文档库 最新最全的文档下载
当前位置:文档库 › 乳液聚合成核机理和场所

乳液聚合成核机理和场所

乳液聚合成核机理和场所

胶束成核:难溶于水的单体所进行的乳液聚合,以胶束成核为主。在此聚合体系中,引发剂为水溶性的引发剂,在水中分解成初级自由基,扩散进入增溶的胶束中,从而引发该胶束内部的聚合,并使之转变成胶粒,这种成核过程称为胶束成核。

水相成核:在水中有相当溶解性的单体进行的乳液聚合,通常以水相(均相)成核为主。溶解于水中的单体经引发聚合后,所形成的短链自由基的亲水性较大,聚合度上百后从水中沉析出来,水相中多条这样的短链自由基相互聚结在一起,絮凝成核,以此为核心,单体不断扩散人内,聚集成胶粒。胶粒形成后,更有利于吸取水相中的初级自由基和短链自由基,而后在胶粒中引发、增长,成为水相成核。

液滴成核:有两种情况可导致液滴成核。一是当液滴粒径较小而多时,表面积与增溶胶束相当,可吸附水中形成的自由基,引发成核,而后发育成胶粒。二是采用油溶性的引发剂,溶于单体液滴内,就地引发聚合,微悬浮聚合具备此双重条件,是液滴成核。

晶体生长的机理

第五章 一、什么是成核相变、基本条件 成核相变:在亚稳相中形成小体积新相的相变过程。 条件:1、热力学条件:ΔG=G S-G L<0;ΔT>0。2、结构条件:能量起伏、结构起伏、浓度起伏、扩散→短程规则排列(大小不等,存在时间短,时聚时散,与固相有相似结构,之间有共享原子)→晶坯→晶胞。 相变驱动力:f=-Δg/ΩS;Δg每个原子由流体相转变成晶体相所引起的自由能降低;ΩS单个原子的体积。 气相生长体系:(T0 P0)→(T0 P1),Δg=-kT0σ,σ=α-1= P1/ P0;溶液生长体系:(C0 T0 P0)→(C1 T0 P0),Δg=-kT0σ,σ=α-1= C1/ C0;熔体生长体系:Δg=-l mΔT/T m,l m单个原子的相变潜热。 二、均匀成核、非均匀成核 不含结晶物质时的成核为一次成核,包括均匀成核(自发产生,不是靠外来的质点或基底诱发)和非均匀成核。 三、均匀成核的临界晶核半径与临界晶核型成功 临界晶核:成核过程中,能稳定存在并继续长大的最小尺寸晶核。 ΔG=ΔG V+ΔG S,球形核ΔG=-4πr3Δg/ΩS+4πr2γSL→r C=2γSLΩS/Δg,r0,且随着r的增加,ΔG不断增大,r>r C时,ΔG<0,且随着r的增加,ΔG减小,r=r C时,往两边都有ΔG<0,称r C为临界半径。 临界晶核型成功:ΔG C(r C)=A CγSL/3由能量起伏提供。 熔体生长体系:r C=2γSLΩS T m/l m ΔT;ΔG C(r C)=16πγ3SLΩ2S T2m/3l2m(ΔT)2 四、非均匀成核(体系中各处成核几率不相等的成核过程) 表面张力与接触角的关系:σLB = σSB + σLS cosθ ΔG*(r)= (-4πr3Δg/ΩS+4πr2σSL)·f(θ);r*C=2γSLΩS/Δg;ΔG*C(r*C)=ΔG C(r C) ·f(θ)

配位聚合

1. 写出下列催化剂组份的分子结构式和缩写式 (1)三乙酰丙酮钴; (2)二π-烯丁基镍;(π-C4H7)2Ni (3)二甲基硅桥联苯并茚基茂基二氯化锆 (4)π-烯丙基三氟乙酸镍; π-C3H5NiOOCCF3 (5)环烷酸镍; C22H14NiO4 (6)异丙基(茂基-1-芴基)二氯化铪 (7)亚乙基双(1-茚基)二氯化钛; (8)倍半铝Al2Et3Cl3 2. 在Ziegler-Natta聚合中产品的分子量控制重要手段是什么,为什么不用温度控制?写出其反应式。乳液聚合中若温度一定,聚合物的分子量调节靠什么手段,能否用引发剂用量?试从动力学方程解释。 常用H2来调节分子量, 添加分子量调节剂,高活性活泼H顺式含量 3. 试举一例说明立构规整聚合物的合成方法和路线,并讨论这种聚合物与性能的相互关系。全同聚丙烯:α-TiCl3/AlEt3/P 30-70℃ 间同聚丙烯:α-TiCl3/AlEt3/P -70℃ 间规聚丙烯的抗冲击强度为等规聚丙烯的两倍,但刚性和硬度则仅及后者的一半 间规PP的分子链间距较大,分子链活动能力较好,排列规整性赶不上等规PP,所以结晶度也小,导致冲击韧性好,受冲击时分子链滑移和断裂能吸收更多的能量,结晶度低也就导致刚性下降,模量下降。 4. 活性中心浓度的测定有几种方法,活性中心是否缔合,如何判定 活性中心浓度:动力学法,猝灭法,同位素标记法 动力学法:依据聚合物分子量或聚合物的分子数随聚合时间的变化 猝灭法:聚合反应加入猝灭剂(QL),增长链立即与猝灭剂发生反应,测定L的含量 同位素标记法:14C标记助催化剂,测定标记基团数目 聚合速率方程,通过对活性中心的指数可以确定 测定活性链增长前后的浓度变化,死的连段粘度无变化;通过光散射法测定终止前后的分子量变化。 通过带帽封端法,在测量聚合前后的粘度变化

