文档库 最新最全的文档下载
当前位置:文档库 › 装甲车辆扭力轴疲劳寿命建模分析

装甲车辆扭力轴疲劳寿命建模分析

装甲车辆扭力轴疲劳寿命建模分析
装甲车辆扭力轴疲劳寿命建模分析

装甲车辆扭力轴疲劳寿命建模分析

摘要:本文以装甲车辆悬挂系统关键零件扭力轴为对象开展疲劳寿命建模研究。针对扭力轴表面裂纹萌生与扩展两个阶段分别进行寿命建模,重点基于Paris 公式建立疲劳裂纹扩展寿命数学模型,并完成不同扭转应力下的数值计算与仿真。建立的两阶段数学模型能够为扭力轴的寿命分析提供理论支撑。

关键词:扭力轴;疲劳寿命;裂纹萌生;裂纹扩展 1、引言

扭力轴是装甲车辆悬挂系统的关键零件,由于其本身的体积较小,蓄能大,工况恶劣,因此经常发生断裂,是造成装甲车辆故障的重要原因之一[1][2]。

扭力轴在工作时承受大应力随机扭转载荷,疲劳断裂是其常见的失效形式。扭力轴在承受足够多次的扰动载荷作用之后,从高应力或高应变的局部开始形成裂纹,称为裂纹萌生。此后在扰动载荷作用下,裂纹进一步扩展,直至到达临界尺寸而发生完全断裂。因此,扭力轴发生疲劳破坏,要经历裂纹萌生、裂纹稳定扩展和裂纹失稳断裂三个阶段。由于裂纹失稳扩展是快速扩展,对寿命的影响很小,在计算寿命时通常不予考虑。因此总寿命应为裂纹萌生寿命与裂纹扩展寿命两部分之和[3]。

2、扭力轴疲劳裂纹萌生寿命的数学模型

我国装甲车辆扭力轴常用45CrNiMoV A 材料,疲劳性能数据由小试样拉压试验确定。由于试样本身尺寸较小,当存在初始裂纹后将很快发生断裂,因此扭力轴疲劳裂纹萌生寿命可由指定存活率下的疲劳寿命确定。疲劳寿命与拉应力关系如式(1)所示[4]。

σlog log ?+=p p i b a N (1) 扭力轴工作时受剪应力作用,而剪应力与拉应力转换关系可由式(2)确定,即:

στk = (2)

因此,疲劳裂纹萌生寿命的数学模型为:

()k b a N p p i /log log τ?+= (3)

3、扭力轴疲劳裂纹扩展寿命的数学模型

(1)基于Paris 公式的裂纹扩展寿命建模

根据Paris 理论,扭力轴的疲劳裂纹扩展速率dn da /与应力强度因子幅度K ?之间存在着如下指数关系:

m K C dN da )(/?= (4) 式中,裂纹扩展速率影响参数C 、m 是描述材料疲劳裂纹扩展性能的基本参数。由疲劳裂纹扩展速率结合如图1所示流程,可以计算扭力轴疲劳裂纹扩展寿命。

确定初始裂纹尺寸

确定应力强度因子

确定应力强度因子振幅

确定初始裂纹是否扩展

确定临界裂纹长度

确定裂纹扩展寿命

不发生断裂

Y

N

已知条件

结束

图1 裂纹扩展寿命估算流程

当某种构件具有长度为0a 的初始裂纹,且受到应力比R 、最大载荷max σ作用时,计算公式如下[5]:

应力强度因子:0a f K πσ

= (5)

应力强度因子振幅:00min max min max )(a f a f K K K πσπσσ?=-=-=? (6)

在判断裂纹扩展后,计算临界裂纹长度:2

max 12.11???

?

??=σπC c K a (7) 裂纹扩展寿命:???

????=???? ???≠???

?

??--?=--2,ln )(12,11)15.0()(1015.015.00m a a f C m a a m f C N c m m c m m

c ππ (8)

式中,f 、th K ?、C K 分别为材料的应力强度因子系数、门槛应力强度因子幅度及断

裂韧性。 (2)参数确定 ① 应力强度因子

在扭转载荷作用下,扭力轴上任一点的弹性应力分布表面最大,表面裂纹是引起疲劳断裂的主要原因。扭力轴的表面裂纹是三维裂纹问题,其形状一般用半椭圆描述。由于裂纹尺寸相对于扭力轴表面来说很小,可以看作裂纹位于一个半无限大板的前表面,长为a 2,深度为b ,满足Irwin 条件,则可以得到半椭圆表面应力强度因子为:

)

(1

k E a

M K πσ= (9)

其中,1M 为前表面的修正系数;()k E 为第二类完全椭圆积分。由于修正系数1M 很难精确确定,为此作进一步简化,假设b a =时,即表面裂纹为半圆盘状时,可以得到[6]:

a a

K πτππ

σ)/06.2(203

.1== (10)

② 初始裂纹尺寸

通过判断扭力轴在给定应力水平作用下是否扩展来确定初始裂纹尺寸,即:

th K K ?≥? (11) th K a ?≥-πσσ/)(06.2min max (12)

根据式(12)可知:2min max 2)](06.2/[)(ττπ-??≥th K a ,即初始裂纹尺寸为:2min max 20)](06.2/[)(σσπ-??=th K a

