 产品生产任务总量=200×200=40000(工时) C 产品生产任务总量=350×300=105000(工时) D 产品生产任务总量=400×400=160000(工时) 总生产任务量=15000+40000+105000+160000=320000(工时) 2011 年员工年度工日数=365-11-104=250(天/人年) 【解答】:

LED光源和灯具色容差测试说明

LED光源和灯具色容差测试说明 1 色容差的概念 色容差是表征被测光源X、Y值(由光电色检测系统软件计算得到)与标准光源差别的物理量。数值越小,说明被测光源越接近标准光源。 色容差单位为SDCM.GB-T17262-2002[4](单端荧光灯性能要求标准)中规定一般的节能灯要求的色容差要小于5SDCM.GB24823-2009[5](普通照明用LED模块的性能要求标准)中规定LED模块要求的色容差要小于7SDCM。 测试灯具时,一般检测设备会自动识别被测光源的色温范围,并确定对应的标准光源色温取值,从而计算出其色容差。在相同色温时,参考标准光谱一致,但色坐标X、Y不同,色容差也不同。 色容差的计算公式为: G11Δx2+2G12ΔxΔy+G22Δy2=K2SDCM(1) 式中为G11、G12、G22荧光灯发光色范围的参数,K为色容差值。各色温所对应的G 参数如表1所示。 计算时用参数乘以1000,如3000K所对应的G11为390,计算时数值为390000. 2 CFL与能源之星关于中心点的定义 目前,由于积分球关于关于色容差的中心点定义是按照CFL的中心点定义如表2所示。

但是,由于LED产品目前都参考ANSI C78.377[6]的标准(如2.1节各LED公司的色坐标分布图),其色坐标的中心点与CFL的中心点有一定的差异,能源之星对LED产品的色坐标中心点与ANSI保持一致,其坐标中心点参考表3所示。 如图1所示,粉红椭圆为CFL的在各色温段的7SDCM的容差表现,而黑色的四边形框为ANSI与能源之星对LED产品的色坐标要求,略大于7SDCM. 各LED光源厂家的色坐标分布图。 下面给出部分LED光源厂家的色坐标分布图(图2~图5)。 3 LED照明产品色容差测试修正 基于图1,由于色温段中心点的差异,即使LED的坐标点为能源之星的正中心点,但在积分球上面测试出来的色容差数值将会有较大的差异(如表4所示)。 为了修正LED光源的色容差,有以下两种方法: (1)将测试设备中色容差的中心点更改为能源之星要求的中心点,再测试读取色容差。 (2)首先通过设备测出LED光源的X、Y值,根据色容差的定义,用Excel编写其色容差的计算公式,如表5~表7所示,用于计算和评估其LED产品的色容差。 以上只给出了3000K、4000K以及6500K三个色温的计算表格,其它色温的色容差计算同理,只需将中心点改为相应数值即可。 4 结论 现有光电色测试设备都是针对传统光源(灯具)设计的,色容差按照CFL所规定的中心点计算,不适合LED光源(灯具)的测试。

洛必达法则泰勒公式

洛必达法则泰勒公式 一、洛必达法则在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷大之比的极限称为未定式,并分别简记为和.由于在讨论上述未定式的极限时,不能应用商的极限运算法则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天在这里我们应用导数的理论推出一种既简便又重要的未定式极限的计算方法,并着重讨论当时,型未定式极限的计算,关于这种情形有以下定理.定理1设(1) 当时,函数及都趋于零;(2)在点的某去心邻域内,及都存在,且;(3)存在(或为无穷大),则.也就是说,当存在时,也存在,且等于;当为无穷大时,也是无穷大.这种在一定条件下,通过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必达(L' Hospita 1)法则.下面我们给出定理1的严格证明:分析由于上述定理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值定理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理.证因为求极限与及的取值无关,所以可以假定.于是由条件(1)和(2)知,及在点的某一邻域内是连续的.设是这邻域内一点,则在以及为端点的区间上,函数和满足柯西中值定理的条件,因此在和之间至少存在一点,使得等式(在与之间)成立.对上式两端求时的极限,注意到时,贝叽又因为极限存在(或为无穷大),所以.故

