文档库 最新最全的文档下载
当前位置:文档库 › 最优潮流计算

最优潮流计算

最优潮流计算
最优潮流计算

最优潮流计算

1.实验原理

在网络结构和参数给定的情况下,确定电力系统的控制变量,使得电力系统运行效益的某一给定的目标函数取得最优,同时满足系统的运行和安全约束,称为最优潮流。通过实际算例,掌握PSS/E软件的最优潮流计算功能,学会使用PSS/E最优潮流功能解决实际应用问题。

最有潮流OPF,就是当系统的结构参数及负荷情况给定时,通过控制量的优选,所找到的能满足所有指定的约束条件,并使系统的某一性能指标或标函数达到最优时的潮流分布。最优潮流要通过改变控制变量的给定值,来求状态变量的解,从众多状态变量解中求一个指标最优或目标函数最优的解。计算涉及两类变量,即控制变量和状态变量。控制变量是待优化选定的变量、可以控制的自变量,通常包括各发电机的有功出力、无功出力或者机端电压。

2.实验步骤和结果分析

1.设置OPF求解参数

选择OPF→Solve…菜单,如下图1,得到如图2所示的OPF求解对话框。

图1 图2 OPF对话框

在图2所示对话框中单击“Change solution parameters”,得到图3所示更改参数对话框。

图3 更改参数对话框

2.求解最优潮流

在完成参数设定后,单击GO键,进行潮流优化求解,下图4中Report视图

为优化结果。

图4

如果想将结果打印,则需选择I/O Contrl→Direct Progress

output(PDEV)…菜单项,如下图5所示,得到图6的Progress Output

Destination Selector对话框,在该对话框中选择File选项,并设定OPF优化

结果输出文件名,即可得到优化结果的文件。

图5 图6 优化结果文件如下所述:

图7 优化结果文件

3.实验经验总结

通过实验可以得出:

在本次实验中,采用目标函数为最小化燃料成本和最小化无功损失,约束条件为联络线功率约束、自动缩放、双变量收敛标。设置优化求解时的误差选项、控制选项、报表选项,完成参数的设定。

优化结果分析可知,最小化燃料成本为29524.618638,最小化无功损失为29.836415。

基于内点法的最优潮流计算

基于内点法的最优潮流计 算 Prepared on 24 November 2020

摘要 内点法是一种能在可行域内部寻优的方法,即从初始内点出发,沿着中心路径方向在可行域内部直接走向最优解的方法。其中路径跟踪法是目前最具有发展潜力的一类内点算法,该方法鲁棒性强,对初值的选择不敏感,在目前电力系统优化问题中得到了广泛的应用。本文采用路径跟踪法进行最优求解,首先介绍了路径跟踪法的基本模型,并且结合具体算例,用编写的Matlab程序进行仿真分析,验证了该方法在最优潮流计算中的优越性能。 关键词:最优潮流、内点法、路径跟踪法、仿真

目次

0、引言 电力系统最优潮流,简称OPF(Optimal Power Flow)。OPF问题是一个复杂的非线性规划问题,要求满足待定的电力系统运行和安全约束条件下,通过调整系统中可利用控制手段实现预定目标最优的系统稳定运行状态。针对不同的应用,OPF模型课以选择不同的控制变量、状态变量集合,不同的目标函数,以及不同的约束条件,其数学模型可描述为确定一组最优控制变量u,以使目标函数取极小值,并且满足如下等式和不等式。 {min u f(x,u) S.t.?(x,u)=0 g(x,u)≤0 (0-1)其中min u f(x,u)为优化的目标函数,可以表示系统运行成本最小、或者系统运行网损最小。S.t.?(x,u)=0为等式约束,表示满足系统稳定运行的功率平衡。g(x,u)≤0为不等式约束,表示电源有功出力的上下界约束、节点电压上下线约束、线路传输功率上下线约束等等。 电力系统最优潮流算法大致可以分为两类:经典算法和智能算法。其中经典算法主要是指以简化梯度法、牛顿法、内点法和解耦法为代表的基于线性规划和非线性规划以及解耦原则的算法,是研究最多的最优潮流算法, 这类算法的特点是以一阶或二阶梯度作为寻找最优解的主要信息。智能算法主要是指遗传算法和模拟退火发等,这类算法的特点是不以梯度作为寻优信息,属于非导数的优化方法。 因此经典算法的优点是能按目标函数的导数信息确定搜索方向,计算速度快,算法比较成熟,结果可信度高。缺点是对目标函数及约束条件有一定的限