4、数值计算及仿真

扭力轴疲劳裂纹萌生寿命数学模型中的p a 、p b 与材料有关,45CrNiMoV A 试样在99.9%存活率下的取值分别为20.2774与-5.5723,8.0=τ;扩展寿命数学模型中各参数取值分别为[7]:cycle m C /1063.512-?=、12.3=n 、22.4=?th K 、()

m MPa K C 8.102=。

扭力轴承受扭转剪应力由外加载荷产生的应力与残余应力做差确定。疲劳寿命数值计算与仿真结果分别如表1、图2所示。

表1 扭力轴疲劳寿命数值计算结果

剪应力MPa

800 850 900 950 1000 1050 1100 1150 1200 萌生寿命 3635

2593

1886

1395

1048

799

616

481

380

扩展寿命 71099 62980 56177 50419 45503 41273 37606 34407 31599 疲劳总寿命 74734 65573 58063 51814 46551 42072 38222 34888 31979

800

850900

95010001050110011501200

012345678x 10

4

扭转剪应力(MPa)

疲劳寿命(循环次数)

裂纹萌生寿命

裂纹扩展寿命疲劳总寿命

图2 扭力轴疲劳寿命仿真结果

5、结论

根据计算仿真结果,可以发现:

(1)扭力轴裂纹萌生寿命在总寿命中所占的比例很小,即扩展阶段寿命占总寿命的绝大部分。

(2)扭转剪应力对疲劳寿命影响很大,从800-1200MPa跨度内,寿命相差4万次以上。因此,应在适当范围内提高残余应力,以抵消外加载荷产生的反向应力,进而降低总剪应力。

基于文中数学模型进行扭力轴疲劳寿命计算,与疲劳试验机实际测试数据比较符合,该模型能够为扭力轴研制过程中的寿命分析提供理论支撑。

连杆加工工艺分析

汽车制造工艺学 题目:连杆加工工艺分析 系别:机械工程 班级:车辆0903 姓名:薄利杰 学号:20094152 老师:原老师 2012 年6 月8日

连杆加工工艺分析 内容摘要: 在现代的各个生产部门中所使用的机械,虽然是多种多样,其构造、用途和性能也个不相同,但各种不同的机械切用可能有相同的运动系统,即具有相同的机构。例如蒸汽机、内染机、火塞泵和曲轴冲床等不同机械,他们的主要组成都有曲柄滑块机构。连杆机构是由若干个杆状构件、销轴、滑块、导轨等组成。本文主要介绍连杆的功用与结构、连杆的工艺特点。 关键词: 一、连杆机构的结构和形式 1、构件的形式 连杆机构的构件大多制成杆状,但根据受力和结构等需要,并不一定都做成杆状,常见的形式为; (1)杆状,它的构造简单,加工方便,一般在杆长(运动)尺寸R胶大时采用。(2)盘状,有时它本身就是一个皮带轮或齿轮,在圆盘上距轴心R处装上销轴,以便和其他构件组成回转副,尺寸R为杆长。这种回转体的质量均匀分布,故盘状结构能比杆转的更适于较高的转速,常用做曲柄或摆杆。 (3)桁架和箱形梁,当构件较长或受力较大,采用整体式杆件不经济或制造困难是可采用这种结果形式。 (4)曲轴,结构简单,与它主成运动副的构件可做成整体式的,但由于悬臂,强度及杆度较差。当工作载荷和尺寸较大,或曲柄安置在转动轴的中间部分时,此形式在内燃机、压缩机等机械中经常采用,曲柄在中间轴劲处与连杆相连,连杆必须部分为连杆体和连杆盖,然后用螺栓将其拧紧。 2、运动副的形式 (1)回转副,可利用滑动轴承或滚动轴承组成回转副。滑动轴承的结构简单,但轴承间隙会影响构件的运动性质,当构件和运动副较多时,间隙引起的积累误差必增大。如采用滚动轴承作回转副,则磨檫损失小,运动副间隙小,启动灵敏,但专配复杂,两构件接头处的颈向尺寸较大,可用滚针轴承解决着一矛盾。 (2)移动副,组成移动副的两构件和各种导路的形式。带有调整板的T型导路:圆柱形导路:带有侧板棱柱形导路:V型导路:可调整的带有燕尾形的组合导路:滚珠的滚柱导路:带有滚柱的滚柱导路。 二、连杆的结构、材料与主要技术要求 连杆是较细长的变截面非圆形杆件,其杆身截面从大头到小头逐步变小,以适应在工作承受的急剧变化的动截荷。中等尺寸或大型连杆是由连杆体和连杆盖两部分组成,连杆体与连杆盖用螺栓和螺母与曲轴主轴劲装置在一起,而尺寸较小的连杆(如摩托车发动机用连杆)多数为整体结构。图1-1所示为柴油机的连杆零件图。 为了减少磨损和磨损后便于修理,在连杆小头孔中压入青铜衬套,大头孔中装有薄壁巴氏合金轴瓦。