定理1成立.注若仍为型未定式,且此时和能满足定理1中和所要满足的条件,则可以继续使用洛必达法则先确定,从而确定和,即.且这种情况可以继续依此类推.例1求.分析当时,分子分母的极限皆为零,故属于型不定式,可考虑应用洛必达法则.解、注最后一个求极限的函数在处是连续的.例2求.解、注例2中我们连续应用了两次洛必达法则.例3求.解、例4求、解、注(1) 在例4中,如果我们不提出分母中的非零因子,则在应用洛必达法则时需要计算导数,从而使运算复杂化.因此,在应用洛必达法则求极限时,特别要注意通过提取因子,作等价无穷小代换,利用两个重要极限的结果等方法,使运算尽可能地得到简化.课后请同学们自己学习教材136页上的例10?(2) 例4中的极限已不是未定式,不能对它应用洛必达法则,否则要导致错误的结果.以后在应用洛必达法则时应特别注意,不是未定式,不能应用洛必达法则.对于时的未定式有以下定理.定理2设(1)当时,函数及都趋于零;(2) 当时,与都存在,且;(3)存在(或为无穷大),则.同样地, 对于(或)时的未定式,也有相应的洛必达法则.定理3设(1)当(或)时,函数及都趋于无穷大;(2)在点的某去心邻域内(或当时),及都存在,且;(3)存在(或为无穷大),则.例5求、解、例6求、解、事实上,例6中的不是正整数而是任何正数其极限仍为零.注由例5和例6可见,当时,函数都是无穷大,但三个函数增大的“速度”是不一样的,最快,其次是,最慢的是.除了和型未定式外,还有型的未定式.这些未定式

照度计算公式

照度计算公式 E=(Φ×n×N×MF×UF)/A 式中,E=工作面的维护平均照度(lx); Φ=灯初始光通量(lm) n= 每个灯具所含光源的数量 N=灯具数量 MF=设备维护系数 UF=设备利用系数 A=工作面的面积 一个灯具在给室内的利用系数UF是照射到工作面上所有光通量与设备中所有灯发出的光通量之比。这一系数包括反射光、相互反射光及来自灯具的直接光。它的值取决于房间的形状、高度、墙壁的反射率及灯具的光强分布。 MF=设备维护系数一般取之间。 UF=设备利用系数(由于范围更宽)一般取之间。 一般室内取,体育取 维护系数:一般取~ 实例:一个100平方米的办公室,层高3米,工程方要求的照度是

500lx,要用我公司的3*36W T8灯盘,请问要用多少套用上面的公司计算,取MF(设备维护系数)为,UF(设备利用系数)为,假设要用3*36W T8灯盘X套, 公式E=(Φ×n×N×MF×UF)/A 即:500=(3300×3×X××)/100 X= 约9套 照度计算方法 利用系数法计算平均照度 平均照度 (Eav) = 光源总光通量(N*Ф)*利用系数(CU)*维护系数(MF) / 区域面积(m2) (适用于室内或体育场的照明计算) 利用系数: 一般室内取,体育取 维护系数:一般取~ 举例 1:室内照明: 4×5米房间,使用3×36W隔栅灯9套 平均照度=光源总光通量×CU×MF/面积 =(2500×3×9)××÷4÷5 =1080 Lux 结论:平均照度1000Lux以上 举例 2: 体育馆照明:20×40米场地, 使用POWRSPOT 1000W金卤灯60套 平均照度=光源总光通量×CU×MF/面积

各种百分率计算方法(公式)

百分数应用题中各种百分率的意义与计算方法(公式) 所求的百分率名称意义公式(计算方法)出勤率出勤人数占应出勤人数(总人数)的百分之几出勤率=出勤人数/应出勤人数×100% 缺勤率缺勤人数占应出勤人数(总人数)的百分之几缺勤率=缺勤人数/应出勤人数×100% 达标率达标人数占总人数的百分之几达标率=达标人数/总人数×100% 未达标率未达标人数占总人数的百分之几未达标率=未达标人数/总人数×100% 发芽率发芽种子数占种子的总量(实验种子数)的百分之几发芽率=发芽的种子数/种子的总数×100% 出粉率面粉的质量占小麦的质量的百分之几出粉率=面粉的质量/小麦的质量×100% 出米率出米的质量占稻谷的质量的百分之几出米率=出米的质量/稻谷的质量×100% 出油率油的质量占油料作物(黄豆、芝麻、花生仁等)质量的百分之几出油率=油的质量/油料作物的质量×100% 入学率实际入学人数占应入学人数的百分之几入学率=实际入学人数/应入学人数×100% 优秀率优秀的人数占参加考试的人数的百分之几优秀率=优秀的人数/参加考试的人数×100%及格率考试及格的人数占参加考试的人数的百分之几及格率=考试及格的人数/参加考试的总人数×100%不及格率考试不及格的人数占参加考试的人数的百分之几不及格率=不及格的人数/参加考试的总人数×100%正确率正确的题目数量占题目总量的百分之几正确率=正确的题目数量/题目总量×100% 错误率错误的题目数量占题目总量的百分之几错误率=错误的题目数量/题目总量×100% 成活率成活的树木的数量(动植物)占树木总量(动植物)的百分之几成活率=成活树木的量/树木总量×100% 命中率投中的球数点占投球的总数的百分之几命中率=投中的球数点/投球的总数×100% 射中率射中的次数占射击的总次数的百分之几射中率=射中的次数/射击的总次数×100% 含盐(糖)率盐(糖)的质量占盐水(糖水)的百分之几含盐(糖)率=盐(糖)的质量/盐水(糖水)×100%合格率合格的产品数量占全部产品量的百分之几合格率=合格的产品数量/全部产品的数量×100%不合格率不合格的产品数量占全部产品量的百分之几不合格率=不合格的产品数量/全部产品的数量×100%鸡蛋孵化率孵化成小鸡的数量占鸡蛋总数的百分之几鸡蛋孵化率=孵化成小鸡的数量/鸡蛋总数×100% 参与率参加的人数占全部人数的百分之几参与率=参加的人数/总人数×100% ××率=要求量(就是××所代表的信息)/单位“1”的量(总量)×100% 【注意:关于××必须理解其所代表的内容是人数、质量、物品的数量、次数等。】