苯丙乳液配方及原理精编版

苯丙乳液配方及原理公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

苯丙乳液生产配方 苯丙乳液是由苯乙烯和丙烯酸酯单体乳化共聚而得。乳白色液体,带蓝光。苯丙乳液附着力好,胶膜透明,耐水、耐油、耐热、耐老化性能良好,是水性涂料,地毯胶,工艺胶的主要成分,市场需求量非常大。 一、基本配方(按照1000公斤投料): 1、苯乙烯:218.8kg 2、丙烯酸丁酯:238.4kg 3、甲基丙烯酸甲酯:19.56kg 4、甲基丙烯酸:9.64kg 5、保护胶体(聚甲基丙烯酸钠):8.36kg 6、乳化剂OS(烷基酚醚磺基琥珀酸酯钠盐):18.85kg 7、碳酸氢钠:0.5kg 8、过硫酸铵:2.4kg 9、去离子水:499kg 二、操作工艺 1、预乳化和配料 (1)在预乳化釜内分别加入去离子水191kg,碳酸氢钠0.5kg,乳化剂OS18.85kg,混合单体(甲基丙烯酸:9.64kg;苯乙烯:218.8kg; 并烯酸丁酯:238.4kg,甲基丙烯酸甲酯:19.56kg),进行预乳 化,得到稳定的预乳化液。 (2)将过硫酸铵2.4kg加入去离子水64kg,配成引发剂溶液,备用。

(3)保护胶体(聚甲基丙烯酸钠)8.36kg加入去离子水44kg,配成保护胶体溶液,备用。 2、聚合 在聚合釜内分别加入去离子水200kg,保护胶体溶液,预乳液60kg,待70摄氏度左右时加入引发剂溶液30kg,在80摄氏度左右引发聚合,进行种子乳液聚合,可观察到釜底乳液泛蓝光。保温10min后,开始滴加剩余的预乳液和引发剂溶液。滴加时维持聚合反应温度84-86摄氏度。滴完后保温1小时。 3、出料包装 冷却到30摄氏度以下,出料用120目滤布过滤,即为苯丙乳液产品。 三、产品主要指标: 1、固含量:48.5% 2、PH值:5.5-6.5 3、粘度(涂-4℃.S.17℃)值:17 苯丙乳液的制备 一、实验目的: 1、掌握用乳液聚合法制备高分子材料的一般原理和合成方法; 2、了解目标乳合物的设计原理。 二、实验原理(概述): 乳液聚合是以水为连续相(分散剂),在表面活性剂(乳化剂)存在下,使聚合反应发生在由乳化剂形成的乳胶粒内部(即表面活性剂形成的胶束作为微反应器),制备高分子材料的一种方法。

苯乙烯乳液聚合实验报告

实验名称:苯乙烯的乳液聚合姓名:_________ 学号:__________ 实验日期:__________ 一、实验目的 1.了解乳液聚合的原理和乳液聚合的方法。 2.学习并了解乳液聚合和其他聚合方法的区别。 二、实验原理 乳液聚合是以大量水为介质,在此介质中使用能够使单体分散的水溶性聚合引发齐山并添加乳化剂(表面活性剂),以使油性单体惊行聚合的方法。所生成的高分子聚合物为微细的粒子悬浮在水中的乳液。 单体 能进行乳液聚合的单体数量很多,其中应用比较广范的有:乙烯基单体,例:苯乙烯、乙烯、醋酸乙烯酯、氯乙烯、偏二氯乙烯等;共轭二烯单体,例:丁二烯、异戊二烯、氯丁二烯等;丙烯酸及甲基丙烯酸系单体,例:甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸甲酯等。 引发剂 与悬浮聚合不同,乳液聚合所用的引发剂是水溶性的,而且由于高温不利于乳液的稳定性,弓I发体系产生的自由基的活化能应当很低,使聚合可以在室温甚至更低的温度下进行。常用的乳液聚合引发剂有:热分解引发剂,如过硫酸铵[(NH4) 2?O8]、过硫酸钾(K2908);氧化还原引发剂,如过硫酸钾-氯化亚铁体系、过硫酸钾-亚硫酸钠体系、异丙苯过氧化氢-氯化亚铁体系等。 乳化剂 乳化剂是可以形成胶束的一类物质,在乳液聚合中起着重要的作用,常见的乳液聚合体系的乳化剂为负离子型,如十二烷基苯磺酸钠、十二烷基硫酸钠等。乳化剂具有降低表面张力和界面张力、乳化、分散、增溶作用。 三、仪器及药品 三口烧瓶、搅拌器、回流冷凝管、固定夹及铁架、恒温水浴锅、烧杯、量筒、温度计苯乙烯10mL、十二烷基苯磺酸钠0.6g、过硫酸钾0.3g、硫酸铝钾、水 四、实验步骤及现象 1.取0.6g十二烷基苯磺酸钠,50ml H2O加入三口烧瓶升温至80C。 2.加入10ml苯乙烯。 3.取0.3g过硫酸钾溶于10ml H2O缓缓加入三口烧瓶。 4.升温到90C反应1.5小时。 现象:溶液浑浊并发蓝光,后来蓝色消失变为乳白色。 5?加入KAI(SO)2进行破乳 现象:溶液发生固化得到白色固体。 6.转移产物并洗涤仪器。

实验五:苯乙烯乳液聚合

高 分 子 化 学 实 验 报 告 实验五:苯乙烯乳液聚合

一、实验目的 1)、通过实验对比不同量乳化剂对聚合反应速度和产物的相对分子质量的影响,从而了解乳液聚合的特点,了解乳液聚合中各组分的作用,尤其是乳化剂的作用 2)掌握制备聚苯乙烯胶乳的方法。 二、实验药品、仪器及装置 药品:苯乙烯、过硫酸钾、十二烷基磺酸钠、乙醇、蒸馏水 仪器:三口瓶、冷凝管、搅拌器、恒温水浴锅、温度计、量筒、移液管、烧杯、布氏漏斗、抽滤瓶、水泵 装置图: 三、实验原理 乳液聚合是指单体在乳化剂的作用下,分散在介质中加入水溶性引发剂,在机械搅拌或振荡情况下进行非均相聚合的反应过程。它不同于溶液聚合,又不同于悬浮聚合,它是在乳液的胶束中进行的聚合反应,产品为具有胶体溶液特征的聚合物

胶乳。 乳液聚合体系主要包括:单体、分散介质(水)、乳化剂、引发剂,还有调节剂、pH 缓冲剂及电解质等其他辅助试剂,它们的比例大致如下: 水(分散介质):60%-80%(占乳液总质量) 单体:20%-40%(占乳液总质量) 乳化剂:0.1%-5%(占单体质量) 引发剂:0.1%-0.5%(占单体质量) 调节剂:0.1%-1%(占单体质量) 其它:少量 乳化剂是乳液聚合中的主要组分,当乳化剂水溶液超过临界胶束浓度时,开始形成胶束。在一般乳液配方条件下,由于胶束数量极大,胶束内有增溶的单体,所以在聚合早期链引发与链增长绝大部分在胶束中发生,以胶束转变为单体的聚合物颗粒,乳液聚合的反应速度和产物相对分子质量与反应温度、反应地点、单体浓度、引发剂浓度和单位体积内单体-聚合物颗粒数目等有关。而体系中最终有多少单体-聚合物颗粒主要取决于乳化剂和引发剂的种类和用量。当温度、单体浓度、引发剂浓度、乳化剂种类一定时,在一定范围内,乳化剂用量越多、反应速度越快,产物相对分子质量越大。乳化剂的另一作用是减少分散相与分散介质间的界面张力,使单体与单体-聚合物颗粒分散在介质中形成稳定的乳浊液。