曲轴轴系的结构强度分析与疲劳寿命估算_朱永梅

Journal o f Mechanical Strength 2010, 32( 6) : 1018- 1021 p 研究简报 p 曲轴轴系的结构强度分析与疲劳寿命估算 X ANALYSIS OF STRUCTURAL STRENGTH AND PRED ICTION OF FATIGUE LIFE FOR CRANKSHAFT AND LINK MEC HANISM 朱永梅X X 王明强 刘艳梨 ( 江苏科技大学 机械工程学院, 江苏 镇江 212003) ZHU YongMei WANG MingQiang LIU YanLi ( School o f Mechanical Enginee ring , Jiangsu Unive rsity o f Scie nce and Tec hnology , Zhenjiang Jiangsu 212003, China ) 摘要 将多柔体动力学方法引入到曲轴计算中, 建立发动机曲轴轴系的动力学仿真模型, 对曲轴轴 系进行刚柔耦 合 多体运动学和动力学仿真, 为下一步疲劳寿命计 算提供可靠的载荷条 件; 然 后, 从曲 轴所受的 载荷中找 出三个 载荷比 较 大的 时刻, 计算得到其相应时刻的应力和应变分布规律, 找出曲轴受力的危险部位, 为曲轴的动态强度分析提 供数据; 最 后, 结合 Ansys 有限元分析软件和柯顿- 多兰( Certon - Dolan) 理论, 估算 连杆疲 劳寿命, 同 时分析多 级载荷 加载次 序对疲 劳 寿命的影响, 为零部件的主动寿命设计提供参考 数据和理论判据。 关键词 强度 疲劳寿命 动力学 曲轴轴系 中图分类号 TH123. 3 Abstract Introducing mult-i flexib1e body dynamics to crankshaft computing, a dynamics simulation model of crank and link mechanism of an engine is built. Based on the rigid and flex coupled model, ADAMS( automatic dynamic analysis of mechanical sys - tems) is used to do a kinematics and dynamic simulation to get dynamic loads. It also provides a reliable characteristic for the body v-i bration noise of next step. Then the bigger loads of three moments are identified from all loads. The distribution law of the stress and strain of correspondi n g moment are achieved and its dangerous parts are found to offer date of dynamic strength analysis. At las t, com - bining the Ansys and the theory of Certon -Dolan, the fatigue life of the link is calculated and the affection of loading order of multilevel loads to fatigue life is analyzed in detail, which have provided the referenced data and the theory of criterion for reliability desi g n. Key words Strength; Fatigue life; Dynamics; Crankshaft and link mechanism Cor res pon ding autho r : Z H U Yong Mei , E -mail : zymtt @ 163. com , Tel : + 86- 511- 84401198, Fa x : + 86-511- 84402269 The project supported by the Shipbuilding Industry Defense Technology Pre - research Foundation of China ( No . 07J2. 3. 2) . Manuscript received 20090722, in revi s ed form 20090908. 引言 曲轴轴系是发动机的主要组件之一, 其动力学特 性对发动机的工作可靠性、振动、噪声等有较大影响。 其受周期性变化的气缸压力和惯性力的共同作用, 并 对外输出转矩, 工作负荷非常 大, 容易发 生断裂等破 坏, 因此有必要对曲轴进行强度、模态和疲劳寿命等校 核。 虽然目前很多疲劳可靠性估算模型己经很成熟, 并有效地应用于很多领域, 但对于柴油机关键零部件, 如曲轴、活塞、连杆以及活塞销等, 在随机疲劳行为模 型及可靠性估算模型的理论研究和应用方面还是有欠 缺的。例如文献[ 1] 在实测应力累积频数分布图时忽 略应力的先后次序对疲劳的影响。文献[ 2] 提出基于 联合仿真的疲劳寿命预测方法预测部件的疲劳寿命, 其研究对象为单缸, 而实际应用中多缸发动机较多, 实 际情况复杂, 这样确定危险工况存在一定的误差。文 献[ 3] 针对某单缸发动机曲轴断裂问题, 通过材料的改 变计算最大载荷工况下的变形和应力, 但是在进行强 度分析之前没有考虑动力学特性的影响。 本文以某台四冲 程 V 型八缸发动机曲轴轴系为 研究对象, 建立动力学仿真分析模型, 其中曲轴作为柔 性体处理, 应用有限元分析 软件 Ansys 对其进行模态 分析, 生成 M NF ( modal neutral file) , 利用 ADAMS( auto - matic dynamic analysis of mechanical systems )P Vie w 模块, 将柔性体模态变形融入到多体系统的动力学仿真中。 通过 Ansys 分析找出曲轴、连杆等工作时的危险部位, 将应力值取出分别用 Miner 方 法和 Certon -Dolan 方法 X 20090722 收到初稿, 20090908 收到修改稿。船舶工业国防科技预研基金( 07J2. 3. 2) 。 XX 朱永梅, 女, 1969 年 9 月生, 江苏镇江人, 汉族。江苏科技大学机械工程学院副教授, 硕士, 从事机械设 计理论、机械强度、可靠性等研 究。 发 表论文十余篇。

疲劳分析方法

疲劳寿命分析方法 摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。 疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。 金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。Goodman讨论了类似的问题。1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。1929年B.P.Haigh研究缺口敏感性。1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。 中国在疲劳寿命的分析方面起步比较晚,但也取得了一些成果。浙江大学的彭禹,郝志勇针对运动机构部件多轴疲劳载荷历程提取以及在真实工作环境下的疲劳寿命等问题,以发动机曲轴部件为例,提出了一种以有限元方法,动力学仿真分析以及疲劳分

连杆分析报告

连杆分析报告 连杆是连接活塞和曲轴,并将活塞所受作用力传给曲轴,将活塞的往复运动转变为曲轴的旋转运动的机构。由连杆体、连杆大头盖、连杆小头衬套、连杆大头轴瓦和连杆螺栓(或螺钉)等组成。连杆组承受活塞销传来的气体作用力及其本身摆动和活塞组往复惯性力的作用,这些力的大小和方向都是周期性变化的。因此连杆受到压缩、拉伸等交变载荷作用。连杆必须有足够的疲劳强度和结构刚度。 1.工作情况 连杆受力状况: 在最大惯性力引起的拉伸力工况:连杆大、小头孔内作用的拉伸载荷PY = 187.66 KN;连杆长螺钉预紧PC =182.92 KN;连杆短螺钉预紧力Pd = 178.59 KN;来自轴瓦的过盈配合力。 连杆材料属性: 2.根据图纸建模

3.导入ANSYS有限元 将模型导入ANSYS中,如下

4.创建轴瓦和曲柄销活塞销 在孔中创建轴瓦和曲柄销活塞销,如图。(假设过盈量为0.001m)

5.划分网格 对该模型进行网格划分。由于结构复杂,采用四面体单元。同时由于结构大小存在差异,网格的大小也不相同,以保证网格数量少。划分网格后如下:

6.创建接触单元 把接触的面创建接触单元,对于所有存在螺栓的区域,均使用绑定约束。由于轴瓦和曲柄销之间存在油膜,将其摩擦系数设为0.1,其余皆为0.3。接触单元如下:

7.约束和加载 对于连杆螺栓要施加预紧力。约束曲轴销的两个面。并在活塞销上施加力。在曲柄销上施加约束,在活塞销上施加力。力的加载是一个比较复杂的问题,但在实际情况中,活塞销往往不易变形。因此耦合其对应节点的所有自由度,如下: 并在编号最小的节点施加载荷。最终模型如下:

简析滚动轴承的疲劳寿命

安昂商城 简析滚动轴承的疲劳寿命 轴承疲劳寿命是指,在一定技术状态下的滚动轴承,在主机的实际使用状态下运转,直至滚动表面发生疲劳剥落而不能满足主机要求时的轴承内,外圈(轴、座圈)相对旋转次数的总值总转数。当轴承转速大致恒定或已成为已知,疲劳寿命可用与总转数相应的运转总小时数来表示,此外,还应注意: 1)、影响滚动轴承疲劳寿命的因素非常多,无法全部加以估计或通过标准试验条件而加以消除,这造成轴承实际疲劳寿命有很大的离散性,因此轴承疲劳寿命的计算与试验是以数理统计学和概率论为基础的。最常用的滚动轴承疲劳寿命的表达参数为额定寿命L10,在ISO推荐标准R281中L10的涵义明确规定如下:“数量上足够多的相同的一批轴承,其额定寿命L10用转数(或在转速不变时用小时数)来表示,改批轴承中有90%在疲劳剥落发生前能达到或超过此转数(或小时数)”。迄今为止,世界各国都遵从上述规定。 在美国等一些国家中,还采用中值寿命的概念。中值寿命Lm是指一批相同轴承的中值寿命,即指其中50%的轴承在疲劳剥落前能够达到或超过的总转数,或在一定转速下的工作小时数。中值寿命Lm,不是一批轴承寿命的算术平均值。一般中值寿命Lm是额定寿命的5倍左右。 2)、额定寿命的概念值使用于数量足够的一批滚动轴承,而不适用于个别滚动轴承。例如有40套6204轴承按其使用条件算的其额寿命为1000h,其实际意义是在这批轴承中大体上可能有90%,即36套的实际运转寿命将超过1000h即出现疲劳,但不能个别地指出究竟是哪只轴承的疲劳寿命将低于1000h。事实上,由于轴承设计、制造、材质以及应用技术的不断进步,一些厂家轴承产品的实际使用寿命大多略高于甚至成倍地高于按标准方法计算出的额定寿命。 3)、对于实际使用中并非由于疲劳失效的轴承,额定疲劳寿命的意义就代表这批滚动轴承在正常发挥其材料潜力时可期望的寿命。因此在大多数情况下,用户在选择滚动轴承时仍先作疲劳寿命计算,再根据实际失效类别进行校核,例如磨损寿命校核,取计算结果中较小值为滚动轴承计算寿命。

疲劳分析流程 fatigue

摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。 关键词:疲劳 UIC标准疲劳载荷 IIW标准 S-N曲线机车车辆 一、国内外轨道车辆的疲劳研究现状 6月30日15时,备受关注的京沪高铁正式开通运营。作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。 在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。随着国内铁路运行速度的不断提高,一些关键结构部件,如转向架的构架、牵引拉杆等都出现了一些断裂事故。因此,机车车辆的结构疲劳设计已经逐渐成为机车车辆新产品开发前期的必要过程之一,而通过有效的计算方法预测结构的疲劳寿命是结构设计的重要目标。 1.1国外 早在十九世纪后期德国工程师Wohler系统论述了疲劳寿命和循环应力的关系并提出了S-N 曲线和疲劳极限的概念以来,国内外疲劳领域的研究已经产生了大量新的研究方法和研究成果。 结构疲劳设计中主要有两方面的问题:一是用一定材料制成的构件的疲劳寿命曲线;二是结构件的工作应力谱,也就是载荷谱。载荷谱包括外部的载荷及动态特性对结构的影响。根据疲劳寿命曲线和工作应力谱的关系,有3种设计概念:静态设计(仅考虑静强度);工作应力须低于疲劳寿命曲线的疲劳耐久限设计;根据工作强度设计,即运用实际使用条件下的载荷谱。实际载荷因为受到车辆等诸多因素的影响而有相当大的离散性,它严重地影响了载荷谱的最大应力幅值、分布函数及全部循环数。为了对疲劳寿命进行准确的评价,必须知道设计谱的存在概率,并且考虑实际载荷离散性,才可以确定结构可靠的疲劳寿命。 20世纪60年代,世界上第一条高速铁路建成,自那时起,一些国外高速铁路发达国家已经深入研究机车车辆结构轻量化带来的关键结构部件的疲劳强度和疲劳寿命预测问题。其中,包括日本对车轴和焊接构架疲劳问题的研究;法国和德国采用试验台仿真和实际线路相结合的技术开发出试验用的机车车辆疲劳分析方法;英国和美国对转向架累计损伤疲劳方面的研究等等。在这些研究中提出了大量有效的疲劳寿命的预测研究方法。 1.2、国内 1.2.1国内疲劳研究现状与方法 国内铁路相关的科研院所对结构的疲劳寿命也展开了大量的研究和分析,并且得到了很多研

疲劳强度计算.