洛必达公式+泰勒公式+柯西中值定理+罗尔定理

洛必达公式+泰勒公式+柯西中值定理+罗尔定理 洛必达法则洛必达[/url]法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。 设 (1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。 ②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.) /n!*(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足 P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.); P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得: P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得 Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))

色坐标计算方法

先计算色坐标。方法是,必须先有光谱P(λ)。 然后光谱P(λ),与三刺激函数X(λ)、Y(λ)、Z(λ),分别对应波长相乘后累加,得出三刺激值,X、Y、Z。 那么色坐标x=X/(X+Y+Z)、Y/(X+Y+Z) 一般,光谱是从380nm到780nm,间隔5nm,共81个数据。 X(λ)、Y(λ)、Z(λ),是CIE规定的函数,对应光谱,各81个数据,色度学书上可以查到。 再计算色温,例如色度坐标x=0.5655,y=0.4339。 用“黑体轨迹等温线的色品坐标”有麦勒德、色温、黑体轨迹上的(xyuv)、黑体轨迹外的(xyuv)。我们用xy的数据来举例。 一、为了方便表达,把黑体轨迹上的x写成XS、y写成YS,黑体轨迹外的x写成XW、y写成YW。 先把每一行斜率K算出,K=(YS-YW)/(XS-XW),写在表边上。 例如: 麦勒德530斜率K1=(.4109-.3874)/(.5391-.5207)=1.3352 麦勒德540斜率K2=(.4099-.3866)/(.5431-.5245)=1.2527 麦勒德550斜率K3=(.4089-.3856)/(.5470-.5282)=1.2394 二、找出要计算的x=.5655、y=.4339这个点,在哪两条等温线之间,就是这点到两条等温线距离一正一负。 如果不知道它的大概色温,计算就繁了;因为你说是钠灯,那么它色温在1800到1900K之间。 用下公式算出这点到麦勒德530,1887K等温线的距离D1 D1=((x-YS)-K(y-XS))/((1+K×K)开方) =((.4339-.4109)-1.3352(.5655-.5391))/((1+1.3352×1.3352)开方) =(.023-.03525)/(1.6682)=-.0073432 再计算出这点到麦勒德540,1852K等温线的距离D2 D2=((.4339-.4099)-1.2527(.5655-.5431))/((1+1.2527×1.2527)开方) =(.024-.02806)/(1.6029)=-.0025329 因为D1、D2都是负数,没找到。 再计算出这点到麦勒德550,1818K等温线的距离D3 D3=((.4339-.4089)-1.2394(.5655-.5470))/((1+1.2394×1.2394)开方) =(.025-.02293)/(1.6029)=+.0013005 D2负、D3正,找到了。D2对540麦勒德记为M2、D3对550麦勒德记为M3 三、先把距离取绝对值。按比例得出这点麦勒德M,公式是