电力系统潮流计算详解

首先声明一下,这些是从网站上转载的,不是本人上编写的 基于MATLAB的电力系统潮流计算 %简单潮流计算的小程序,相关的原始数据数据数据输入格式如下: %B1是支路参数矩阵,第一列和第二列是节点编号。节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点%编号,将变压器的串联阻抗置于低压侧处理。 %第三列为支路的串列阻抗参数。 %第四列为支路的对地导纳参数。 %第五烈为含变压器支路的变压器的变比 %第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,%“0”为不含有变压器。 %B2为节点参数矩阵,其中第一列为节点注入发电功率参数;第二列为节点%负荷功率参数;第三列为节点电压参数;第六列为节点类型参数,其中 %“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数。 %X为节点号和对地参数矩阵。其中第一列为节点编号,第二列为节点对地%参数。 n=input('请输入节点数:n='); n1=input('请输入支路数:n1='); isb=input('请输入平衡节点号:isb='); pr=input('请输入误差精度:pr='); B1=input('请输入支路参数:B1='); B2=input('请输入节点参数:B2='); X=input('节点号和对地参数:X='); Y=zeros(n); Times=1; %置迭代次数为初始值 %创建节点导纳矩阵 for i=1:n1 if B1(i,6)==0 %不含变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/B1(i,3); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4); Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4); else %含有变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/(B1(i,3)*B1(i,5)); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3); Y(q,q)=Y(q,q)+1/(B1(i,5)^2*B1(i,3)); end

基于MATLAB的电力系统潮流计算

基于MATLAB的电力系统潮流计算 %简单潮流计算的小程序,相关的原始数据数据数据输入格式如下: %B1是支路参数矩阵,第一列和第二列是节点编号。节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点%编号,将变压器的串联阻抗置于低压侧处理。 %第三列为支路的串列阻抗参数。 %第四列为支路的对地导纳参数。 %第五烈为含变压器支路的变压器的变比 %第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,%“0”为不含有变压器。 %B2为节点参数矩阵,其中第一列为节点注入发电功率参数;第二列为节点%负荷功率参数;第三列为节点电压参数;第六列为节点类型参数,其中 %“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数。 %X为节点号和对地参数矩阵。其中第一列为节点编号,第二列为节点对地%参数。 n=input('请输入节点数:n='); n1=input('请输入支路数:n1='); isb=input('请输入平衡节点号:isb='); pr=input('请输入误差精度:pr='); B1=input('请输入支路参数:B1='); B2=input('请输入节点参数:B2='); X=input('节点号和对地参数:X='); Y=zeros(n); Times=1; %置迭代次数为初始值 %创建节点导纳矩阵 for i=1:n1 if B1(i,6)==0 %不含变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/B1(i,3); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4); Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4); else %含有变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/(B1(i,3)*B1(i,5)); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3);

用matlab电力系统潮流计算

题目:潮流计算与matlab 教学单位电气信息学院姓名 学号 年级 专业电气工程及其自动化指导教师 职称副教授

摘要 电力系统稳态分析包括潮流计算和静态安全分析。本文主要运用的事潮流计算,潮流计算是电力网络设计与运行中最基本的运算,对电力网络的各种设计方案及各种运行方式进行潮流计算,可以得到各种电网各节点的电压,并求得网络的潮流及网络中的各元件的电力损耗,进而求得电能损耗。本位就是运用潮流计算具体分析,并有MATLAB仿真。 关键词:电力系统潮流计算 MATLAB Abstract Electric power system steady flow calculation and analysis of the static safety analysis. This paper, by means of the calculation, flow calculation is the trend of the power network design and operation of the most basic operations of electric power network, various design scheme and the operation ways to tide computation, can get all kinds of each node of the power grid voltage and seek the trend of the network and the network of the components of the power loss, and getting electric power. The standard is to use the power flow calculation and analysis, the specific have MATLAB simulation. Key words: Power system; Flow calculation; MATLAB simulation

潮流计算问答题

1.什么是潮流计算?潮流计算的主要作用有哪些? 潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。 对于正在运行的电力系统,通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。潮流计算还可以为继电保护和自动装置整定计算、电力系统故障计算和稳定计算等提供原始数据。 2.潮流计算有哪些待求量、已知量? (已知量: 电力系统网络结构、参数; 决定系统运行状态的边界条件 待求量:系统稳态运行状态 例如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等)通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。 待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。 3.潮流计算节点分成哪几类?分类根据是什么? (分成三类:PQ节点、PV节点和平衡节点,分类依据是给定变量的不同) PV节点(电压控制母线):有功功率Pi和电压幅值Ui为给定。这种类型节点相当于发电机母线节点,或者相当于一个装有调相机或静止补偿器的变电所母线。 PQ节点:注入有功功率Pi和无功功率Qi是给定的。相当于实际电力系统中的一个负荷节点,或有功和无功功率给定的发电机母线。 平衡节点:用来平衡全电网的功率。平衡节点的电压幅值Ui和相角δi是给定的,通常以它的相角为参考点,即取其电压相角为零。 一个独立的电力网中只设一个平衡节点。 4.教材牛顿-拉夫逊法及有功-无功分解法是基于何种电路方程?可否采用其它类型方程? 基于节点电压方程,还可以采用回路电流方程和割集电压方程等。但是后两者不常用。