第七章 配位聚合

第七章配位聚合 思考题7.1如何判断乙烯、丙烯在热力学上能否聚合?采用哪一类引发剂和条件,才能聚合成功? 答可根据聚合自由能差?G=?H—T?S<0,作出判断。大部分烯类单体的?S近于定值,约-100~120J·mol-1,在一般聚合温度下(50~100℃),-T/?S=30~42kJ·mol-1,因此当-?H≥30kJ·mol-1时,聚合就有可能。乙烯和丙烯的-?H分别为950kJ·mol-1、858kJ·mo1-1,所以在热力学上很有聚合倾向。 在100~350MPa的高压和160-270℃高温下,采用氧气或有机过氧化物作引发剂,乙烯按自由基机理进行聚合,得到低密度的聚乙烯(LDPE);若采用TiCl4—Al(C2H5)3,为催化剂,在汽油溶剂中,进行配位聚合,则得高密度的聚乙烯(HDPE)。采用。A-TiCl3-Al(C2H5)3为催化剂,于60~70℃下和常压或稍高于常压的条件下,丙烯进行配位聚合可制得等规聚丙烯。 思考题7.2 解释和区别下列诸名词:配位聚合、络合聚合、插入聚合、定向聚合、有规立构聚合。 答配位聚合:是指单体分子首先在活性种的空位处配位,形成某些形式的配位络合物。随后单体分子插入过渡金属(Mt)-碳(C)键中增长形成大分子的过程,所以也可称作插入聚合。 络合聚合:与配位聚合的含义相同,可以互用。络合聚合着眼于引发剂有络合配位能力,一般认为配位聚合比络合聚合意义更明确。 插入聚合:烯类单体与络合引发剂配位后,插入Mt-R链增长聚合,故称为插入聚合。 定向聚合:也称有规立构聚合,指形成有规立构聚合物的聚合反应,配位络合引发剂是重要的条件。 有规立构聚合:是指形成有规立构聚合物为主的聚合反应。任何聚合过程或聚合方法,只要是形成有规立构聚合物为主,都是有规立构聚合。 思考题7.3区别聚合物构型和构象。简述光学异构和几何异构。聚丙烯和聚丁二烯有几种立体异构体? 答构型:指分子中原子由化学键固定在空间排布的结构,固定不变。要改变构型,必须经化学键的断裂和重组。 构象:由于。单键的内旋转而产生的分子在空间的不同形态,处于不稳定状态,随分子的热运动而随机改变。 光学异构:即分子中含有手性原子(如手性C‘),使物体与其镜像不能叠合,从而具有不同旋光性,这种空间排布不同的对映体称为光学异构体。 几何异构:又称顺、反异构,是指分子中存在双键或环,使某些原子在空间的位置不同而产生的立体结构。 聚丙烯可聚合成等规聚丙烯、间规聚丙烯和无规聚丙烯三种立体异构体。 聚丁二烯有顺式-1,4-结构、反式-1,4-结构和全同-1,2-结构、间同-1,2-结构四种立体异构。 思考题7.4什么是聚丙烯的等规度? 答聚丙烯的等规度是指全同聚丙烯占聚合物总量的百分数。聚丙烯的等规度或全同指数IIP(isotactic index)可用红外光谱的特征吸收谱带来测定。波数为975cm-1是全同螺旋链段的特征吸收峰,而1460cm-1是与CH3基团振动有关、对结构不敏感的参比吸收峰,取两者吸收强度(或峰面积)之比乘以仪器常数K即为等规度。

自由基聚合机理以及四种常见共聚物

自由基聚合机理 烯类单体的加聚反应多属连锁聚合,连锁聚合反应由链引发、链增长、链终止等基元反应组成,各步的反应速率和活化能相差很大。连锁聚合链引发形成活性中心(或称活性种),活性中心不断与单体加成而使链增长(单体之间并不反应),活性中心的破坏就是链终止。自由基、阳离子、阴离子都可能成为活性中心引发聚合,故连锁聚合又可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等,其中自由基聚合产物约占聚合物总产量的60%。 热力学上能够聚合的单体对聚合机理的选择是有差异的,如氯乙烯只能自由基聚合、异丁烯只能阳离子聚合、MMA 可以进行自由基聚合和阴离子聚合、苯乙烯则可按各种连锁机理聚合。 自由基聚合产物约占聚合物总产量60%以上,其重要性可想而知。高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚丙烯酸酯类、聚丙烯腈、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS 树脂等聚合物都通过自由基聚合来生产。本节将对自由基链式聚合反应作较详细的讨论。 自由基聚合的基元反应 烯类单体的自由基聚合反应一般由链引发、链增长、链终止等基元反应组成。此外,还可能伴有链转移反应。现将各基元反应及其主要特征分述如下。 1 链引发链引发反应是形成单体自由基活性种的反应。用引发剂引发时,将由下列两步组成: (1)引发剂I 分解,形成初级自由基R?; (2)初级自由基与单体加成,形成单体自由基。单体自由基形成以后,继续与其他单体加聚,而使链增长。 比较上述两步反应,引发剂分解是吸热反应,活化能高,约 105?150kJ/mol,反应速 率小,分解速率常数约10-4?10 —6s—1。初级自由基与单体结合成单体自由基这一步是 放热反应,活化能低,约20?34kJ/mo1,反应速率大,与后继的链增长反应相似。但链引 发必须包括这一步,因为一些副反应可以使初级自由基不参与单体自由基的形成,也就无法