内插法计算公式

内插法计算公式 1、X1、Y1为《建设工程监理与相关服务收费标准》附表二中计费额的区段值;Y1、Y2为对应于X1、X2的收费基价;X为某区段间的插入值道;Y为对应于X由插入法计算而得的收费基价。 2、计费额小于500万元的,以计费额乘以3.3%的收费专率计算收费基价; 3、计费额大于1,000,000万元的,以计费额乘以1.039%的收费率计算收费基价。 【例】若计算得计费额为600万元,计算其收费基价属。 根据《建设工程监理与相关服务收费标准》附表二:施工监理服务收费基价表,计费额处于区段值500万元(收费基价为16.5万元)与1000万元(收费基价为30.1万元)之间,则对应于600万元计费额的收费基价: 内插法(Interpolation Method) 什么是内插法 在通过找到满足租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值等于租赁资产的公平价值的折现率,即租赁利率的方法中,内插法是在逐步法的基础上,找到两个接近准确答案的利率值,利用函数的连续性原理,通过假设关于租赁利率的租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值与租赁资产的公平价值之差的函数为线性函数,求得在函数值为零时的折现率,就是租赁利率。 内插法原理 数学内插法即“直线插入法”。其原理是,若A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。而工程上常用的为i在i1,i2之间,从而P在点A、B之间,故称“直线内插法”。 数学内插法说明点P反映的变量遵循直线AB反映的线性关系。 上述公式易得。A、B、P三点共线,则 (b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直线斜率,变换即得所求。 内插法的具体方法 求得满足以下函数的两个点,假设函数为线性函数,通过简单的比例式求出租赁利率。 以每期租金先付为例,函数如下:

考研数学讲解之洛必达法则失效的情况及处理方法

洛必达法则失效的情况及处理方法 【本章定位】 此部分内容不需要特别掌握,关键是要用这部分的讲解来让读者记住使用泰勒展开式的重要性! 。 洛必达法则是计算极限的一种最重要的方法,我们在使用它时,一定要注意到该法则是极限存在的充分条件,也就是说洛必达法则 )()(lim )()(lim x g x f x g x f a x a x ''=→→的三个条件: (1)0)(lim =→x f a x (或∞),0)(lim =→x g a x (或∞); (2))(x f 和)(x g 在a x =点的某个去心邻域内可导; (3)A x g x f a x =''→)()(lim (或∞)。 其中第三个条件尤其重要。 其实,洛必达法则的条件中前两条是一望即知的,所以我们在解题过程中可以不用去细说,而第三个是通过计算过程的尝试验证来加以说明的,由于验证结束,结论也出来了,也就更加没有细说的必要了。所以在利用洛必达法则解题过程中,往往只用式子说话,不必用文字来啰嗦的。 而对于极限问题?+∞→x x x x x 0d sin 1lim 来说,因为x x g x f x x sin lim )()(lim +∞→+∞→=''不存在(既不是某个常数,也不是无穷 大),而可知洛必达法则的第三个条件得不到验证。此时,我们只能说洛必达法则对本问题无效,绝对不能因此而说本问题之极限不存在。 实际上,我们利用“将连续问题离散化”的方法来处理,可以断定这个极限是存在的。 【问题1】求极限?+∞→x x x x x 0d sin 1lim 。 【解】对于任何足够大的正数x ,总存在正整数n ,使ππ)1(+<≤n x n ,也就是说总存在正整数n ,使r n x +=π,其中π<≤r 0。 这样+∞→x 就等价于∞→n ,所以

色温 (CCT) 和色度坐标 (x, y 值)

一、关于led灯具SSL规范的概述 今年 5 月份,LED 灯具的能源之星的规范,美洲已公开草案;估计今年的 8 至9 月份,会上升为最终版本,并于9 个月后,即08 年6 月份,授理ENERGY STAR申请;本规范是由 美国能源部DOE 负责组织, Lighting Research Center 技术负责; 二、重要流行词 1、SSL (Solid-State Lighting 固态照明) vs. Semi-conductor Lighting (半导体照明) vs. LED Lighting (LED 照明) SSL:(在Internet 网络上,SSL 在90 年代即有, 是Internet 传输加密协议缩略词SSL =Secure Socket Layer; )如今,在国外,有关研究 LED 的政府机构,公司和机构,很流行用 SSL 代替LED; 然而,目前,SSL 还没有给出正式定义,在美国的LRC 网站上,“What is SSL?”,只是解释为: SSL 是区别于传统的灯丝白帜发光和气体放电发光原理,由半导体的电子发光,包括LED,OLED,Laser Diode (LD),light-emitting polymers. 2、半导体照明 (Semi-conductor Lighting), 在中国政府机构,沿用过去的称谓“半导体照明”较多;但是,LED 产品,技术和标准,美国领先其他国家许多;中国也会随美国技术潮流使用SSL 称谓,尤其在DOE 公开本规范后; 三、我们的目的 1、本规范是第一部LED 照明的性能参数标准,指明了LED 照明的基本要求; 2、LED 灯具的ENERGY STAR认证,要在08 年6 月前讨论;但是,我们可以提前借鉴此规范化的参数标准,应用到研发品质行销工作中,是有帮助的; 3、本规范是如何基于荧光灯,建立 SSL-LED 灯具的光效目标和特性参数要求:

计算方法公式总结

计算方法公式总结 绪论 绝对误差 e x x *=-,x *为准确值,x 为近似值。 绝对误差限 ||||e x x ε*=-≤,ε为正数,称为绝对误差限 相对误差* r x x e e x x * *-== 通常用r x x e e x x *-==表示相对误差 相对误差限||r r e ε≤或||r r e ε≤ 有效数字 一元函数y=f (x ) 绝对误差 '()()()e y f x e x = 相对误差 ''()()()()()()() r r e y f x e x xf x e y e x y y f x =≈= 二元函数y=f (x 1,x 2)

绝对误差 1212 12 12 (,)(,) () f x x f x x e y dx dx x x ?? =+ ?? 相对误差 121122 12 12 (,)(,) ()()() r r r f x x x f x x x e y e x e x x y x y ?? =+ ?? 机器数系 注:1. β≥2,且通常取2、4、6、8 2. n为计算机字长 3. 指数p称为阶码(指数),有固定上下限L、U

4. 尾数部 120.n s a a a =±,定位部p β 5. 机器数个数 1 12(1)(1)n U L ββ-+--+ 机器数误差限 舍入绝对 1|()|2 n p x fl x ββ--≤ 截断绝对|()|n p x fl x ββ--≤ 舍入相对1|()|1||2 n x fl x x β--≤ 截断相对1|()|||n x fl x x β--≤ 九韶算法 方程求根 ()()()m f x x x g x *=-,()0g x ≠,*x 为f (x )=0的m 重根。 二分法

照度计算方法

利用系数法计算平均照度 平均照度(Eav) = 光源总光通量(N*Ф)*利用系数(CU)*维护系数(MF) / 区域面积(m2) (适用于室内或体育场的照明计算) 利用系数:一般室内取0.4,体育取0.3 维护系数:一般取0.7~0.8 举例 1:室内照明: 4×5米房间,使用3×36W隔栅灯9套 平均照度=光源总光通量×CU×MF/面积 =(2500×3×9)×0.4×0.8÷4÷5 =1080 Lux 结论:平均照度1000Lux以上 举例 2:体育馆照明:20×40米场地,使用POWRSPOT 1000W金卤灯 60套 平均照度=光源总光通量×CU×MF/面积 =(105000×60)×0.3×0.8÷20÷40 =1890 Lux 结论:平均水平照度1500Lux以上 某办公室平均照度设计案例:

设计条件:办公室长18.2米,宽10.8米,顶棚高2.8米,桌面高0.85米,利用系数0.7,维护系数0.8,灯具数量33套,求办公室内平均照度是多少? 灯具解决方案:灯具采用DiNiT 2X55W 防眩日光灯具,光通量3000Lm,色温3000K,显色性Ra90以上。 根据公式可求得: Eav = (33套X 6000Lm X 0.7 X 0.8) ÷ (18.2米X 10.8米) = 110880.00 ÷ 196.56 m2 = 564.10Lux 备注: 照明设计必须必须要求准确的利用系数,否则会有很大的偏差,影响利用系数的大小,主要有以下几个因素: *灯具的配光曲线 *灯具的光输出比例 *室内的反射率,如天花板、墙壁、工作桌面等 *室内指数大小 复杂的区域照明设计,需利用专业的照明设计软件,进行电脑模拟计算。 浅析照度计算的研究与探讨 照度计算是实现建筑光环境设计总体构想的重要手段。采用单位容量法计算,能较好平衡准确度与简便度,为照度计算的实际运用加大了可操作性。

色温图谱

2000-2500K 2500-3000K 3000-3500K 3500-4000K 4000-4500K 4500-5500K 5500-6500K 6500-7000K 7000-10000K 10000-25000K-------CIE1931