潮流计算的基本算法及使用方法Word版

潮流计算的基本算法及使用方法 一、 潮流计算的基本算法 1. 牛顿-拉夫逊法 1.1 概述 牛顿-拉夫逊法是目前求解非线性方程最好的一种方法。这种方法的特点就是把对非线 性方程的求解过程变成反复对相应的线性方程求解的过程,通常称为逐次线性化过程,就是牛顿-拉夫逊法的核心。 牛顿-拉夫逊法的基本原理是在解的某一邻域内的某一初始点出发,沿着该点的一阶偏 导数——雅可比矩阵,朝减小方程的残差的方向前进一步,在新的点上再计算残差和雅可矩阵继续前进,重复这一过程直到残差达到收敛标准,即得到了非线性方程组的解。因为越靠近解,偏导数的方向越准,收敛速度也越快,所以牛顿法具有二阶收敛特性。而所谓“某一邻域”是指雅可比方向均指向解的范围,否则可能走向非线性函数的其它极值点,一般来说潮流由平电压即各母线电压(相角为0,幅值为1)启动即在此邻域内。 1.2 一般概念 对于非线性代数方程组 ()0=x f 即 ()0,,,21=n i x x x f ()n i ,2,1= (1-1) 在待求量x 的某一个初始计算值() 0x 附件,将上式展开泰勒级数并略去二阶及以上的高 阶项,得到如下的线性化的方程组 ()()()() ()0000=?'+x x f x f (1-2) 上式称之为牛顿法的修正方程式。由此可以求得第一次迭代的修正量 ()() ()[]()()0 1 00x f x f x -'-=? (1-3) 将() 0x ?和() 0x 相加,得到变量的第一次改进值()1x 。接着再从() 1x 出发,重复上述计算 过程。因此从一定的初值() 0x 出发,应用牛顿法求解的迭代格式为 ()()()()() k k k x f x x f -=?' (1-4) ()()()k k k x x x ?+=+1 (1-5) 上两式中:()x f '是函数()x f 对于变量x 的一阶偏导数矩阵,即雅可比矩阵J ;k 为迭代

第三章简单电力系统的潮流计算汇总

第一章 简单电力系统的分析和计算 一、 基本要求 掌握电力线路中的电压降落和功率损耗的计算、变压器中的电压降落和功率损耗的计 算;掌握辐射形网络的潮流分布计算;掌握简单环形网络的潮流分布计算;了解电力网络的简化。 二、 重点内容 1、电力线路中的电压降落和功率损耗 图3-1中,设线路末端电压为2U 、末端功率为222~jQ P S +=,则 (1)计算电力线路中的功率损耗 ① 线路末端导纳支路的功率损耗: 222 2* 222~U B j U Y S Y -=?? ? ??=? ……………(3-1) 则阻抗支路末端的功率为: 222~~~Y S S S ?+=' ② 线路阻抗支路中的功率损耗: ()jX R U Q P Z I S Z +'+'==?2 2 22222 ~ ……(3-2) 则阻抗支路始端的功率为: Z S S S ~ ~~21?+'=' ③ 线路始端导纳支路的功率损耗: 2121* 122~U B j U Y S Y -=?? ? ??=? …………(3-3) 则线路始端的功率为: 111~ ~~Y S S S ?+'= ~~~图3-3 变压器的电压和功率 ~2 ? U (2)计算电力线路中的电压降落 选取2U 为参考向量,如图3-2。线路始端电压 U j U U U δ+?+=2 1 其中 2 2 2U X Q R P U '+'= ? ; 222U R Q X P U '-'=δ ……………(3-4) 则线路始端电压的大小: ()()2 221U U U U δ+?+= ………………(3-5) 一般可采用近似计算: 2 2 2221U X Q R P U U U U '+'+ =?+≈ ………………(3-6)