疲劳强度计算 一、变应力作用下机械零件的失效特征 1、失效形式:疲劳(破坏)(断裂)——机械零件的断裂事故中,有80%为疲劳断裂。 2、疲劳破坏特征: 1)断裂过程:①产生初始裂反(应力较大处);②裂纹尖端在切应力作用下,反复扩展,直至产生疲劳裂纹。 2)断裂面:①光滑区(疲劳发展区);②粗糙区(脆性断裂区)(图2-5) 3)无明显塑性变形的脆性突然断裂 4)破坏时的应力(疲劳极限)远小于材料的屈服极限。 3、疲劳破坏的机理:是损伤的累笱 4、影响因素:除与材料性能有关外,还与γ,应力循环次数N ,应力幅a σ主要影响 当平均应力m σ、γ一定时,a σ越小,N 越少,疲劳强度越高 二、材料的疲劳曲线和极限应力图 疲劳极限)(N N γλτσ—循环变应力下应力循环N 次后材料不发生疲劳破坏时的最大应力称为材料的疲劳极限 疲劳寿命(N )——材料疲劳失效前所经历的应力循环次数N 称为疲劳寿命 1、疲劳曲线(N γσ-N 曲线):γ一定时,材料的疲劳极限N γσ与应力循环次数N 之间关系的曲线 0N —循环基数 γσ—持久极限 1)有限寿命区 当N <103(104)——低周循环疲劳——疲劳极限接近于屈服极限,可接静强度计算 )10(1043≥N ——高周循环疲劳,当043)10(10N N ≤≤时,N γσ随N ↑→N σσ↓ 2)无限寿命区,0N N ≥ γγσσ=N 不随N 增加而变化 γσ——持久极限,对称循环为1-σ、1-τ,脉动循环时为0σ、0τ 注意:有色金属和高强度合金钢无无限寿命区,如图所示。 3)疲劳曲线方程))10(10(04 3N N ≤≤ C N N m m N =?=?0γγσσ——常数

材料的疲劳性能汇总

一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

最新多轴疲劳近年发展综述

多轴疲劳近年发展综 述

多轴疲劳研究进展综述 摘要:由于疲劳研究的重要性和多轴疲劳问题存在的普遍性,多轴疲劳理论及其应用的研究逐渐受到了广泛的重视。本文简要综述了近年来国内外关于多轴疲劳损伤准则的最新研究进展,并结合自身的学科背景与研究方向对几类主要模型进行点评。 关键词:多轴疲劳临界面法疲劳损伤 引言 疲劳指材料在循环载荷作用下,某点或某些点产生了逐渐的永久结构变化,导致在一定的循环次数后形成裂纹或发生断裂的过程。疲劳理论发展至今,人们已经对单轴疲劳进行了全面、深入的研究,得到了一些比较成熟的理论和模型,例如名义应力法、局部应力应变法、场强法等。但是在工程实际中,零部件大部分承受的是多轴载荷,一方面零部件本身形状复杂,即使在单轴受力下局部仍会出现多轴应力状态;另一方面,零部件本身就承受多轴组合载荷,这些载荷同步或不同步作用在构件上。 多轴疲劳的研究比单轴疲劳更加接近工程实际,故受到了工程设计和研究人员的广泛关注,相应地提出了一些预测多轴疲劳寿命的方法,例如等效应变法、能量法、临界平面法等,但是迄今为止还没有找到一种能够被广泛接受的方法,大量地试验研究有待开展下去。本文试图将近几年的研究成果作一个总结,希望能对今后的研究工作有所帮助。现有的为数不多的多轴非比例加载下

的疲劳寿命预测模型,大多数是从单轴疲劳寿命预测模型发展而来的,并且都是在一些特定的试验条件和有限数据基础上得到的,目前普遍接受且具有研究前景的方法归纳起来大致分为两类:等效参数型和损伤力学型。 1 等效参数模型 在单轴疲劳研究的基础上,Kanazawa 、Brown 和Miller [ 1,2] 对多轴低周疲劳进行了大量的研究,研究表明,在固定应变幅的情况下,具有明显非比例加载的低周疲劳寿命低于比例加载的寿命,因此按照常规的疲劳寿命预测方法, 将给出比较危险的预测值。对于多轴低周疲劳的寿命预测,等效参数模型主要包括等效应变法、能量法、临界面法、局部应力应变法等,其中临界面法考虑到引起损伤的危险面,具有一定的物理意义,所以是目前应用比较普遍的一种寿命预测方法。 1.1 等效应变法 通过定义合适的等效应变,对于多轴低周疲劳有 ()2j p eq f K N ε?= (1) 式中p eq ε?为等效塑性应变,K 、j 为材料常数。p eq ε?可以定义为八面体剪应 变、最大剪应变、最大正应变、von Mises 等效应变等。 2.2 能量法 为了克服等效应变法在估算低周疲劳寿命时的不足,考虑到塑性形变功是引起材料不可逆损伤和疲劳破坏的主要原因,很多学者[ 3,6] 提出低周疲劳寿命估算的能量方法,这一方法被应用于单轴低周疲劳获得成功后,将其推广到多

疲劳寿命设计方法

寿命设计方法 -王光建

目录 …什么是疲劳失效 …无限寿命设计方法 ?S-N曲线(wohler curve)及疲劳极限?基于疲劳极限的评判 ?考虑平均应力的损伤修正…有限寿命设计方法 ?Miner法则(疲劳损伤线性累积) ?雨流计数法?寿命计算…疲劳寿命仿真计算 …疲劳寿命计算的不足

疲劳失效 …疲劳是一种机械损伤过程 …特点: 在这一过程中即使名义应力低于材料屈服强度;破坏前无明显塑性变形,突然发生断裂…本质: ?交变载荷+金属缺陷?金属的循环塑性变形(微观) ?疲劳一般包含裂纹萌生和随后的裂纹扩展两个过程 ?疲劳是损伤的累积 金属内部缺陷微裂纹产生裂纹扩展断裂 (晶体位错) 疲劳发生过程 …疲劳的判断: 金属材料的疲劳断裂口上,有明显的光滑区域与颗粒区域,光滑区域是疲劳断裂区,颗粒区域是脆性断裂区 粗糙的脆性断裂区 光滑的疲劳区 裂纹源