相关色温8000-4000K的白光LED的发射光谱和色品质特性 结论: 1.根据实际测试的色标可看出:不在色温线上面的色坐标点,可以通过相对色温线的方式求出该点色温. 2.向下延长各个相对色温线,基本交汇在一点(X:0.33 Y:0.20).依此点坐标: 2500K相对色温线与X轴的夹角约为30度. 25000K相对色温线与2500K相对色温线之间的夹角约为90度. 250000K相对色温线与2000K相对色温线之间的夹角约为100度. 具体见上图所示. 3.根据上图白光色坐标分布图与相对色温线的关系,现在许多分光参数表是根据色温方式划分各个BIN等级(色标分布图是参照早期日亚白光色标分布图制作).这样分当然具有一定的好处。 4.工厂色标分布图所对应的的色温范围为:4000K~16000K. 5.采用白光计算机(T620)测试出的色温值与根据相对色温线所计算出的色温值有一定的差别,机台测试出的色温值只能做一个参考值.根据相对色温线所计算出的色温值与机台测试的色温值之间的差别详见上表Δ色温值. 摘要:文章报告和分析了8000K、6400K、5000K和4000K四种色温的白光LED 的发射光谱、色品质和显色性等特性,它们与工作条件密切相关。随着正向电流IF的增加,色品坐标x和y值逐渐减小,色温增大,发生色漂移,而光通量呈亚线性增加,光效逐渐下降。由于在白光LED中发生光转换过程,产生光吸收的辐射传递,致使白光中InGaN芯片的蓝色EL光谱的形状和发射峰发生变化。白光LED的特性在很大程度上受InGaN蓝光LED芯片性能的制约。人们可以实现8000-4000K四种色温白光LED,显色指数高,且制作的白光LED的色容差可以达到很小,实现优质的白光照明光源。从上世纪90年代末到现在,白光发光二极管的出现和快速发展,引起人们极大的热情,白光LED具有低压、低功耗、高可靠,长寿命及固体化等优点。其量大的吸引力和期望是作为继白炽灯泡、荧光灯及高强度气体放电灯(HID)后的第四代照明新光源——具有庞大的照明市场和显著的节能前景的光源,是符合环保、节能要求的绿色照明光源。因此,受到日美和欧洲各国政府和商家的重视,他们制定发展规划和目标,且大集团公司在技术和资金上进行联合和重组。2003年6月我国政府也推出“半导体照明工程”,以期大力推动我国白光LED的发展。 尽管短短的几年来,白光LED的研发和应用取得举世瞩目的成绩,但目前还存在诸多问题,只能用于一些特殊的领域中。我们注意到,目前普通的白光

洛必达法则

洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母 分别求导再求极限来确定未定式值的方法。 设 (1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥 用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这 时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。 ②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往 计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因 子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当 函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项 称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出 的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数 P(x)满足 P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是 可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.); P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!…… P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得: P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有 Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=…… =Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))

从国际标准分析LED色容差

从国际标准分析LED色容差 色容差定义及麦克亚当椭圆理论 色容差:表征光色电检测系统软件计算的X、Y值与标准光源之间差别。数值越小,表示产品光色坐标和标准值越接近,光源发出的光谱与标准光谱之间的差别越小,准确度越高,光的颜色越纯正。 麦克亚当椭圆理论:1942年科学家麦克亚当利用相关原理对25种颜色进行实验,在每个颜色点大约5到9个对侧方向上测量,记录它们刚好能够分辨出颜色差异时的两点距离,结果得到的是一些面积大小各异、长短轴不等的椭圆,称为麦克亚当椭圆。麦克亚当椭圆通常用“阶”来描述,这里所说的“阶”其实就是指标准差。1阶麦克亚当椭圆指的是距离目标颜色1倍的颜色匹配结果变动的标准差,同理可知,3阶、4阶等的含义。 色容差主要标准类别 目前国内主要色容差标准主要有北美ANSI标准、IEC、欧盟标准、其对应色容差中心点归纳如下: 相关色容差对应的色温范围 行业标准水平: 1.能源之星ANSIC78.376,色容差≤7SDCM,按LED特性划分区域。 2.欧盟标准ERP,色容差≤6SDCM,按照明技术要求来规范LED划分区域。 3.国标GB10682——2002,双端荧光灯性能要求色容差≤5SDCM,可作为LED 灯色容差要求参考。 对比IEC标准和ANSI标准3阶示意图 关于色容差问题测试注意事项: 1.由图可知:IEC和ANSI两种标准中心点有差别,其中6500K、3000K、2700K 差别明显,所以下单必须先确认使用什么标准(目前同一方光电按照IEC标准测试,也可根据客户需求选择其他标准)。 2.选择对应色温段色容差中心点坐标,例如6500K色温选择2700K标准测试色容差会很大(有些机器会自动选择)。 色容差与色差的区别 色差:颜色的差异,即两个光色X、Y坐标值的差异大小,差值越小,色差越