浅析乳液聚合的合成原理及和材料及稳定性

浅析乳液聚合的合成原理及和材料及稳定性 在乳液聚合过程中,乳化剂的种类、用量与用法、pH值、引发剂的类型、搅拌形状与搅拌速度、加料方式、聚合工艺等都会影响到聚合物乳液的稳定性。功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,容易产生絮凝现象,极易破乳。因而选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要。 聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。凝聚物的生成在乳液研究和生产中具有极大的危害性,它不仅降低单体的有效转化率,增加聚合装置的停机时间和处理的费用,而且还会加大各釜和各批次间产品性能的不一致性,污染环境。 目前比较权威的用于解释聚合物乳液稳定性的理论是双电层理论和空间位阻理论。乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。 乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布、乳液粒度也有着决定性的影响。如果所选用的乳化剂不适合本乳液聚合体系,则不论怎样改变乳化剂的浓度和调节聚合工艺参数,乳液聚合仍不能平稳进行或是所得到的乳液产品缺乏实用价值。 离子型乳化剂的特点是乳化效率高,可有效地降低表面张力,胶束和乳胶粒子尺寸小,机械稳定性好,但由于其离子特性对电解质比较敏感;非离子型乳化剂对电解质有较好的稳定性,但机械稳定性不好,对搅拌速度比较敏感。 离子型乳化剂主要靠静电斥力使乳液稳定,而非离子型乳化剂主要靠水化,两种乳化剂复合使用时,两类乳化剂分子交替吸附在乳胶粒子表面上,既使乳胶粒间有很大的静电斥力,又在乳胶粒表面形成很厚的水化层,二者双重作用的结果可使聚合物乳液稳定性大大提高。目前乳液聚合体系多采用阴离子型与非离子型复配乳化体系,所得乳液兼有粒子尺寸小、低泡和稳定性好的特点。 引发剂对整个聚合过程起到重要的作用,不同的引发剂制得的聚合物具有不同的分子结构及性能。乳液聚合引发剂分为两类:受热分解产生自由基的引发剂(如过硫酸铵APS、过硫酸钾KPS、过硫酸钠NPS、过氧化氢等无机过氧化物);有机过氧化物和还原剂组合可构成另一

晶体生长机理研究综述

晶体生长机理研究综述 摘要 晶体生长机理是研究金属材料的基础,它本质上就是理解晶体内部结构、缺陷、生长条件和晶体形态之间的关系。通过改变生长条件来控制晶体内部缺陷的形成从而改善和提高晶体的质量和性能使材料的强度大大增强开发材料的使用潜能。本文主要介绍了晶体生长的基本过程和生长机理,晶体生长理论研究的技术和手段,控制晶体生长的途径以及控制晶体生长的途径。 关键词:晶体结构晶界晶须扩散成核 一、晶体生长基本过程 从宏观角度看,晶体生长过程是晶体-环境相、蒸气、溶液、熔体、界面向环境相中不断推移的过程,也就是由包含组成晶体单元的母相从低秩序相向高度有序晶相的转变从微观角度来看,晶体生长过程可以看作一个基元过程,所谓基元是指结晶过程中最基本的结构单元,从广义上说,基元可以是原子、分子,也可以是具有一定几何构型的原子分子聚集体所谓的基元过程包括以下主要步骤:(1)基元的形成:在一定的生长条件下,环境相中物质相互作用,动态地形成不同结构形式的基元,这些基元不停地运动并相互转化,随时产生或消失(2)基元在生长界面的吸附:由于对流~热力学无规则的运动或原子间的吸引力,基元运动到界面上并被吸附 (3)基元在界面的运动:基元由于热力学的驱动,在界面上迁移运动 (4)基元在界面上结晶或脱附:在界面上依附的基元,经过一定的运动,可能在界面某一适当的位置结晶并长入固相,或者脱附而重新回到环境相中。 晶体内部结构、环境相状态及生长条件都将直接影响晶体生长的基元过程。环境相及生长条件的影响集中体现于基元的形成过程之中;而不同结构的生长基元在不同晶面族上的吸附、运动、结晶或脱附过程主要与晶体内部结构相关联。不同结构的晶体具有不同的生长形态。对于同一晶体,不同的生长条件可能产生不同结构的生长基元,最终形成不同形态的晶体。同种晶体可能有多种结构的物相,即同质异相体,这也是由于生长条件不同基元过程不同而导致的结果,生长机理如下: 1.1扩散控制机理从溶液相中生长出晶体,首要的问题是溶质必须从过饱和溶液中运送到晶体表面,并按照晶体结构重排。若这种运送受速率控制,则扩散和对流将会起重要作用。当晶体粒度不大于1Oum时,在正常重力场或搅拌速率很低的情况下,晶体的生长机理为扩散控制机理。 1.2 成核控制机理在晶体生长过程中,成核控制远不如扩散控制那么常见但对于很小的晶体,可能不存在位错或其它缺陷。生长是由分子或离子一层一层

丙烯酸聚合原理word版本

丙烯酸聚合原理

2.1.2乳液聚合机理 1、引发机理 乳液聚合的引发剂是水溶性引发剂,根据引发剂生成自由基的机 理分为两大类:(1)热分解引发剂,通常应用较多的有过硫酸氨、过硫酸钾 (2)氧化还原引发剂,应用较多的有:过硫酸盐一亚硫酸氢 盐体系 通常情况下乳液聚合过程中引发作用分为以下几步:(1)引发剂在水相中分解成初始自由基;(2)初始自由基在水相中引发聚合;(3)水相中的初始自由基单体扩散到乳胶粒中或单体液滴中;(4)自由基在乳胶粒中引发聚合,生成高分子聚合物,使得乳胶粒不断长大。 2、乳液聚合机理 常规乳液聚合是指烯类单体在水介质中,由乳化剂分散成乳液状态进行的聚合,反应体系中主要由单体、水、水溶性引发剂及乳化剂四中基本组分组成。 乳液聚合过程大致可以分为下列三个阶段(如图2.2所示): 第一阶段一一乳胶粒生成期。从开始引发聚合,直至乳化剂形成 的胶束消失,聚合速率递增。水相中产生的自由基扩散进入胶束内,进行引发、增长,不断形成乳胶粒,同时水相中单体也可以引发聚合,吸附乳化剂分子形成乳胶粒。随着引发聚合的继续进行,增溶胶束不断成核,乳胶粒不断增多或增大。单体转化率达15%左右,胶束全部消失,不再形成新的乳胶粒,以后引发聚合完全在乳胶粒内进行