-S-N曲线(Wohler curve)及疲劳极限…S-N曲线是根据材料的疲劳强度实验数据得出的应力和疲劳寿命N的关系曲线 …S-N曲线用于描述材料的疲劳特性 σ S-N curve 1871年,Wohler首先对铁路车轴进行了系统的疲劳研究,发展了S-N曲线及疲劳极限概念

-S-N曲线(Wohler curve)及疲劳极限…疲劳极限:一般规定,循环次数107所对应的最大应力为疲劳极限 σ σ limit S-N curve

-基于疲劳极限的评判 …Alternating stress 作为判断应力 Alternating stress=(σ - σmin)/2 max …判断标准 σAlternating stress<σ limit σσ limit σ √ 2 S-N curve σ × 1

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

基于实测载荷谱的白车身疲劳寿命计算

基于实测载荷谱的白车身疲劳寿命计算 朱涛1 林晓斌2 1上海山外山机电工程科技有限公司 2英国恩科(nCode)国际有限公司上海代表处

基于实测载荷谱的白车身疲劳寿命计算 朱涛1 林晓斌2 1上海山外山机电工程科技有限公司 2英国恩科(nCode)国际有限公司上海代表处 摘要:汽车白车身疲劳分析由于缺乏真实载荷谱的输入而显得没有说服力,计算分析的结果往往与试车场或用户使用时发生的失效没有关联,这样导致了虚拟疲劳分析的强大作用无法发挥。本文通过六分力轮测试系统实测了某型乘用车在试车场的载荷谱数据,以此作为输入,并综合了多种CAE手段,包括有限元网格划分、有限元分析、多体动力学分析和疲劳分析,对该乘用车的白车身在实测载荷谱作用下的疲劳寿命分布进行了计算分析,获得了有价值的结果。同时给出了更符合真实工况的试验与虚拟相结合的白车身一体化疲劳分析流程。 关键词:白车身,虚拟疲劳分析,道路载荷谱,有限元网格划分,有限元分析,多 体动力学分析 1 前言 汽车结构疲劳的话题在当前各大整车制造企业越来越受到重视,几乎每种新开发的车型都需要考察其疲劳耐久性能。以前传统的方法,汽车企业对于新车型疲劳寿命的评估都是利用实车在各道路试车场进行路试[1],该方式虽然是最直接且最准确的,但测试时间却十分冗长且耗费人力与经费甚巨,即使发现了问题往往也很难去修改。近年来计算机软硬件的迅速发展,计算机辅助工程(CAE)分析技术在静态、碰撞、振动噪音等领域均有了相当不错的应用成果,但疲劳耐久性分析需要综合有限元应力分析和动力学载荷分析等专业技术,仍需花费非常大的计算量,且计算的准确性由于没有真实的道路载荷谱(RLD)作为计算输入而缺乏说服力。 本文针对上述问题,基于在国内汽车企业已经开始成熟运用的六分力轮测试技术实测获得的某乘用车在试车场的道路载荷谱数据[2],以此作为输入,驱动建立好的整车多刚体动力学仿真模型,获取作用在白车身各连接点上的载荷谱,同时对白车身进行有限元应力场分析。综合上述结果,调用相应的疲劳损伤模型对白车身的疲劳寿命进行了计算,从而建立起一套较为可行的更符合真实工况的车辆疲劳寿命分析技术流程。

连杆机构运动分析

机械原理大作业一 课程名称:机械原理 设计题目:连杆机构运动分析

1 、题目 如图所示机构,一只机构各构件的尺寸为AB=100mm,BC=4.28AB,CE=4.86AB,BE=8.4AB,CD=2.14AB,AD=4.55AB,AF=7AB,DF=3.32AB,∠BCE=139?。构件1的角速度为ω1=10rad/s,试求构件2上点E的轨迹及构件5的角位移、角速度和角加速度,并对计算结果进行分析。 A B C D E F 1 2 3 4 5 2、机构结构分析 该机构由6个构件组成,4和5之间通过移动副连接,其他各构件之间通过转动副连接,主动件为杆1,杆2、3、4、5为从动件,2和3组成Ⅱ级RRR基本杆组,4和5组成Ⅱ级RPR基本杆组。 如图建立坐标系 A B C D E F 1 2 3 4 5 Y X 3、各基本杆组的运动分析数学模型 1) 位置分析

? ? ?+=+=i AB A B i AB A B l y y l x x ??sin cos 2) 速度和加速度分析 将上式对时间t 求导,可得速度方程: sin cos B AB B A i i B AB B A i i dx x x l dt dy y y l dt ?????==-??? ?==+?? 将上式对时间t 求导,可得加速度方程: 222 2 22 cos sin cos cos B AB AB B A i i i i B AB AB B A i i i i d x x x l l dt d y y y l l dt ???????? ?==--????==-+?? RRR Ⅱ级杆组的运动分析 如下图所示 当已知RRR 杆组中两杆长L BC 、L CD 和两外副B 、D 的位置和运动时,求内副C 的位置、两杆的角位置、角运动以及E 点的运动。 C X Y 1) 位置方程 cos cos sin sin BC CD C B i D j BC CD C B i D j x x l x l y y l y l ????=+=+??? =+=+?? 由移项消去j ?后可求得i ?: 002arctan i ?=? ? 式中, ()()00222022BC D B BC D B BC BD CD BD A l x x B l y y C l l l l ?=-?=-???=+-?? =??