(完整版)浅析洛必达法则求函数极限

本科学年论文论文题目:用洛必达法则求极限的方法 学生姓名:卫瑞娟 学号: 1004970232 专业:数学与应用数学 班级:数学1002班 指导教师:严惠云 完成日期: 2013 年 3月 8 日

用洛必达法则求未定式极限的方法 内容摘要 极限运算是微积分学的基础,在众多求极限方法中,洛必达法则是一种简单而又方便的求极限方法。但在具体使用过程中,一旦疏忽,解题就很可能出错。本文就针对利用此法则求极限的过程及解题过程中常见问题,对洛必达法则求函数极限的条件及范围、应用、何时失效做了整体分析与探讨,并举例说明。除此之外,还介绍了除洛必达法则之外其他求函数极限的方法以及同洛必达法则的比较,最后对洛必达法则进行小结。 关键词:洛必达法则函数极限无穷小量

目录 一、洛必达法则求极限的条件及适用范围 (1) (一)洛必达法则定理 (1) (二)洛必达法则使用条件 (2) 二、洛必达法则的应用 (2) (一)洛必达法则应用于基本不定型 (2) (二)洛必达法则应用于其他不定型 (3) 三、洛必达法则对于实值函数失效问题 (5) (一)使用洛必达法则后极限不存在 (5) (二)使用洛必达法则后函数出现循环 (6) (三)使用洛必达法则后函数越来越复杂 (6) (四)使用洛必达法则中求导出现零点 (6) 四、洛必达法则与其他求极限方法比较 (6) (一)洛必达法则与无穷小量替换求极限法 (7) (二)洛必达法则与利用极限运算和已知极限求极限 (8) (三)洛必达法则与夹逼定理求极限 (9) 五、洛必达法则求极限小结 (10) (一)洛必达法则条件不可逆 (10) (二)使用洛必达法则时及时化简 (11) (三)使用洛必达法则前不定型转化 (11) 参考文献 (13)

建筑工程量计算方法(含图及计算公式)

工程量计算方法 一、基础挖土 1、挖沟槽:V=(垫层边长+工作面)×挖土深度×沟槽长度+放坡增量 (1)挖土深度: ①室外设计地坪标高与自然地坪标高在±0.3m以内,挖土深度从基础垫层下表面算至室外设计地坪标高; ②室外设计地坪标高与自然地坪标高在±0.3m以外,挖土深度从基础垫层下表面算至自然设计地坪标高。(2)沟槽长度:外墙按中心线长度、内墙按净长线计算 (3)放坡增量:沟槽长度×挖土深度×系数(附表二 P7) 2、挖土方、基坑:V=(垫层边长+工作面)×(垫层边长+工作面)×挖土深度+放坡增量 (1)放坡增量:(垫层尺寸+工作面)×边数×挖土深度×系数(附表二 P7) 二、基础 1、各类混凝土基础的区分 (1)满堂基础:分为板式满堂基础和带式满堂基础,(图10-25 a、c、d)。

(2)带形基础 (3)独立基础

1、独立基础和条形基础 (1)独立基础:V=a’× b’×厚度+棱台体积 (2)条形基础:V=断面面积×沟槽长度 (1)砖基础断面计算 砖基础多为大放脚形式,大放脚有等高与不等高两种。等高大放脚是以墙厚为基础,每挑宽1/4砖,挑出砖厚为2皮砖。不等高大放脚,每挑宽1/4砖,挑出砖厚为1皮与2皮相间(见图10-18)。

基础断面计算如下:(见图10-19) 砖基断面面积=标准厚墙基面积+大放脚增加面积或 砖基断面面积=标准墙厚×(砖基础深+大放脚折加高度) 混凝土工程量计算规则 一、现浇混凝土工程量计算规则 混凝土工程量除另有规定者外,均按图示尺寸实体体积以m3计算。不扣除构件内钢筋、预埋铁件及墙、板中㎡内的孔洞所占体积。

2021年洛必达法则 泰勒公式

*欧阳光明*创编
2021.03.07
第三章 微分中值定理与导数的应用
欧阳光明(2021.03.07)
第二讲 洛必达法则 泰勒公式
目的 1.使学生掌握用洛必达法则求各种类型未定式极限的方法; 2.理解泰勒中值定理的内涵;
3. 了解
等函数的麦克劳林公式;
4.学会泰勒中值定理的一些简单应用.
重点 1.运用洛必达法则求各种类型未定式极限的方法;
2.使学生理解泰勒中值定理的内涵.
难点 使学生深刻理解泰勒中值定理的精髓.
一、洛必达法则
在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已
经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存
在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系
知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之
比的极限和无穷大之比的极限称为未定式,并分别简记为 和 . 由于在讨论上述未定式的极限时,不能应用商的极限运算法
则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天
*欧阳光明*创编
2021.03.07