第二阶段一一恒速期。胶束消失后,聚合进入第二阶段。链引发、增长和终止反应继续在乳胶粒内进行,液滴仍起着仓库的作用,不断向乳胶粒供应单体。乳胶粒中单体浓度保持不变,加上乳胶粒数恒定,这一阶段的聚合速率也基本一定。单体转化率达50%左右,液滴全部消失,单体全部进入乳胶粒,开始转入大三阶段。 第三阶段一一降速期。乳胶粒内由单体和聚合物两部分组成,水中的自由基可以继续扩散到乳胶粒引发或终止,但单体再无补充来源,聚合速率将随乳胶粒内单体浓度的降低而降低。 叔碳酸乙烯酯

乳液聚合合成及生产工艺

乳液聚合 班级:高分0942 姓名:冯会科学号:200910211239 乳液聚合(emulsion polymerization)是在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。乳液聚合是高分子合成过程中常用的一种合成方法。 乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的0.2%~0.5%,引发剂为单体的0.1%~0.3%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。 乳液聚合的发展 自由基聚合反应是聚合物生产中应用最为广泛的方法之一,乳液聚合则是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要有单体、水、乳化剂和引发剂四种基本组分构成。 乳液聚合技术萌生于上世纪早期,一般公认最早见于文献的是德国Bayer公司的H.Hofmann的一篇关于异戊二烯单体水乳液的聚合专利。30年代见于工业生产,40年代Harkins定性地阐明了在水中溶解度很低的单体乳液聚合机理。后来,Smith和Ewart,建立了定量的理论,提出了乳液聚合的三种情况及乳液聚合过程的三个阶段,即乳胶粒生成阶段(阶段I)、乳胶粒长大阶段(阶段II)及乳液聚合完成阶段(阶段III),这一理论被视为乳液聚合的经典理论。此后乳液聚合成为研究热点。 随着乳液聚合理论的发展,乳液聚合技术也在不断的发展和创新。关于常规乳液聚合目前研究主要集中在:多组分乳液聚合体系的研究、合成高固含量的乳胶、反应型乳化剂的使用等方面。另外,在传统乳液聚合工艺的基础上,目前国内外已开发出无皂乳液聚合、细乳液聚合、反相乳液聚合、分散聚合和微乳液聚合等新的聚合工艺。从本质上来说,这些新的聚合技术与乳液聚合有着共同的特征,即都是分隔体系的聚合反应,有着共同的一些优点。 乳液聚合—聚合机理

配位聚合

第七章配位聚合 1. 简要解释以下概念和名词: (1)配位聚合和插入聚合 (2)有规立构聚合和立构选择聚合 (3)定向聚合和Ziegler-Natta聚合 (4)光学异构、几何异构和构象异构 (5)全同聚合指数 答:(1)配位聚合是指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。随后单体分子插入过渡金属(M t)—碳(C)键中增长形成大分子的过程。这种聚合本质上是单体对增长链M t—R键的插入反应,所以又常称插入聚合。 (2)有规立构聚合。按照IUPAC(国际纯粹与应用化学联合会)的规定,有规立构聚合是指形成有规立构聚合物为主的聚合过程。因此任何聚合过程(包括自由基、阴离子、阳离子或配位聚合等)或任何聚合方法(如本体、悬浮、乳液和溶液聚合等),只要它是以形成有规立构聚合物为主,都是有规立构聚合。而引发剂能优先选择一种对映体进入聚合物链的聚合反应,则称为立构选择聚合。(3)定向聚合和有规立构聚合是同义语,二者都是指形成有规立构聚合物为主的聚合过程。Ziegler-Natta聚合通常是指采用Ziegler-Natta型引发剂的任何单体的聚合或共聚合,所得聚合物可以是有规立构聚合物,也可以是无规聚合物。它经常是配位聚合,但不一定都是定向聚合。 (4)分子式相同,但是原子相互联结的方式和顺序不同,或原子在空间的排布方式不用的化合物叫做异构体。异构体有两类:一是因结构不同而造成的异构现象叫结构异构(或称同分异构);二是由于原子或原子团的立体排布不同而导致的异构现象称为立体异构。根据导致立体异构的因素不同,立体异构又分为:光学异构,即分子中含有手性原子(如手性C*),使物体与其镜像不能叠合,从而使之有不同的旋光性,这种空间排布不同的对映体称为光学异构体;几何异构(或称顺、反异构)是指分子中存在双键或环,使某些原子在空间的位置不同,从而导致立体结构不同(例如聚丁二烯中丁二烯单元的顺式和反式构型);光学异构和几何异构均为构型异构。除非化学键断裂,这两种构型是不能相互转化的。构象异构:围绕单键旋转而产生的分子在空间不同的排列形式叫做构象。由单键内旋转造成的立体异构现象叫构象异构。和构型一样,构象也是表示分子中原子在空间的排布形式,不同的是构象可以通过单键的内旋转而相互转变。各种异构体一般不能分离开来,但当围绕单键的旋转受阻时也可以分离。 (5)根据IUPAC建议的命名法,光学异构体的对映体构型用R(右)或S(左)表示。即将手性中