电力系统概率潮流计算的计算方法与比较毕业设计任务书

毕业设计(论文)任务书 信息与电气工程系电工电子基础教研室 系(教研室)主任:(签名)年月日 学生姓名:学号:专业:电气工程及其自动化 1 设计(论文)题目及专题:电力系统概率潮流计算的计算方法与比较 2 学生设计(论文)时间:自 2020年1月9日开始至 2020年5月 25日止 3 设计(论文)所用资源和参考资料: [1]陈倪.电力系统概率潮流计算[D].东南大学,1990. [2]戴小青. 电力系统概率潮流新算法及其应用[D].华北电力大学(北京),2006. [3] 张建芬,王克文,宗秀红,谢志棠.几种概率潮流模型的准确性比较分析[J].郑州大学学报(工学版),2003(04):32-36. [4]DING Ming, LI Shenghu, HUANG Kai. Probabilistic load flow analysis based on Monte-Carlo simulation [J]. Power System Technology, 2007, 25(11):10-14. [5]MORALES J M,BARINGO L,CONEJO A J, et al. Probabilistic power flowwith correlated wind sources[J]. IET Generation, Transmission & Distribution, 2010, 4(5):641-651. [6]代景龙,韦化,鲍海波,等. 基于无迹变换含分布式电源系统的随机潮流[J]. 电力自动化设备, 2016, 36(3):86-93. [7]张衡,程浩忠,曾平良,等. 分位数拟合的点估计法随机潮流在输电网规划中的应用[J]. 电力自动化设备, 2018, 38(11):43-49. [8]方斯顿,程浩忠,徐国栋,等. 基于Nataf变换和准蒙特卡洛模拟的随机潮流计算[J]. 电力自动化设备, 2015, 35(8):38-44. 4 设计(论文)应完成的主要内容: (1)电力系统概率潮流概述;(2)基于蒙特卡洛法的概率潮流计算;(3)基于累积量法的概率潮流计算;(4)基于点估计法的概率潮流计算;(5)基于无迹变换法的概率潮流计算;(6)各种计算方法的比较分析。

电力系统概率潮流算法综述_刘宇

DOI:10.7500/AEPS20131014017 电力系统概率潮流算法综述 刘 宇1, 2,高 山1,2 ,杨胜春3,姚建国3(1.东南大学电气工程学院,江苏省南京市210018; 2.江苏省智能电网技术与装备重点实验室,东南大学,江苏省南京市210018; 3.中国电力科学研究院(南京),江苏省南京市210003 )摘要:概率潮流是解决电力系统不确定因素的重要基础。随着间歇性能源的发展与电力系统随机 性的提升,概率潮流在近些年来得到了广泛的研究。文中以算法的原理与优缺点为立足点,对电力 系统概率潮流算法研究进行综述。首先, 对概率潮流的研究问题进行阐述,简要介绍了概率潮流理论的发展、计算模型分类以及评价指标,并简述了概率潮流在电力系统中的应用情况。然后,按照 算法的不同原理将概率潮流算法进行分类, 基于不同类别的方法对实际应用的具体算法进行详细分析,分别介绍了不同算法的原理步骤以及优劣性和适用性,并针对各类方法进行了算法总体评价和发展趋势分析。最后,结合电力系统的最新发展要求对概率潮流算法的研究方向做出展望。关键词:不确定性;概率潮流;相关性;模拟采样;近似计算 收稿日期:2013-10-14;修回日期:2014-07- 01。国家高技术研究发展计划(863计划)资助项目(2011AA05A105);国家电网公司科技项目(DZ71-13-036);北京市自然科学基金资助项目(3132035 )。0 引言 在传统电力系统分析中,负荷的波动、电网运行方式的变化和发电机的停运等因素造成了电力系统一定程度上的不确定性。随着电力工业的发展,以太阳能和风能等为代表的新能源接入电网,给电网 带来了明显的间歇性和随机性; 微网、分布式电源和电动汽车等配电网新概念的发展,大大增强了电源、负荷与电网之间的互动性[1] ,其直接结果导致了电力系统的不确定性显著增加,用于电力系统分析的 概率潮流算法的研究日益重要。 1974年,Borkowaka提出概率潮流计算方法[2] ,用以解决电力系统中诸多不确定因素。在随后四十年的时间里,概率潮流理论与方法得到了发展。与其几乎同时出现的随机潮流[3] 和概率潮流相互补充融合,逐渐形成处理电力系统不确定因素的体系:一般认为对于电力系统短期不确定因素采用随机潮流处理,而对于长期的具备规律性的不确定因素采用概率潮流处理,后者更趋向于概率分布的计算。 概率潮流计算的提出与发展,其最显著的意义是在进行电力系统分析时,考虑了系统各种不确定因素的随机性,从而使得计算分析更加贴合实际电 网的运行状态。概率潮流的研究问题,主要集中在 3个层面: 系统模型、计算模型和计算方法。系统元件的不确定性是引入概率潮流的根本原 因,主要体现在发电机、负荷、输电线路和变压器的随机性。近些年,随着可再生能源并网规模的日益 提高和电力用户的市场行为日趋突出, 发电机和负荷的功率模型越发复杂。文献[4 ]提出K均值聚类负荷模型,对研究时段内具有相近特征的系统负荷状态进行分析归类,构成多个等值负荷水平,实现了复杂负荷模型的快速计算。 就概率潮流计算模型而言,以四大类模型为主。 Borkowaka基于简化的直流模型[2] 提出了概率潮流计算方法。为了提高潮流计算的精度,Allan分别在1976年和1981年提出了线性化交流模型[5]和分 段线性化交流模型[6] ,Sokierajski在1978年提出保留非线性的交流模型[ 7] 。目前概率潮流的计算方法都是基于这4种模型进行。 对概率潮流算法的研究是概率潮流分析中的热点,具备广阔的研究空间与研究意义。一种性能良 好的概率潮流计算方法应满足以下指标[8] :①能够 求出输出随机变量的数字特征( 包括均值和方差)及概率分布;②能够处理多个随机变量间的相关性; ③满足实用化要求, 结果具有足够精度的情况下尽量减少计算时间;④满足通用性要求, 对输入变量的数学模型不应有太高要求。这4项指标构成概率潮流算法研究的重点和难点,专家学者们从一方面或多方面入手展开研究,形成了当前的多种概率潮流 — 721—第38卷 第23期2014年12月10 日Vol.38 No.23 Dec.10,2014