*欧阳光明*创编
2021.03.07
在这里我们应用导数的理论推出一种既简便又重要的未定式极限的
计算方法,并着重讨论当 时, 型未定式极限的计算,关于这
种情形有以下定理.
定理 1 设
(1) 当 时,函数 及 都趋于零;
(2)在点 的某去心邻域内, 及 都存在,且

(3) 则
存在(或为无穷大),

也就是说,当
存在时,
也存在,且等于
;当
为无穷大时,
也是无穷大.这种在一定条件下,通
过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必
达(L’Hospital)法则.
下面我们给出定理 1 的严格证明:
分析 由于上述定理的结论是把函数的问题转化为其导数的问
题,显然应考虑微分中值定理.再由分子和分母是两个不同的函
数,因此应考虑应用柯西中值定理.
证 因为求极限
与 及 的取值无关,所以可以假定
.于是由条件(1)和(2)知, 及 在点 的某一邻
域内是连续的.设 是这邻域内一点,则在以 及 为端点的区间
*欧阳光明*创编
2021.03.07

常用计算公式

常用计算公式 1、投资率,又称资本形成率,通常指一定时期内资本形成总额(总投资)占国内生产总值的比重,一般按现行价格计算。目前,国际上通行的计算方法为: 2、消费率,又称最终消费率,通常指一定时期内最终消费(总消费)占国内生产总值的比率,一般按现行价格计算。用公式可表示为: 其中,最终消费包括居民消费和政府消费。 社会上也有人用社会消费品零售总额代替最终消费,用生产法GDP 代替支出法GDP计算消费率,但这种方法大大低估了消费率。原因是,社会消费品零售总额与最终消费存在较大差异,它仅与最终消费中的商品性货物消费相对应,服务性消费以及实物性消费、自产自用消费和其他虚拟消费都不包括在内,不能全面反映生产活动最终成果中用于最终消费的总量。 反映三大需求对经济增长拉动的指标 3、投资拉动率,又称投资对GDP增长的拉动率,通常指在经济增长率中投资需求拉动所占的份额,也称投资对GDP增长的贡献率。计算方法为: 同时,还可以计算投资拉动GDP增长的百分点。计算方法为: 投资拉动GDP增长(百分点)=投资拉动率×GDP增长率 其中的GDP增长率一般为不变价生产法GDP增长率(下同)。 4、消费拉动率,又称消费对GDP增长的拉动率,通常指在经济增长率中消费需求拉动所占的份额,也称消费对GDP增长的贡献率。计算方法为:

同时,还可以计算消费拉动GDP增长的百分点。计算方法为: 消费拉动GDP增长(百分点)=消费拉动率×GDP增长率 5、“贡献率”它是怎样计算的 在统计分析中经常使用“贡献率”,那么“贡献率”是什么含义它是怎样计算的 (产业贡献率:指各产业增加值增量与GDP增量之比 产业拉动率:指GDP增长速度与各产业贡献率之乘积。) 贡献率是分析经济效益的一个指标。它是指有效或有用成果数量与资源消耗及占用量之比,即产出量与投入量之比,或所得量与所费量之比。计算公式: 贡献率(%)=贡献量(产出量,所得量)/投入量(消耗量,占用量)×100% 贡献率也用于分析经济增长中各因素作用大小的程度。 计算方法是: 贡献率(%)=某因素贡献量(增量或增长程度)/总贡献量(总增量或增长程度)×100% 上式实际上是指某因素的增长量(程度)占总增长量(程度)的比重。 举例说明如下: 总资产贡献率(%)=(利润总额+税金总额+利息支出)/平均资产总额×100% (1)总资产贡献率:反映企业资金占用的经济效益,说明企业运用全部资产的收益能力。 (2)社会贡献率:是衡量企业运用全部资产为社会创造或支付价值的能力。 社会贡献率(%)= 社会贡献总额/平均资产总额×100% 社会贡献总额包括工资、劳保退休统筹及其他社会福利支出、利息支出净额、应交增值税、产品销售税金及附加、应交所得税及其他税、净利润等。为了反映企业对国家所作贡献的程度,可按上述原则计算贡献率。

相关文档