高分子化学习题以及答案【武汉工程大】

一、填空题 1.尼龙66的重复单元是。 2.聚丙烯的立体异构包括、和无规立构。 3.过氧化苯甲酰可作为的聚合的引发剂。 4.自由基聚合中双基终止包括终止和偶合终止。 5.聚氯乙烯的自由基聚合过程中控制聚合度的方法是。 6.苯醌可以作为聚合以及聚合的阻聚剂。 7.竞聚率是指。 8.邻苯二甲酸和甘油的摩尔比为1.50 : 0.98,缩聚体系的平均官能度为;邻苯二甲酸酐与等物质量的甘油缩聚,体系的平均官能度为(精确到小数点后2位)。 9.聚合物的化学反应中,交联和支化反应会使分子量而聚合物的热降解会使分子量。 10.1953年德国K.Ziegler以为引发剂在比较温和的条件下制得了少支链的高结晶度的聚乙烯。 11.己内酰胺以NaOH作引发剂制备尼龙-6 的聚合机理是。 二、选择题 1.一对单体共聚时,r1=1,r2=1,其共聚行为是()? A、理想共聚; B、交替共聚; C、恒比点共聚; D、非理想共 聚。 2.两对单体可以共聚的是()。 A、Q和e值相近; B、Q值相近而e值相差大; C、Q值和e值均相差大; D、Q值相差大而e值相近。 3.能采用阳离子、阴离子与自由基聚合的单体是()? A、MMA; B、St; C、异丁烯; D、丙烯腈。 4.在高分子合成中,容易制得有实用价值的嵌段共聚物的是()? A、配位阴离子聚合; B、阴离子活性聚合; C、自由基共聚合; D、阳离子聚合。 5.乳液聚合的第二个阶段结束的标志是()? A、胶束的消失; B、单体液滴的消失; C、聚合速度的增加; D、乳胶粒的形成。 6.自由基聚合实施方法中,使聚合物分子量和聚合速率同时提高,可 采用()聚合方法? A、乳液聚合; B、悬浮聚合; C、溶液聚合; D、本体聚合。 7.在缩聚反应的实施方法中对于单体官能团配比等物质量和单体纯 度要求不是很严格的缩聚是()。 A、熔融缩聚; B、溶液缩聚; C、界面缩聚; D、固相缩聚。 8.合成高分子量的聚丙烯可以使用以下()催化剂? A、H2O+SnCl4; B、NaOH; C、TiCl3+AlEt3; D、偶氮二异丁腈。 9.阳离子聚合的特点可以用以下哪种方式来描述()? A、慢引发,快增长,速终止; B、快引发,快增长,易转移,难终止; C 快引发,慢增长,无转移,无终止;D、慢引发,快增长,易转移,难终止; 10.下面哪种组合可以制备无支链高分子线形缩聚物()

配位聚合反应

从聚合热力学上分析,乙烯、丙烯是很有聚合倾向的单体,但是在很长一段时间内,未能将该单体聚合成聚乙烯和聚丙烯,这主要是动力学上的原因。 1938~1939年,英国I.C.I.公司在高温(180~200℃)、高压(180~200MPa)下,以氧作引发剂,使乙烯经自由基聚合制得聚乙烯。在高温下聚合易发生链转移反应,所得聚乙烯带有在空间作无规排布的许多支链,致使其结晶度低、熔点低、密度也低,俗称低密度聚乙烯。根据过程特征,也叫做高压聚乙烯。 1953年德国K. Ziegler等从一次以AlEt3为引发剂从乙烯合成高级烯烃的失败实验出发,意外地发现以乙酰丙酮的锆盐和AlEt3引发时得到的是高分子量的乙烯聚合物,并在此基础上开发了的乙烯聚合的引发剂四氯化钛-三乙基铝(TiCl4-AlEt3),在较低的温度(50~70℃)和较低的压力下,聚合得无支链、高结晶度、高熔点的高密度聚乙烯。1954年,意大利G. Natta以四氯化钛-三乙基铝(TiCl4- AlEt3)作引发剂,使丙烯聚合得等规聚丙烯(熔点175℃),其中甲基侧基在空间等规定向排布。Ziegler-Natta所用的引发剂是金属有机化合物/过渡金属化合物的络合体系,单体配位而后聚合,聚合产物呈定向立构,从这三角度考虑,因而分别有络合聚合、配位聚合、定向聚合之称,但三者有所区别。根据聚合机理的特征,本节采用配位聚合一词。 随后,Goodrich-Gulf公司采用四氯化钛/三乙基铝体系使异戊二烯聚合成高顺式1,4(95%~97%)聚异戊二烯,成功地合成得天然橡胶。几乎同时,Firestone轮胎和橡胶公司用锂或烷基锂作引发剂,也聚合得高顺式1,4(90%~94%)聚异戊二烯。此外,先后来用钛、钴、镍或钨、钼络合引发体系,合成得高顺式1,4(94%~97%)聚丁二烯橡胶(简称顺丁橡胶)。 虽然早在1947年,C. E. Schildknecht以BF3(OC2H5)2作引发剂,于丙酮中-78℃下,已使丁基乙烯醚聚合成立构规整聚合物,但Ziegler-Natta在络合引发体系、配位聚合机理、有规立构聚合物的合成、微结构、性能等方而研究的成就,在高分子科学领域内起着里程碑的作用。因而获得了诺贝尔奖金。 过渡金属化合物/金属有机化合物的一系列络合体系可以统称为Ziegler-Natta引发剂,目前已用来生产多种塑料和橡胶,例如高密度聚乙烯、等规聚丙烯、全同聚1-丁烯、全同聚4-甲基-1-戊烯、反式l,4-聚异戊二烯等可用作塑料,顺式1,4-聚丁二烯、顺式1,4聚异戊二烯、乙丙共聚物、反式聚环戊烯等可用作橡胶。其总年产量高达几千万吨。因此,研究配位聚合具有重要的理论和实际意义。

苯丙乳液配方及原理

苯丙乳液生产配方 苯丙乳液是由苯乙烯和丙烯酸酯单体乳化共聚而得。乳白色液体,带蓝光。苯丙乳液附着力好,胶膜透明,耐水、耐油、耐热、耐老化性能良好,是水性涂料,地毯胶,工艺胶的主要成分,市场需求量非常大。 一、基本配方(按照1000公斤投料): 1、苯乙烯:218.8kg 2、丙烯酸丁酯:238.4kg 3、甲基丙烯酸甲酯:19.56kg 4、甲基丙烯酸:9.64kg 5、保护胶体(聚甲基丙烯酸钠):8.36kg 6、乳化剂OS(烷基酚醚磺基琥珀酸酯钠盐):18.85kg 7、碳酸氢钠:0.5kg 8、过硫酸铵:2.4kg 9、去离子水:499kg 二、操作工艺 1、预乳化和配料 (1)在预乳化釜内分别加入去离子水191kg,碳酸氢钠0.5kg,乳化剂OS18.85kg,混合单体(甲基丙烯酸:9.64kg;苯乙烯:218.8kg; 并烯酸丁酯:238.4kg,甲基丙烯酸甲酯:19.56kg),进行预乳 化,得到稳定的预乳化液。 (2)将过硫酸铵2.4kg加入去离子水64kg,配成引发剂溶液,备用。 (3)保护胶体(聚甲基丙烯酸钠)8.36kg加入去离子水44kg,配成