整车-20_车身疲劳分析规范V1.0版

车身疲劳分析规范编号:LP-RD-RF-0020 文件密级:机密 车身疲劳分析规范 V1.0 编制: 日期: 编制日期审核/会签日期批准日期

车身疲劳分析规范 修订页 编制/修订原因说明:首次编制 原章节号现章节号修订内容说明备注 编制/修订部门/人 参加评审部门/人 修订记录: 版本号提出部门/人修订人审核人批准人实施日期备注

目录 1 简介 (2) 1.1 分析背景和目的 (2) 1.2 软硬件需求 (2) 1.3 分析数据参数需求 (2) 2 模型前处理 (2) 2.1 模型处理 (2) 2.2 约束及加载方式 (3) 3 有限元分析步骤 (3) 3.1 Nastran 静力分析模块 (3) 3.2 NCODE DesignLife 疲劳分析模块 (4) 4 分析结果后处理 (10) 5 结果评价 (11)

车身疲劳分析规范 1 简介 1.1 分析背景和目的 车身在路试过程中及售后反馈中80%以上的开裂问题为疲劳破坏,车身的疲劳性能是车身质量的重要体现,有必要对车身进行疲劳分析。目前比较通用的疲劳分析方法是准静态法。 1.2 软硬件需求 软件 前处理HyperMesh – Nastran模块 求解器Nastran Solution 101,nCode DesignLife 后处理HyperView 硬件 前、后处理:HP或DELL工作站; 求解:HP服务器、HP或DELL工作站。 1.3 分析数据参数需求 所需模型为简化的TB模型,(白车身及各质量点配重) 2 模型前处理 2.1 模型处理 1)导入简化的TB模型,详细建模细则参考《CAE分析共用模型建模指南》,所有搭载在白车身上的零件均需配重; 2)将各接附点重新编号,编号细则参考《整车疲劳分析连接点编号规范》; 图2.1 简化的TB模型

疲劳寿命预测方法

疲劳形成寿命预测方法 10船 王茹娇 080412010035 疲劳裂纹形成寿命的概念 发生疲劳破坏时的载荷循环次数,或从开始受载到发生断裂所经过的时间称 为该材料或构件的疲劳寿命。 疲劳寿命的种类很多。从疲劳损伤的发展看,疲劳寿命可分为裂纹形成和裂 纹扩展两个阶段:结构或材料从受载开始到裂纹达到某一给定的裂纹长度a0为 止的循环次数称为裂纹形成寿命。此后扩展到临界裂纹长度acr 为止的循环次数 称为裂纹扩展寿命,从疲劳寿命预测的角度看,这一给定的裂纹长度与预测所采 用的寿命性能曲线有关。此外还有三阶段和多阶段,疲劳寿命模型等。 疲劳损伤累积理论 疲劳破坏是一个累积损伤的过程。对于等幅交变应力,可用材料的S —N 曲 线来表示在不同应力水平下达到破坏所需要的循环次数。于是,对于给定的应力 水平σ,就可以利用材或零部件的S —N 曲线,确定该零件至破坏时的循环数N , 亦即可以估算出零件的寿命,但是,在仅受一个应力循环加载的情况下,才可以 直接利用S —N 曲线估算零件的寿命。如果在多个不同应力水平下循环加载就不 能直接利用S —N 曲线来估计寿命了。对于实际零部件,所承受的是一系列循环 载荷,因此还必须借助疲劳累积损伤理论。 损伤的概念是,在疲劳载荷谱作用下材料的改变(包括疲劳裂纹大小的变化, 循环应变硬化或软化以及残余应力的变化等)或材料的损坏程度。疲劳累积损伤 理论的基本假设是:在任何循环应力幅下工作都将产生疲劳损伤,疲劳损伤的严 重程度和该应力幅下工作的循环数有关,与无循环损伤的试样在该应力幅下产生 失效的总循环数有关。而且每个应力幅下产生的损伤是永存的,并且在不同应力 幅下循环工作所产生的累积总损伤等于每一应力水平下损伤之和。当累积总损伤 达到临界值就会产生疲劳失效。目前提出多种疲劳累积损伤理论,应用比较广泛 的主要有以下3种:线性损伤累积理论,修正的线性损伤累积理论和经验损伤累 积理论。 线性损伤累积理论在循环载荷作用下,疲劳损伤是可以线性地累加的,各个 应力之间相互独立和互不相干,当累加的损伤达到某一数值时,试件或构件就发 生疲劳破坏,线性损伤累积理论中典型的是Miner 理论。 根据该理论,假设在应力i σ下材料达到破坏的循环次数为i N ,设D 为最终 断裂时的临界值。根据线性损伤理论,应力i σ每作用一次对材料的损伤为i N D /, 则经过i n 次后,对材料造成的总损伤为i i N D n /。