电力系统潮流计算课程设计(终极版)

目录 摘要................................................. - 1 - 1.设计意义与要求..................................... - 2 - 1.1设计意义 ...................................... - 2 - 1.2设计要求(具体题目)........................... - 2 - 2.题目解析........................................... - 3 - 2.1设计思路 ...................................... - 3 - 2.2详细设计 ...................................... - 4 - 2.2.1节点类型.................................. - 4 - 2.2.2待求量 ................................... - 4 - 2.2.3导纳矩阵.................................. - 4 - 2.2.4潮流方程.................................. - 5 - 2.2.5牛顿—拉夫逊算法.......................... - 6 - 2.2.5.1牛顿算法数学原理:................... - 6 - 2.2.5.2修正方程............................. - 7 - 2.2.5.3收敛条件............................. - 9 - 3.结果分析.......................................... - 10 - 4.小结.............................................. - 11 - 参考文献............................................ - 12 -

简单环网潮流计算算例

简单环网潮流计算算例 图中所示为110kV 闭式电力网,A 为某发电厂的高压母线,其运行电压为117kV 。网络各元件的参数如下: 线路每公里的参数为 线路I 、II r 0 = 0.27 Ω, x 0 = 0.423 Ω, b 0 = 2.69×10-6S Ω III r 0 = 0.45 Ω, x 0 = 0.44 Ω, b 0 = 2.58×10-6S Ω 线路I 的长度为60km ,线路II 为50km ,线路III 为40km 。 各变电所每台变压器的额定容量、励磁功率和归算到110kV 电压级的阻抗分别为 变电所b S N =20MV A ,ΔS 0=0.05+j0.6MV A ,R T =4.84Ω,X T =63.5Ω 变电所c S N =10MV A ,ΔS 0=0.03+j0.35MV A ,R T =11.4Ω,X T =127Ω 负荷功率 S LDb =24+j18MV A ,S LDc =12+j9MV A 试求电力网的功率分布及最大电压损耗。 解: 1. 计算网络参数及制订等值电路 线路I : var M 975.0var M 1101061.12 1Q S 1061.1S 60102.6938.25j 2.1660)423.0j 27.0(24BI 46I I -=???-=??=??=Ω +=Ω?+=---B Z 线路II : var M 815.0var M 1101035.12 1Q S 1035.1S 50102.6915.21j 5.1350)423.0j 27.0(24BII 46II II -=???-=??=??=Ω +=Ω?+=---B Z 图(a )

电力系统最优潮流计算实验指导书110331

《电力系统稳态分析计算机方法》实验指导书 实验二最优潮流计算实验 1.实验目的: 电力系统系统分析是研究电力系统运行和规划方案最重要和最基本的手段,其任务就是格局给定的发电运行方式和接线方式及其电力系统的稳态运行状况,包括各个母线的电压和流过每个元件中的功率。其包括电力系统潮流分析和静态安全分析,而电力系统潮流分析针对电力系统各正常运行方式,潮流计算是指对电力系统正常运行状况的分析和计算。通常需要已知系统参数和条件,给定一些初始条件,从而计算出系统运行的电压和功率等。 本实验接触的是最优潮流计算,其问题是一个复杂的非线性规划问题,要求满足特定的电力系统运行和安全约束条件,通过调整系统中可利用的控制手段实现预定目标最优的系统稳定运行状态。 实验采用简化梯度法最优潮流流算法,对这种潮流计算程序的编制与调试,获得电力系统中各节点电压,为进一步进行电力系统分析作准备。通过实验教学加深学生对电力系统潮流计算原理的理解和计算,初步学会运用计算机知识解决电力系统的问题,掌握潮流计算的过程及其特点。熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。 2.实验器材: 计算机、软件(已安装,包括各类编程软件C语言、C++、VB、VC等、应用软件MATLAB等)、移动存储设备(学生自备,软盘、