保护胶体溶液,备用。 2、聚合 在聚合釜内分别加入去离子水200kg,保护胶体溶液,预乳液60kg,待70摄氏度左右时加入引发剂溶液30kg,在80摄氏度左右引发聚合,进行种子乳液聚合,可观察到釜底乳液泛蓝光。保温10min后,开始滴加剩余的预乳液和引发剂溶液。滴加时维持聚合反应温度84-86摄氏度。滴完后保温1小时。 3、出料包装 冷却到30摄氏度以下,出料用120目滤布过滤,即为苯丙乳液产品。 三、产品主要指标: 1、固含量:48.5% 2、PH值:5.5-6.5 3、粘度(涂-4℃.S.17℃)值:17 苯丙乳液的制备 一、实验目的: 1、掌握用乳液聚合法制备高分子材料的一般原理和合成方法; ?2、了解目标乳合物的设计原理。 二、实验原理(概述): 乳液聚合是以水为连续相(分散剂),在表面活性剂(乳化剂)存在下,使聚合反应发生在由乳化剂形成的乳胶粒内部(即表面活性剂形成的胶束作为微反应器),制备高分子材料的一种方法。 目前,因为在世界范围内采用乳液聚合法制备大量的、各种类型的乳液聚合物和聚合物乳液产品,因此乳液聚合 被广泛应用于各个技术领域,成为不可缺少的材料或工作物质。特别是人们环境保护意识的加强,乳液聚合技术已成为制备“环境友好材料”的主要方法。在工业生产中有多种用途: ?(1)用乳液聚合法可大量生产合成橡胶如丁苯橡胶、丁腈橡胶、氯丁橡胶、聚丙烯酸酯橡胶等。 ?(2)用乳液聚合法生产合成塑料、合成树脂。如聚氯乙烯树脂、树脂、聚四氯乙烯树脂、聚丙烯酸树脂等。(3)用乳液聚合生产各种用途的聚合物乳液,如各种粘合剂(聚醋酸乙烯脂乳液—白胶等)、涂料(如建筑涂料、金属涂料、木制器涂装涂料等)。 乳液聚合技术较本体聚合、溶液聚合、悬浮聚合相比较,有许多重要特点、优点,既可制备高分子量的聚合物,又有高的聚合反应速率。反应体系易散热,有利于聚合反应的控制。生产设备和工艺简单,操作方便,灵活性大,代表了环境保护技术的发展方向,很多场合下,聚合物乳液可直接利用。因此,近年来乳液聚合技术发展很快,特别是在聚合技术上派生、发展了多种新技术、新方法。?

乳液聚合定义

乳液聚合定义 在乳化剂的作用和机械搅拌下,单体在水(或其他溶剂)中分散成乳状液进行聚合的方法。 主要组分: 单体、水(油)、引发剂、乳化剂。 乳液聚合的优点: 体系粘度低、易散热; 具有高的反应速率和高的分子量; 以水作介质成本低、环境污染小; 所用设备工艺简单、操作方便灵活; 聚合物乳液可直接用作水性涂料、粘合剂、皮革、纸张、织物的处理剂和涂饰剂、水泥添加剂等; 缺点: 如需得到聚合物固体,须破乳,洗涤,脱水,干燥等多步手续,生产成本高;产品中乳化剂等杂质不易除尽,影响电性能等。 乳液聚合 单体在乳化剂作用和机械搅拌下,在水中分散成乳液状态进行的聚合反应。聚合场所 在胶束内 乳液聚合优缺点 水作分散介质,传热控温容易; 可在低温下聚合; Rp快,分子量高; 可直接得到聚合物乳胶。 缺点: 要得到固体聚合物,后处理麻烦,成本较高; 难以除尽乳化剂残留物。 基本组分 单体

主要要求:可进行自由基聚合且不与水反应; 一般为油溶性单体,在水中形成水包油型涂料用的两个主要胶乳。 丙烯酸酯单体:包括丙烯酸和甲基丙烯酸的各种酯;醋酸乙烯酯单体 乳胶体系 涂料最早使用的胶乳是苯乙烯与丁二烯的共聚物,现在很少用于建筑涂料,而是用于纸张。 偏氯乙烯/丙烯酸酯共聚物乳胶的漆膜具有非常低的水渗透性。 加入丙烯酸和甲基丙烯酸可改善胶体稳定性,提高附着力和提供交联点。 引发剂 乳液聚合的主要引发剂为水溶性的。 最常用的是过硫酸盐(K,Na、NH4),尤其是过硫酸铵。 在pH值10,0.01mol / L中,50℃每秒每L 产生8.4×1012自由基;90℃每秒每L 产生2.5×1015自由基;要在低温快速反应,可采用氧化还原引发体系,如 过硫酸盐-亚铁盐体系: 聚合可在室温引发,反应热可加热到50~80℃,并需要冷却以免过热。为了获得高转化率,常在后期加亲油性引发剂 乳化剂 是一类可使互不相容的油和水转变成难以分层的乳液的物质,属于表面活性剂。 分子通常由两部分组成:亲水的极性基团;亲油的非极性基团。 乳化剂在水中的情况: 乳化剂浓度很低时,是以分子分散状态溶解在水中; 达到一定浓度后,乳化剂分子开始形成聚集体(约50~150个分子),称为胶束; 形成胶束的最低乳化剂浓度,称为临界胶束浓度(CMC); 不同乳化剂的CMC不同,愈小,表示乳化能力愈强; 胶束的形状 胶束的大小和数目取决于乳化剂的用量;