车辆疲劳耐久性分析及其优化技术研究_赵成刚

Science and Technology & Innovation ┃科技与创新 ?17? 文章编号:2095-6835(2015)06-0017-02 车辆疲劳耐久性分析及其优化技术研究 赵成刚1,屈 凡2 (1.中国汽车技术研究中心汽车工程研究院,天津 300300; 2.天津一汽夏利汽车股份有限公司产品开发中心,天津 300300) 摘 要:车辆在人们的生活、生产中占据的地位日益重要,其在运行过程中会受到各种因素的影响,进而降低了其使用效率和服务年限,因此,必须做好车辆零部件的维护管理工作。就车辆运行的实际情况看,大部分关键零部件的失效都是因疲劳使用而导致的,疲劳耐久性是衡量车辆产品性能的主要指标之一,在很大程度上代表了车辆的安全性、经济性和可靠性现状。对车辆的耐久性进行了分析,并提出了相应的优化措施。 关键词:疲劳耐久性;优化措施;循环荷载;EIFS 分布 中图分类号:U467 文献标识码:A DOI :10.15913/https://www.wendangku.net/doc/f814099337.html,ki.kjycx.2015.06.017 现代车辆的结构逐渐向高速化和载重化的方向发展,为了保证车辆运行的安全性和稳定性,就要对车辆结构和各零部件有更为严格的要求。疲劳耐久性是衡量车辆零部件和结构性能的主要指标之一,可直接反映车辆的运行状态。但就车辆疲劳耐久性研究的现状来看,还存在一定的不足。因此,为了提高对车辆疲劳耐久性研究的效果,需要对现存的不足进行分析,并选择有效的优化措施,争取不断提高车辆的运行效率。 1 车辆耐久性疲劳分析 耐久性即产品在规定使用和维修的条件下,达到极限状态前完成规定功能的能力,从本质上看,即产品在达到服务年限前,可维持正常状态的时间。对于车辆而言,经常会将汽车或零部件可以行驶一定里程而不发生故障作为衡量车辆耐久性的重要指标。但在车辆长时间运行的过程中,各零部件和构件会受到循环荷载的影响,造成结构部分发生永久性结构变化,并在多次循环后形成裂纹或断裂,这种情况称为耐久性疲劳。一旦车辆结构或零部件出现耐久性疲劳,则直接影响车辆运行的稳定性和安全性。对于车辆的耐久性疲劳而言,其产生的主要原因是循环荷载作用,与疲劳损坏还有一定的距离,且一旦发生疲劳断裂,则会导致车辆结构产生宏观塑性变形。 2 车辆耐久性分析方法 2.1 分析对象 车辆耐久性分析的对象为疲劳寿命与强度有重要联系的重要零部件,并基于结构损伤度和可靠度进行详细分析,最终判断其使用寿命。在对车辆进行耐久性分析时,可将整个车辆机械结构或一部分作为研究对象,比如圆角、紧固孔和焊接件等,尤其是应力水平高且应力水平集中的部位。 2.2 材料参数 材料参数的分析对象包括断裂韧性、EIFS 分布和表面粗糙系数等。在研究时,基本上以概率断裂力学为基础,并通过试验的手段得到相应数据。其中,对于普通材料而言,可直接在相应的数据库中搜寻相应的参数信息,比如尺寸系数、断裂韧性和表面粗糙度系数等。 2.3 使用期断裂纹扩展控制曲线 对于给定应力区,随着时间t 的变化,对细节描述的当量缺陷尺寸也会发生变化,且车辆的应力区不同,裂纹的扩展率也不同。在对车辆耐久性进行分析时,为了提高预测裂纹超越数概率的可靠性,可以结合使用期裂纹扩展控制曲线与EIFS 分布,导出EIFS 控制曲线所用的裂纹扩展方式形式一致,则使用期裂纹扩展率为: d a /dN =Q i a . (1) 式(1)中:a 为裂纹长度;N 为应力循环次数;Q i a 为使用期裂纹扩展率。 控制曲线为: y Ti (t )=a r exp (-Q i t ). (2) 式(2)中:y Ti 为当量初始缺陷尺寸;a r 为试验常数;Q i 为裂纹扩展参数。 2.4 裂纹超越数 给定应力区i 裂纹超越数即在指定时间t 内该应力区i 结构细节群中裂纹尺寸超过a r 的细节数量,用N (i ,t )表示,并作为一个离散型随机变量,且会随着时间t 的变化而变化。假设应力区每个细节相对小裂纹尺寸扩展相互独立,则每个细节在 时间t 时,裂纹尺寸可达到a r 的概率为p (i ,t ) 。如果确定应力区i 中所含细节数为N i ,则在时间t 时的裂纹尺寸超过a r 的细节数为N ’(i ,t ),服从参数为N i 与p (i ,t )二项式分布,则平均裂纹超越数为: N ’(i ,t )=N i p (i ,t ). (3) 式(3)中:N ’(i ,t )为时间t 内裂纹尺寸超过a r 的细节数;N i p (i ,t )为平均裂纹超越数。 标准差为: σN (i ,t )={N i p (i ,t ) [1-p (i ,t )]}1/2. (4) 在对车辆耐久性进行分析时,则其结构指定细节群会包含多个应力区,可用L (t )表示结构细节群中裂纹尺寸超过a r 的细节数量,且会随着时间t 的变化而变化。如果每个应力区的细节数N 都比较大时,N (i ,t )所对应的二项式分布依据中心极限定理趋近于数学期望N ’(i ,t )和方差σN 2(i ,t )正态分布,则近似有N (i ,t )~N [N ’(i ,t ),σN 2(i ,t )],则细节群裂纹超越数为: ∑==m i t i N t L 1) ,()(. (5) 式(5)中:L (t )为正态变量。 则细节群平均裂纹超越L t ()和标准差σL (i )表示为: 1m i t N t ==∑,). (6) 12 2 1 []m i i i t σσ==∑L N ()(,). (7) 3 基于CAE 技术的车辆疲劳耐久性分析 3.1 建立多体动力学模型 建立多体动力学模型时,应利用整车和零部件参数建立总成系统,以完成运动学个动力学虚拟实验,主要包括汽车操纵的稳定性、安全性和平顺性等性能的精确模拟和计算。整个ADAMS/CAR 建模过程为自下而上,逐次完成各个模板的建立,再由相应的模板生成子系统,最终由每个子系统组装成整个车的模型。其中,子系统是以模板为基础建立的,由多个零件组合而成,主要包括设计参数、模板文件和引用属性文件等多方面的说明。整车建模需要对部分零部件进行简化处理,比如将车身看作为刚体,利用车身质心位置处的质量点建模。 (下转第20页)

相关文档