U盘等) 3.实验内容: 一、最优潮流的概念 最优潮流(Optimal Power Flow,OPF)是指当系统的结构参数和负荷情况都已给定时,调节可利用的控制变量(如发电机输出功率、可调变压器抽头等)来找到能满足所有运行约束条件的,并使系统的某一性能指标(如发电成本或网络损耗)达到最优值下的潮流分布。 经典最优潮流常常在满足可行性约束和安全性约束的条件下追求最小运行费用,或者最小网损、最小负荷、最高电压水平等等。 二、最优潮流的变量: 最优潮流的变量分为控制变量(u)及状态变量(x)。 一般常用的控制变量有: (1)除平衡节点外,其它发电机的有功出力; (2)所有发电机节点及具有可调无功补偿设备节点的电压模值; (3)移相器抽头位置 (4)带负荷调压变压器的变比。 (5)并联电抗器/电容器容量 状态变量常见的有: (1)除平衡节点外,其它所有节点的电压相角; (2)除发电机节点以及具有可调无功补偿设备节点之外,其它所有节点的电压模值。

牛顿法潮流计算综述

潮流例题:根据给定的参数或工程具体要求(如图),收集和查阅资料;学习相关软件(软件自选:本设计选择Matlab进行设计)。 2.在给定的电力网络上画出等值电路图。 3.运用计算机进行潮流计算。 4.编写设计说明书。 一、设计原理 1.牛顿-拉夫逊原理 牛顿迭代法是取x0 之后,在这个基础上,找到比x0 更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,一般为额定电压,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不

平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。 牛顿—拉夫逊迭代法的一般步骤: (1)形成各节点导纳矩阵Y。 (2)设个节点电压的初始值U和相角初始值e 还有迭代次数初值为0。 (3)计算各个节点的功率不平衡量。 (4)根据收敛条件判断是否满足,若不满足则向下进行。 (5)计算雅可比矩阵中的各元素。 (6)修正方程式个节点电压 (7)利用新值自第(3)步开始进入下一次迭代,直至达到精度退出循环。 (8)计算平衡节点输出功率和各线路功率 2.网络节点的优化 1)静态地按最少出线支路数编号 这种方法由称为静态优化法。在编号以前。首先统计电力网络个节点的出线支路数,然后,按出线支路数有少到多的节点顺序编号。当由n 个节点的出线支路相同时,则可以按任意次序对这n 个节点进行编号。这种编号方法的根据是导纳矩阵中,出线支路数最少的节点所对应的行中非零元素也2)动态地按增加出线支路数最少编号在上述的方法中,各节点的出线支路数是按原始网络统计出来的,在编号过程中认为固定不变的,事实上,在节点消去过程中,每消去一个节点以后,与该节点相连的各节点的出线支路数将发生变化(增加,减少或保持不变)。因此,如果每消去一个节点后,立即修正尚未编号节点的出线支路数,然后选其中支路数最少的一个节点进行编号,就可以预期得到更好的效果,动态按最少出线支路数编号方法的特点就是按出线最少原则编号时考虑了消去过程中各节点出线支路数目的变动情况。 3.MATLAB编程应用 Matlab 是“Matrix Laboratory”的缩写,主要包括:一般数值分析,矩阵运算、数字信号处理、建模、系统控制、优化和图形显示等应用程序。由于使用Matlab 编程运算与人进行科学计算的思路和表达方式完全一致,所以不像学习高级语言那样难于掌握,而且编程效率和计算效率极高,还可在计算机上直接输出结果和精美的图形拷贝,所以它的确为一高效的科研助手。 二、设计内容 1.设计流程图

电力系统潮流计算

信息工程学系 2011-2012学年度下学期电力系统分析课程设计 题目:电力系统潮流计算 专业:电气工程及其自动化 班级: 学号: 学生姓名: 指导教师:钟建伟 2012年3月10日

信息工程学院课程设计任务书

目录 1 任务提出与方案论证 (4) 1.1潮流计算的定义、用途和意义 (4) 1.2 运用软件仿真计算 (5) 2 总体设计 (7) 2.1潮流计算设计原始数据 (7) 2.2总体电路设计 (8) 3 详细设计 (10)