PP成核结晶机理

PP成核结晶机理介绍 聚丙烯问世以来,以出色的热性能和机械性能在很多领域,如注塑、薄膜、纤维生产中得到广泛的应用,这种通用性和经济性使聚丙烯超过了聚氯乙烯、聚苯乙烯,成为仅次于聚乙烯的第二大合成树脂。尤其是随着各种晶型聚丙烯实现了商业化的推广应用,使聚丙烯在工程塑料和功能材料上有非常广阔的前景。 从聚丙烯的结构特点上可以得知,由于聚丙烯主链上含有不对称碳原子,因此聚丙烯存在着不同的一级结构,聚合物结晶时,只能部分结晶,很难得到类似无机的高纯度晶体。但是随着结晶条件的变化,可以引起分子链构象的变化或者堆积方式的改变,形成几种不同的晶型,这就是所谓的晶体中的同质多晶现象。 聚丙烯的结晶过程包括成核和晶核生长两个阶段。在成核阶段,高分子链段规则排列生成一个足够大的、热力学上稳定的晶核,随后晶核生长形成球晶,结晶过程进入了晶核生长阶段。成核的方式根据结晶过程是否存在异相晶核而分为均相成核和异相成核。均相成核是指处于无形态的聚丙烯熔体由于温度的变化自发形成晶核的过程。这种成核方式往往获得的晶核数量少,结晶速度慢,球晶尺寸大,结晶率低,制品的加工和应用性能较差;相反,异相成核是指聚丙烯熔体中存在固相"杂质"(如成核剂)或未被破坏的聚丙烯晶核,通过在其表面吸附聚丙烯分子形成晶核的过程。显而易见,异相成核能够提供更多的晶核,在球晶生长速度不变的情况下加快结晶速度,降低球晶尺寸,提高制品的结晶度和结晶温度。这些结晶参数的改变将赋予聚丙烯材料许多新的性能,因此,异相成核实际上是聚丙烯结晶改性的理论基础。 等规聚丙烯有多种晶型,即α、β、γ、δ和拟六方态5种结晶形态。其中γ晶态只存在于低相对分子质量的PP中,δ晶态存在于无规或间同立构PP中,全同立构PP晶态以α、β和拟六方态为主。其中以α晶型最为常见,α晶型是单斜晶方式形成的最普通和最稳定的形式,熔点为167℃,β晶型只在特定结晶条件下或在β晶型成核剂的诱发下才能获得,且稳定性不如α晶型。α晶型与β晶型PP性能上的差异源于α、β两种晶态的结构差异(见表1)。 α晶型成核剂的研究始于20世纪80年代中期,由于汽车、家电等行业对高耐热、高强度聚丙烯需求量的不断增长促进了这一研究领域的活跃。国外一些知名公司,如日本窒素公司、德山曹达公司、三井油化公司等开发的高结晶聚丙烯树脂已经成功地应用于家电、汽车、薄膜及防腐材料领域,产量已达万吨。国内山西省化工研究所、扬子石化研究院、齐鲁石化树脂所也有研究工作报道和部分产品。α晶型成核剂提高聚烯烃性能的幅度同α晶型成核剂的种类、用量有关。从应用角度出发,α晶型成核剂可以分为通用型、透明型和增刚型3种。通用型成核剂通常是价格低廉的成核剂,诸如滑石粉、SiO2、苯甲酸皂盐等,其成核率低、制品透明性差。透明型成核剂俗称增透剂,这类成核剂能有效地降低聚合物的雾度、增加透光率,并能较显著地改善聚合物的理化性能,代表性的物质有二苄叉山梨醇及其衍生物、芳香磷酸酯盐类和脱氢松香酸皂类产物。其中以第三代产品二苄叉山梨醇类(DMDBS)成核剂最为优秀,不仅有优异的增透性而且无味。增刚型成核剂俗称增刚剂,在显著提高聚合物透明性的同时也能明显改善其耐热性和刚度。这类磷酸酯盐类成核剂是日本旭电公司首先开发出来

苯丙乳液配方及原理

苯丙乳液配方及原理 Revised by Petrel at 2021

苯丙乳液生产配方苯丙乳液是由苯乙烯和丙烯酸酯单体乳化共聚而得。乳白色液体,带蓝光。苯丙乳液附着力好,胶膜透明,耐水、耐油、耐热、耐老化性能良好,是水性涂料,地毯胶,工艺胶的主要成分,市场需求量非常大。 一、基本配方(按照1000公斤投料): 1、苯乙烯:218.8kg 2、丙烯酸丁酯:238.4kg 3、甲基丙烯酸甲酯:19.56kg 4、甲基丙烯酸:9.64kg 5、保护胶体(聚甲基丙烯酸钠):8.36kg 6、乳化剂OS(烷基酚醚磺基琥珀酸酯钠盐):18.85kg 7、碳酸氢钠:0.5kg 8、过硫酸铵:2.4kg 9、去离子水:499kg 二、操作工艺 1、预乳化和配料 (1)在预乳化釜内分别加入去离子水191kg,碳酸氢钠0.5kg,乳化剂OS18.85kg,混合单体(甲基丙烯酸:9.64kg;苯乙烯: 218.8kg;并烯酸丁酯:238.4kg,甲基丙烯酸甲酯:19.56kg), 进行预乳化,得到稳定的预乳化液。 (2)将过硫酸铵2.4kg加入去离子水64kg,配成引发剂溶液,备用。

(3)保护胶体(聚甲基丙烯酸钠)8.36kg加入去离子水44kg,配成保护胶体溶液,备用。 2、聚合 在聚合釜内分别加入去离子水200kg,保护胶体溶液,预乳液60kg,待70摄氏度左右时加入引发剂溶液30kg,在80摄氏度左右引发聚合,进 行种子乳液聚合,可观察到釜底乳液泛蓝光。保温10min后,开始滴加剩余的预乳液和引发剂溶液。滴加时维持聚合反应温度84-86摄氏度。 滴完后保温1小时。 3、出料包装 冷却到30摄氏度以下,出料用120目滤布过滤,即为苯丙乳液产品。 三、产品主要指标: 1、固含量:48.5% 2、PH值:5.5-6.5 3、粘度(涂-4℃.S.17℃)值:17 苯丙乳液的制备 一、实验目的: 1、掌握用乳液聚合法制备高分子材料的一般原理和合成方法; 2、了解目标乳合物的设计原理。 二、实验原理(概述): 乳液聚合是以水为连续相(分散剂),在表面活性剂(乳化剂)存在下,使聚合反应发生在由乳化剂形成的乳胶粒内部(即表面活性剂形成的胶束作为微反应器),制备高分子材料的一种方法。 目前,因为在世界范围内采用乳液聚合法制备大量的、各种类型的乳液聚合物和聚合物乳液产品,因此乳液聚合被广泛应用于各个技术领域,成为不可缺少的材料或工作物质。特别是人们环境保护意识的加强,乳液聚合技术已成为制备“环境友好材料”的主要方法。在工业生产中有多种用途: (1)用乳液聚合法可大量生产合成橡胶如丁苯橡胶、丁腈橡胶、氯丁橡胶、聚丙烯酸酯橡胶等。(2)用乳液聚合法生产合成塑料、合成树脂。如聚氯乙烯树脂、树脂、聚四氯乙烯树脂、聚丙烯酸树脂等。 (3)用乳液聚合生产各种用途的聚合物乳液,如各种粘合剂(聚醋酸乙烯脂乳液—白胶等)、涂料(如建筑涂料、金属涂料、木制器涂装涂料等)。

相关文档