3.1数据计算 (10) 3.2 软件仿真 (14) 4 总结 (24) 5参考文献 (25)

1任务提出与方案论证 1.1潮流计算的定义、用途和意义 1.1.1潮流计算的定义 潮流计算,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。 1.1.2潮流计算的用途 电力系统潮流计算是电力系统最基本的计算,也是最重要的计算。所谓潮流计算,就是已知电网的接线方式与参数及运行条件,计算电力系统稳态运行各母线电压、个支路电流与功率及网损。对于正在运行的电力系统,通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。潮流计算还可以为继电保护和自动装置定整计算、电力系统故障计算和稳定计算等提供原始数据。

基于内点法的最优潮流计算

基于内点法的最优潮流 计算 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

摘要 内点法是一种能在可行域内部寻优的方法,即从初始内点出发,沿着中心路径方向在可行域内部直接走向最优解的方法。其中路径跟踪法是目前最具有发展潜力的一类内点算法,该方法鲁棒性强,对初值的选择不敏感,在目前电力系统优化问题中得到了广泛的应用。本文采用路径跟踪法进行最优求解,首先介绍了路径跟踪法的基本模型,并且结合具体算例,用编写的Matlab程序进行仿真分析,验证了该方法在最优潮流计算中的优越性能。 关键词:最优潮流、内点法、路径跟踪法、仿真

目次

0、引言 电力系统最优潮流,简称OPF(Optimal Power Flow)。OPF问题是一个复杂的非线性规划问题,要求满足待定的电力系统运行和安全约束条件下,通过调整系统中可利用控制手段实现预定目标最优的系统稳定运行状态。针对不同的应用,OPF模型课以选择不同的控制变量、状态变量集合,不同的目标函数,以及不同的约束条件,其数学模型可描述为确定一组最优控制变量u,以使目标函数取极小值,并且满足如下等式和不等式。 {min u f(x,u) S.t.?(x,u)=0 g(x,u)≤0 (0-1)其中min u f(x,u)为优化的目标函数,可以表示系统运行成本最小、或者系统运行网损最小。S.t.?(x,u)=0为等式约束,表示满足系统稳定运行的功率平衡。g(x,u)≤0为不等式约束,表示电源有功出力的上下界约束、节点电压上下线约束、线路传输功率上下线约束等等。 电力系统最优潮流算法大致可以分为两类:经典算法和智能算法。其中经典算法主要是指以简化梯度法、牛顿法、内点法和解耦法为代表的基于线性规划和非线性规划以及解耦原则的算法,是研究最多的最优潮流算法, 这类算法的特点是以一阶或二阶梯度作为寻找最优解的主要信息。智能算法主要是指遗传算法和模拟退火发等,这类算法的特点是不以梯度作为寻优信息,属于非导数的优化方法。 因此经典算法的优点是能按目标函数的导数信息确定搜索方向,计算速度快,算法比较成熟,结果可信度高。缺点是对目标函数及约束条件有一定的限

电力系统潮流计算代码

附录 程序的主要代码: n=input('请输入节点数n='); na=input('请输入支路数na='); isb=input('请输入平衡节点母线号isb='); jd=input('请输入误差精度jd='); B1=input('请输入由支路参数形成的矩阵B1='); B2=input('请输入由节点参数形成的矩阵B2='); L=input('请输入由节点号及其对地阻抗形成的矩阵L='); nb=input('请输入P-Q节点数nb='); Y=zeros(n);Z=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n); O=zeros(1,n); for i=1:na if B1(i,6)==0 a=B1(i,1);b=B1(i,2); else a=B1(i,2);b=B1(i,1); end Y(a,b)=Y(a,b)-1./(B1(i,3)*B1(i,5)); Z(a,b)=Z(a,b)-1./(B1(i,3)); Y(b,a)=Y(a,b); Z(b,a)=Z(a,b); Y(b,b)=Y(b,b)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2; Z(b,b)=Z(b,b)+1./(B1(i,3)); Y(a,a)=Y(a,a)+1./(B1(i,3))+B1(i,4)./2; Z(a,a)=Z(a,a)+1./(B1(i,3)); end G=real(Y);B=imag(Z);CI=imag(Y); for i=1:n S(i)=B2(i,1)-B2(i,2); CI(i,i)=CI(i,i)+B2(i,5); end P=real(S);Q=imag(S); for i=1:n e(i)=real(B2(i,3)); f(i)=imag(B2(i,3)); V(i)=B2(i,4); end for i=1:n if B2(i,6)==2 V(i)=sqrt(e(i)^2+f(i)^2); O(i)=atan(f(i)./e(i)); end

(完整word版)潮流计算方法

由于本人参加我们电气学院的电气小课堂,主讲的是计算机算法计算潮流这章,所以潜心玩了一个星期,下面整理给大家分享下。 本人一个星期以来的汗水,弄清楚了计算机算法计算潮流的基础,如果有什么不懂的可以发信息到邮箱:zenghao616@https://www.wendangku.net/doc/f813962782.html, 接下来开始弄潮流的优化问题,吼吼! 电力系统的潮流计算的计算机算法:以MATLAB为环境 这里理论不做过多介绍,推荐一本专门讲解电力系统分析的计算机算法的书籍---------《电力系统分析的计算机算法》—邱晓燕、刘天琪编著。 这里以这本书上的例题【2-1】说明计算机算法计算的过程,分别是牛顿拉弗逊算法的直角坐标和极坐标算法、P-Q分解算法。主要是简单的网络的潮流计算,其实简单网络计算和大型网络计算并无本质区别,代码里面只需要修改循环迭代的N即可,这里旨在弄清计算机算法计算潮流的本质。代码均有详细的注释. 其中简单的高斯赛德尔迭代法是以我们的电稳教材为例子讲,其实都差不多,只要把导纳矩阵Y给你,节点的编号和分类给你,就可以进行计算了,不必要找到原始的电气接线图。 理论不多说,直接上代码: 简单的高斯赛德尔迭代法: 这里我们只是迭代算出各个节点的电压值,支路功率并没有计算。 S_ij=P_ij+Q_ij=V_i(V_i* - V_j*) * y_ij* 可以计算出各个线路的功率 在显示最终电压幅角的时候注意在MATLAB里面默认的是弧度的形式,需要转化成角度显示。 clear;clc; %电稳书Page 102 例题3-5 %计算网络的潮流分布 --- 高斯-赛德尔算法 %其中节点1是平衡节点 %节点2、3是PV节点,其余是PQ节点 % 如果节点有对地导纳支路 %需将对地导纳支路算到自导纳里面 %------------------------------------------------% %输入原始数据,每条支路的导纳数值,包括自导和互导纳; y=zeros(5,5); y(1,2)=1/(0.0194+0.0592*1i); y(1,5)=1/(0.054+0.223*1i); y(2,3)=1/(0.04699+0.198*1i); y(2,4)=1/(0.0581+0.1763*1i); %由于电路网络的互易性,导纳矩阵为对称的矩阵

简单环形网络的潮流计算

银川能源学院 课程设计 课程名称:电力系统分析 设计题目:简单环形网络的潮流计算 学院:电力学院 专业:电气工程及其自动化 班级:电气(本)1202班 姓名:罗通 学号:1210240073 成绩: 指导教师:李莉、张彦迪 日期:2014年12月8日—2014年12月19日

潮流计算是在给定电力系统网络结构、参数和决定系统运行状态的边界条件的情况下确定系统稳态运行状态的一种基本方法,是电力系统规划和运营中不可缺少的一个重要组成部分。可以说,它是电力系统分析中最基本、最重要的计算,是系统安全、经济分析和实时控制与调度的基础。常规潮流计算的任务是根据给定的运行条件和网络结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。潮流计算的结果是电力系统稳定计算和故障分析的基础。在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。是电力系统研究人员长期研究的一个课题。它既是对电力系统规划设计和运行方式的合理性、可靠性及经济性进行定量分析的依据,又是电力系统静态和暂态稳定计算的基础。

前言------------------------------------------------------------------------------------------2 第一章:简单环形网络的潮流计算原理--------------------------------------4 1.1 电力线路和变压器上的功率损耗、电压降落及电能损耗--------------- 4 1.2电压降落、电压损耗、电压偏移及电压调整的概念---------------------- 5 1.3闭环网的潮流计算步骤---------------------------------------------------------- 6第二章:简单环形网络的潮流计算过程-------------------------------------- 7 2.1参数整理---------------------------------------------------------------------------- 7 2.2计算网络参数及等效电路------------------------------------------------------- 8 2.3电力系统潮流计算的运用------------------------------------------------------- 10 2.4注意事项---------------------------------------------------------------------------- 10 第三章:P-Q分解法的基本潮流算法-------------------------------------------11 3.1 P-Q分解法的原理----------------------------------------------------------------11 3.2 P-Q分解法的特点 ------------------------------------------ 13 3.3 P-Q分解法的潮流计算步骤 --------------------------------- 14 总结-------------------------------------------------------------------------------------------16谢辞-------------------------------------------------------------------------------------------17参考文献------------------------------------------------------------------------------------18

相关文档
相关文档 最新文档